NEURON *
BOOK

Nicholas T. Carnevale
and Michael L. Hines

CAMBRIDGE l

Coapyrigried Matenal

November 29, 2004 Preface to The NEURON Book

Preface to The NEURON Book

N.T. Carnevale! and M.L. Hines?

Departments of 1Psychology and 2Computer Science
YaeUniversity, New Haven, CT
ted.carnevale@yale.edu

michael .hines@yale.edu

Who should read this book

This book is about how to use the NEURON simulation environment to construct and
apply empirically-based models of neurons and neural networks. It iswritten primarily
for neuroscience investigators, teachers, and students, but readers with a background in
the physical sciences or mathematics who have some knowledge about brain cells and
circuits and are interested in computational modeling will also find it helpful. The
emphasis is on the most productive use of NEURON as a means for testing hypotheses
that are founded on experimental observations, and for exploring ideas that may lead to
the design of new experiments. Therefore the book uses a problem-solving approach,

with many working examples that readers can try for themselves.

What this book is, and is not, about

Formulating a conceptual model is an attempt to capture the essential features that
underlie some particular function. This necessarily involves ssimplification and

abstraction of real-world complexities. Even so, one may not necessarily understand all

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Preface to The NEURON Book November 29, 2004

implications of the conceptual model. To evaluate a conceptual model it is often
necessary to devise a hypothesis or test in which the behavior of the model is compared
against a prediction. Computational models are useful for performing such tests. The
conceptual model and the hypothesis should determine what isincluded in a
computational model and what is left out. This book is not about how to come up with
conceptual models or hypotheses, but instead focuses on how to use NEURON to create

and use computational models as a means for evaluating conceptual models.

What to read, and why

Page 2

The first chapter conveys abasic idea of NEURON's primary domain of application
by guiding the reader through the construction and use of amodel neuron. This exercise
is based entirely on NEURON's GUI, and requires no programming ability or prior

experience with NEURON whatsoever.

The second chapter considers the role of computational modeling in neuroscience
research from a general perspective. Chapters 3 and 4 focus on aspects of applied
mathematics and numerical methods that are particularly relevant to computational
neuroscience. Chapter 5 discusses the concepts and strategies that are used in NEURON
to simplify the task of representing neurons, which (at least at the level of synapses and
cells) are distributed and continuous in space and time, in adigital computer, where
neither time nor numeric values are continuous. Chapter 6 returns to the topic of model

construction, emphasizing the use of programming.

Chapters 7 and 8 provide "inside information™ about NEURON's standard run and

initialization systems, so that readers can make best use of their features and customize

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Preface to The NEURON Book

them to meet special modeling needs. Chapter 9 shows how to use the NMODL
programming language to add new biophysical mechanisms to NEURON. This theme
continues in Chapter 10, which starts with mechanisms of communication between cells
(gap junctions, graded and spike-triggered synaptic transmission), and moves on to
models of artificial spiking neurons (e.g. integrate and fire cells). Thefirst half of Chapter
11 isatutorial on NEURON's GUI toolsfor creating ssmple network models, and the
second half shows how to use the strengths of the GUI and hoc programming to create

more complex networks.

Chapter 12 discusses the elementary features of the hoc programming language itself.
Chapter 13 describes the object-oriented extensions that have been added to hoc. These
extensions have greatly facilitated construction of NEURON's GUI tools, and they can
also be very helpful in many other complex programming tasks such as creating and
managing network models. Chapter 14 presents an example of how to use object oriented

programming to increase the functionality of NEURON.

Appendix 1 presents a mathematical analysis of the IntFire4 artificial spiking cell
mechanism, proving aresult that is used to achieve computational efficiency when
simulating this model. Appendix 2 summarizes the commands for NEURON's built-in

text editor.

Acknowledgments

First and foremost, we want to thank our mentor and colleague John W. Moore for his
vision, support, encouragement, and active participation in the devel opment of

NEURON, without which neither it nor this book would exist. Through his research and

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Preface to The NEURON Book November 29, 2004

teaching, he was introducing students to "computational neuroscience" long before that
glorious term was invented. NEURON had its beginnings in John's laboratory at Duke
University almost three decades ago, when he and one of the authors (MLH) started their
collaboration to develop simulation software for neuroscience research. Users of
NEURON on the Macintosh owe John a particular debt. He continues to participate in the
development and dissemination of NEURON, concentrating most recently on educational

applications in collaboration with Ann Stuart (Moore and Stuart 2004).

The list of those who have added in one way or another to the development of
NEURON isfar too long for this short preface. Zach Mainen, Alain Destexhe, Bill
Lytton, Terry Sejnowski, and Gordon Shepherd deserve special mention for many
contributions, both direct and indirect, that range from specific enhancements to the
program, to fostering the wider acceptance of computational approachesin general, and
NEURON in particular, by the neuroscience community at large. We aso thank the
countless NEURON users whose questions and suggestions continue to help guide the
evolution of this software and its documentation. We hope that everyone else will forgive

any omission and remind us, gently, in time for the second edition.
Finally, we thank our wives and children for their encouragement and patience while
we completed this book.
References

Moore, JW. and Stuart, A.E. Neuronsin Action: Computer Smulations with NeuroLab.

Sunderland, MA: Sinauer Associates, 2004.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

The NEURON Book

Table of contents

Note: page numbers in each chapter start from 1, and correspond to double-spaced

format.

Preface

Chapter 1. A tour of the NEURON simulation environment
Modeling and understanding
Introducing NEURON
1. State the question
2. Formulate a conceptual model
3. Implement the model in NEURON
Starting and stopping NEURON
Bringing up a CellBuilder
Enter the specifications of the model cell
Topology
Subsets
Geometry

Biophysics

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

10

11

11

15

16

20

Contents of The NEURON Book November 29, 2004

Save the model cell
Execute the model specification
4. Instrument the model
Signal sources
Signal monitors
5. Set up controls for running the simulation
6. Save model with instrumentation and run control
7. Run the smulation experiment
8. Analyzeresults
References

I ndex

Chapter 2. Principles of neural modeling
Why model ?
From physical system to computational model
Conceptual model: asmplified representation of a physical system
Computational model: an accurate representation of a conceptual model
An example

I ndex

22

24

25

25

27

30

31

33

37

40

42

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Chapter 3. Expressing conceptual models in mathematical
terms

Chemical reactions 2
Flux and conservation in kinetic schemes 3
Stoichiometry, flux, and mole equivalents 5
Compartment size 7

Scale factors 11

Electrical circuits 13

Cables 14

References 28

Index 29

Chapter 4. Essentials of numerical methods for neural
modeling

Spatial and temporal error in discretized cable equations 2
Analytic solutions: continuous in time and space 3
Spatial discretization 6
Adding temporal discretization 9

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Contents of The NEURON Book

Numerical integration methods
Forward Euler: simple, inaccurate and unstable
Numerical instability
Backward Euler: inaccurate but stable
Crank-Nicholson: stable and more accurate
Efficient handling of nonlinearity
Adaptive integration: fast or accurate, occasionally both
Implementational considerations
The user's perspective
Error control
Local variable time step method
Discrete event simulations
Error
Summary of NEURON's integration methods
Fixed time step integrators
Default: backward Euler

Crank-Nicholson

November 29, 2004

11

12

15

18

21

24

29

29

32

41

42

45

46

50

51

51

52

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Adaptive integrators 53
CVODE
DASPK
References 55
Index 57

Chapter 5. Representing neurons with a digital computer

Discretization 1
How NEURON separates anatomy and biophysics from purely numerical issues 4
Sections and section variables 5

Range and range variables 6
Segments 8
Implications and applications of this strategy 10

Spatial accuracy 11

A practical test of spatial accuracy 12

How to specify model properties 14
Which section do we mean? 14

1. Dot notation 15

2. Section stack 15

3. Default section 17

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

Contents of The NEURON Book November 29, 2004

How to set up model topology 17
Loops of sections 18

A section may have only one parent 19

The root section 19

Attach sections at O or 1 for accuracy 19
Checking the tree structure with topology/() 20
Viewing topology with a Shape plot 21

How to specify geometry 22
Stylized specification 23

3-D specification 24
Avoiding artifacts 28
Beware of zero diameter 28

Stylized specification may be reinterpreted as 3-D specification 30

How to specify biophysical properties 32
Distributed mechanisms 33
Point processes 34
User-defined mechanisms 36

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Working with range variables 38
Iterating over nodes 38

Linear taper 39

How changing nseg affects range variables 40

Choosing a spatia grid 43
A consideration of intent and judgment 43
Discretization guidelines 49
Thed_lambdarule 50

References 58
Index 61

Chapter 6. How to build and use models of individual cells

GUI vs. hoc code: which to use, and when? 2
Hidden secrets of the GUI 3
Implementing amodel with hoc 4
Topology 5
Geometry 7
Biophysics 8
Testing the model implementation 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

Contents of The NEURON Book

November 29, 2004

An aside: how does our model implementation in hoc compare with the output of

the CellBuilder?
Instrumenting a model with hoc
Setting up simulation control with hoc
Testing ssimulation control
Evaluating and using the model
Combining hoc and the GUI
No NEURON Main Menu toolbar?
Default section? We ain't got no default section!
Strange Shapes?
The barbed wire model
The case of the disappearing section
Graphs don't work?
Conflicts between hoc code and GUI tools
Elementary project management
Iterative program devel opment
References

Index

10

16

17

19

19

20

21

21

23

23

28

32

35

37

40

41

42

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Chapter 7. How to control simulations
Simulation control with the GUI
The standard run system
An outline of the standard run system
fadvance()
advance()
step()
steprun() and continuerun()
run()
Details of fadvance()
The fixed step methods: implicit Euler and Crank-Nicholson
Adaptive integrators
Local time step integration with discrete events
Global time step integration with discrete events
Incorporating graphs and new objects into the plotting system
References

Index

Chapter 8. How to initialize simulations

State variables and STATE variables

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

10

11

13

22

25

38

39

Page 9

Contents of The NEURON Book November 29, 2004

Basic initialization in NEURON: finitialize() 5
Default initialization in the standard run system: stdinit() and init() 8
INITIAL blocksin NMODL 9
Default vs. explicit initialization of STATES 11

lon concentrations and equilibrium potentials 12

Initializing concentrations in hoc 16

Examples of custom initializations 18
Initializing to a particular resting potential 18
Initializing to steady state 20
Initializing to a desired state 22
Initializing by changing model parameters 23
Details of the mechanism 25

Initializing the mechanism 27

References 33
Index 34

Chapter 9. How to expand NEURON's library of mechanisms

Overview of NMODL 1
Example 9.1: apassive "leak" current 3
The NEURON block 6

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004

Variable declaration blocks
The PARAMETER block
The ASSIGNED block
Equation definition blocks
The BREAKPOINT block
Usage
Example 9.2: alocalized shunt
The NEURON block
Variable declaration blocks
Equation definition blocks
The BREAKPOINT block
Usage
Example 9.3: an intracellular stimulating el ectrode
The NEURON block
Equation definition blocks
The BREAKPOINT block

The INITIAL block

Usage

Contents of The NEURON Book

10

11

11

11

12

13

14

15

15

16

17

17

18

18

20

20

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Contents of The NEURON Book

Example 9.4: avoltage-gated current
The NEURON block
The UNITS block
Variable declaration blocks
The ASSIGNED block
The STATE block
Equation definition blocks
The BREAKPOINT block
The INITIAL block
The DERIVATIVE block
The FUNCTION block
Usage
Example 9.5: acalcium-activated, voltage-gated current
The NEURON block
The UNITS block
Variable declaration blocks
The ASSIGNED block

The STATE block

November 29, 2004

21

23

24

24

24

25

25

26

27

29

30

32

33

35

36

37

37

38

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Equation definition blocks 38

The BREAKPOINT block 38

The DERIVATIVE block 38

The FUNCTION and PROCEDURE blocks 39

Usage 39
Example 9.6: extracellular potassium accumulation 40
The NEURON block 42
Variable declaration blocks 44

The PARAMETER block 44

The STATE block v

Equation definition blocks 44

The BREAKPOINT block 44

The INITIAL block 45

The DERIVATIVE block 46

Usage 46
General comments about kinetic schemes 47
Example 9.7: kinetic scheme for avoltage-gated current 51
The NEURON block 53

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

Contents of The NEURON Book November 29, 2004

Variable declaration blocks 53
The STATE block 53
Equation definition blocks

The BREAKPOINT block

The INITIAL block 55

The KINETIC block 55

The FUNCTION_TABLEs 57

Usage 58
Example 9.8: calcium diffusion with buffering 58
Modeling diffusion with kinetic schemes 59
The NEURON block 64
The UNITS block 64
Variable declaration blocks 65
The ASSIGNED block 65

The STATE block 65
LOCAL variables declared outside of equation definition blocks 66
Equation definition blocks 67
The INITIAL block 67
PROCEDURE factors() 68

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

The KINETIC block
Usage
Example 9.9: acalcium pump
The NEURON block
The UNITS block
Variable declaration blocks
The PARAMETER block
The ASSIGNED block
The CONSTANT block
The STATE block
Equation definition blocks
The BREAKPOINT block
The INITIAL block
The KINETIC block
Usage
Models with discontinuities
Discontinuitiesin PARAMETERS and ASSIGNED variables
Discontinuitiesin STATEs

Event handlers

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

69

71

73

73

74

75

75

75

76

76

76

76

77

78

79

80

80

82

Page 15

Contents of The NEURON Book November 29, 2004

Time-dependent PARAMETER changes
References

ndex

Chapter 10. Synaptic transmission and artificial spiking cells
Modeling communication between cells

Example 10.1: graded synaptic transmission
The NEURON block
The BREAKPOINT block
Usage

Example 10.2: agap junction
Usage

Modeling spike-triggered synaptic transmission: an event-based strategy
Conceptua model
The NetCon class

Example 10.3: synapse with exponential decay
The BREAKPOINT block
The DERIVATIVE block

The NET_RECEIVE block

Usage

85

86

88

10

11

13

14

18

20

20

20

21

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Example 10.4: alphafunction synapse
Example 10.5: Use-dependent synaptic plasticity
The NET_RECEIVE block
Example 10.6: saturating synapses
The PARAMETER block
The STATE block
The INITIAL block
The BREAKPOINT and DERIVATIVE blocks
The NET_RECEIVE block
Handling of external events
Handling of self-events
Artificial spiking cells
Example 10.7: IntFirel, abasic integrate and fire model
The NEURON block
The NET_RECEIVE block
Enhancements to the basic mechanism
Visualizing the membrane state variable

Adding arefractory period

Improved presentation of the membrane state variable

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

23

25

26

28

31

32

32

32

33

35

35

37

38

39

40

40

42

45

Page 17

Contents of The NEURON Book November 29, 2004

Example 10.8: IntFire2, firing rate proportional to input 46

Implementation in NMODL 49
Example 10.9: IntFired4, different synaptic time constants 52
Other comments regarding artificial cells 58
References 59
Index 60

Chapter 11. Modeling networks

Building a simple network with the GUI 3
Conceptua model 4
Adding anew artificial spiking cell to NEURON 6
Creating a prototype net with the GUI 7
1. Define the types of cells 8

2. Create each cell in the network 11

3. Connect the cells 13
Setting up network architecture 14

Specifying delays and weights 15

4. Set up instrumentation 17

5. Set up controls for running ssimulations 19

6. Run asimulation 22

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

7. Caveats and other comments
Changing the properties of an existing network
A word about cell names
Combining the GUI and programming
Creating a hoc file from the NetWork Builder
NetGUI default section
Network cell templates
Network specification interface
Network instantiation
Exploiting the reusable code
References

Index

Chapter 12. hoc, NEURON's interpreter
The interpreter
Adding new mechanisms to the interpreter
The stand-alone interpreter
Starting and exiting the interpreter

Error handling

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

23

23

24

26

26

27

28

29

30

31

a7

49

Page 19

Contents of The NEURON Book November 29, 2004

Syntax 11
Names 11

Keywords 12

Variables 15

Expressions 16

Statements 18

Comments 19

Flow control 19

Functions and procedures 21

Arguments 22

Call by referencevs. call by value 24

Local variables 25

Recursive functions 25

Input and output 26

Editing 29

References 29
Inxex 30

Chapter 13. Object-oriented programming

Object vs. class 2

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004

Contents of The NEURON Book

The object model in hoc 2
ODbjects and object references 3
Declaring an object reference 3
Creating and destroying an object 4

Using an object reference 5
Passing objrefs (and objects) to functions 6

Defining an object class 7

Direct commands 8

Initializing variablesin an object 9

Keyword names 10

Object references vs. object names 11

An example of the didactic use of object names 12

Using objects to solve programming problems 13
Dealing with collections or sets 13

Array of objects 14

Example: emulating an "array of strings' 15

List of objects 16

Example: astack of objects 16

Encapsulating code 18

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

Contents of The NEURON Book November 29, 2004

Polymorphism and inheritance 19
References 21
Index 22

Chapter 14. How to modify NEURON itself

A word about graphics terminology 1
Graphical interface programming 2
General issues 4

A pattern for defining a GUI tool template 6

Enclosing the GUI tool in a single window 8

Saving the window to asession 11

Tool-specific development 15
Plotting 15

Handling events 19

Finishing up 23

Index 28

Appendix Al. Mathematical analysis of IntFire4
Appendix A2. NEURON's built-in editor

Starting and stopping 2

Switching from hoc to emacs 2

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Returning from emacs to hoc 2

Killing the current command 3
Moving the cursor 3
Modes 3
Deleting and inserting 4
Blocks of text: marking, cutting, and pasting 4
Searching and replacing 4
Text formatting and other tricks 5
Buffersand file 1/O 5
Windows 6
Macros and repeating commands 7
References 7
Index 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

November 25, 2004 The NEURON Book: Chapter 1

Chapter 1

A tour of the NEURON simulation environment

Modeling and understanding

Modeling can have many uses, but its principal benefit is to improve understanding.
The chief question that it addresses is whether what is known about a system can account
for the behavior of the system. An indispensable step in modeling is to postulate a
conceptual model that expresses what we know, or think we know, about a system, while
omitting unnecessary details. Thisrequires considerable judgment and is always
vulnerable to hindsight and revision, but it isimportant to keep things as smple as
possible. The choice of what to include and what to leave out depends strongly on the
hypothesis that we are studying. The issue of how to make such decisionsis outside the

primary focus of this book, although from time to time we may return to it briefly.

The task of building a computational model should only begin after a conceptua
model has been proposed. In building a computational model we struggle to establish a
match between the conceptual model and its computational representation, always asking
the question: would the conceptual model behave like the smulation? If not, where are
the errors? If so, how can we use NEURON to help understand why the conceptua model

implies that behavior?

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 1 November 25, 2004

Introducing NEURON

Page 2

NEURON is asimulation environment for models of individual neurons and
networks of neurons that are closely linked to experimental data. NEURON provides
numerically sound, computationally efficient tools for conveniently constructing,
exercising, and managing models, so that special expertise in numerical methods or
programming is not required for its productive use. Increasing numbers of
experimentalists and theoreticians are incorporating it into their research strategies. As of
this writing, more than 460 scientific publications have reported work done with
NEURON on topics that range from the molecular biology of voltage-gated channels to
the operation of networks containing thousands of neurons (see Research reports that

have used NEURON at ht t p: / / waw. neur on. yal e. edu/ neur on/ bi b/ usednrn. ht m).

In the following pages we introduce NEURON by going through the development of

asimple model from start to finish. Thiswill require us to consider each of these steps:
1. State the question that we areinterested in

2. Formulate a conceptual model

3. Implement the model in NEURON

4. Instrument the model, i.e. attach signal sources and set up graphs

5. Set up controls for running simulations

6. Savethe model with instrumentation and run controls

7. Run simulation experiments

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

8. Anayzeresults

Since our aim isto provide an overview, we have chosen a ssmple mode that
illustratesjust one of NEURON's strengths: the convenient representation of the spread
of electrical signalsin abranched dendritic architecture. We could do this by writing
instructions in NEURON's programming language hoc, but for this example we will
employ some of the tools that are provided by its graphical user interface. Later chapters
examine hoc and the graphical tools for constructing models and managing simulations
in more detail, as well as many other features and applications of the NEURON
simulation environment (e.g. complex biophysical mechanisms, neural networks, analysis

of experimental data, model optimization, customization of the user interface).

1. State the question

The scientific issue that motivates the design and construction of thismodel isthe
guestion of how synaptic efficacy is affected by synaptic location and the anatomical and
biophysical properties of the postsynaptic cell. This has been the subject of too many
experimental and theoretical studiesto reference here. Interested readers will find
numerous relevant publicationsin NEURON's on-line bibliography (cited above), and
may retrieve working code for severa of these from ModelDB

(http://sensel ab. ned. yal e. edu/ sensel ab/ nodel db/).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 1 November 25, 2004

2. Formulate a conceptual model

Most neurons have many branches with irregularly varying diameters and lengths
(Fig. 1.1 A), and their membranes are populated with awide assortment of ionic channels
that have different ionic specificities, kinetics, dependence on voltage and second
messengers, and spatial distributions. Scattered over the surface of the cell may be
hundreds or thousands of synapses, some with a direct effect on ionic conductances
(which may also be voltage-dependent) while others act through second messengers.
Synapses themselves are far from simple, often displaying stochastic and use-dependent
phenomena that can be quite prominent, and frequently being subject to various pre- and
postsynaptic modulatory effects. Given al this complexity, we might well ask if itis
possible to understand anything without understanding everything. From the very onset

we are forced to decide what to include and what to omit.

Suppose we are aready familiar with the predictions of the basic ball and stick model
(Rall 1977; Jack et al. 1983), and that experimental observations motivate us to ask
guestions such as: How do synaptic responses observed at the soma vary with synaptic
location if dendrites of different diameters and lengths are attached to the soma? What
happens if some parts of the cell have active currents, while others are passive? What if a
neuromodulator or shift of the background level of synaptic input changes membrane

conductance?

Then our conceptual model might be similar to the one shown in Fig. 1.1 B. This
model includes a neuron with a somathat gives rise to an axon and two dendritic trunks,

and a single excitatory synapse that may be located at any point on the cell.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

basilar soma
B \f\ lsynapse

A
axon apical

Figure1.1. A. Clockwise from top left: Cal and Ca3 pyramidal neurons (from
D.A. Turner); calbindin-, parvalbumin-, and calretinin-positive interneurons
(from A.l. Gulyas). B. Our conceptual model neuron. The conductance change
synapse can be located anywhere on the cell.

Although deliberately more complex than the prototypical ball and stick, the
anatomical and biophysical properties of our model are much ssmpler than the biological
original (Table 1.1). The axon and dendrites are simple cylinders, with uniform diameters
and membrane properties aong their lengths. The dendrites are passive, while the soma
and axon have Hodgkin-Huxley sodium, potassium, and leak currents, and are capabl e of
generating action potentials (Hodgkin and Huxley 1952). A single synaptic activation
causes alocalized transient conductance increase with a time course described by an

alphafunction

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 1 November 25, 2004

Page 6

g (t) = Y Eq. 1.1
for t=t .

wheret, . isthetime of synaptic activation, and g, reaches a peak valueof g, att =1

(see Table 1.2 for parameter values). This conductance increase mechanism is just
dightly more complex than theideal current sources used in many theoretical studies
(Rall 1977; Jack et al. 1983), but it is still only apale imitation of any real synapse (Bliss

and Lemo 1973; 1to 1989; Castro-Alamancos and Connors 1997; Thomson and Deuchars

1997).
Table 1.1. Model cell parameters

Length Diameter Biophysics

pm pm
soma 30 30 HH gy 9> ad gy
apical dendrite 600 1 passive with Rm = 5,000 Q cm?, Epasz -65 mV
basilar dendrite 200 2 same as apical dendrite
axon 1000 1 same as soma
Cm=1pf / cm?

cytoplasmic resistivity = 100 Q cm
Temperature = 6.3 °C

Table 1.2. Synaptic mechanism parameters

Omax 0-05US
Tg 0.1 ms
E omv

S

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

3. Implement the model in NEURON

With aclear picture of our model in mind, we are ready to expressit in the form of a
computational model. Instead of writing instructionsin NEURON's programming
language hoc, for this example we will employ some of the tools that are provided by

NEURON's graphical user interface.

We begin with the CellBuilder, agraphical tool for constructing and managing models
of individual neurons. At this stage, we are not considering synapses, stimulating
electrodes, or simulation controls. Instead we are focussing on creating a representation
of the continuous properties of the cell. Even if we were not using the CellBuilder but
instead were devel oping our model entirely with hoc code, it would probably be best for
usto follow asimilar approach, i.e. specify the biological attributes of the model cell
separately from the specification of the instrumentation and control code that we will use
to exercise the model. Thisis an example of modular programming, which isrelated to
the "divide and conquer” strategy of breaking alarge and complex problem into smaller,

more tractabl e steps.

The CellBuilder makes it easier for us to create amodel of a neuron by allowing usto
specify its architecture and biophysical properties through a graphical interface. When we
are satisfied with the specification, the CellBuilder will generate the corresponding hoc
code for us. Once we have amodel cell, we will be ready to use other graphical toolsto

attach a synapse to it and plot ssimulation results (see 4. Instrument the model below).

The images in the following discussion were obtained under M SWindows; the

appearance of NEURON under UNIX, Linux, and MacOS is quite similar.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 1 November 25, 2004

Starting and stopping NEURON

No matter what a program does, the first thing you have to learn is how to start and
stop it. To start NEURON under UNIX or Linux, just type nr ngui on the command line
and skip the remainder of this paragraph. Under M SWindows, double click on the nrngui
icon on your desktop (Fig. 1.2 left); if you don't see one there, bring up the NEURON
program group (i.e. use Start / Program Files / NEURON) and select the nrngui item
(Fig. 1.2 right). If you are using MacOS, open the folder where you installed NEURON
and double click on the nrngui icon.

@ Documentation

[Z mknendl
& modlunit

B MEURCHN Demo
B NEURON Home Page

@ Mokes

T o
‘ol vk sh

AFngUl 73‘-3_\[' Uninstall

Figure 1.2. Under MSWindows, start NEURON by clicking on the nrngui icon

on the desktop (l€ft) or selecting the nrngui item in the NEURON program
group (right).

Y ou should now see the NEURON Main Menu (Fig. 1.3 top), which offers a set of
menus for bringing up graphical tools for creating models and running simulations. If you
are using UNIX or Linux, a"banner” that includes the version of NEURON you are
running will be printed in the xterm where you typed nr ngui , and the prompt will
change to oc> to indicate that NEURON's hoc interpreter is running. Under MacOS and
MSWindows, the "banner" and oc> prompt will appear in a new console window

(Fig. 1.3 bottom).

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

There are three different ways to exit NEURON; you can use whichever is most

convenient.
1. type~D(i.e. control D) at the oc> prompt
2. typequit () attheoc> prompt

3. click on File inthe NEURON Main Menu, scroll down to Quit, and rel ease the mouse

button (Fig. 1.4)

i NEURON Main Menu . -1ol x|

leomify

|Fi|e Edit EBuild Tools Graph “ector Windowl

=gl x|

!!HEURDN -- Version 5.6 2004-E5-1% Z3:5:24 Main (81}
by John W. Moore, Michael Hines, and Ted Carnevale
Duke and Tale University -- Copyright 2001

"Jrmdll" not defined in nrn_ def
JHI_CreatelavalVl returned -1

Info: optional feature Java VM is not present.
nc}l

=1

Figure 1.3. Top: The NEURON Main Menu toolbar. Bottom: NEURON's

"banner" and oc> prompt in an M SWindows consol e window.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 1 November 25, 2004

=10l x|

leonify

File | Edit Build Tools Graph ector \Mndowl

1oad session
load hoco
lo=d dil

S3we Session
wworking dir
recent dir
Print

Guit [

Figure 1.4. One way to exit NEURON isto click on File / Quit in the

NEURON Main Menu toolbar.

Bringing up a CellBuilder

To get a CellBuilder just click on Build in the NEURON Main Menu, scroll down to

the CellBuilder item, and rel ease the mouse button (Fig. 1.5).

NEURON Main Menu =
lconify

|Fi|e Edit|BuiId Tools Graph Vector Window m

single compartment
[cell Builder .
NetWork Cell”
MNetWork Builder

Figure 1.5. Using the NEURON Main Menu to bring up a CellBuilder.

Across the top of the CellBuilder is arow of radio buttons and a checkbox, which
correspond to the sequence of stepsinvolved in building amodel cell (Fig. 1.6). Each
radio button brings up a different page of the CellBuilder, and each page provides a view
of the model plus agraphical interface for defining properties of the model. The first four
pages (Topology, Subsets, Geometry, Biophysics) are used to create acomplete

specification of amodel cell. On the Topology page, we will set up the branched

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

architecture of the model and give a name to each branch, without regard to diameter,
length, or biophysical properties. We will deal with length and diameter on the Geometry
page, and the Biophysics page is where we will define the properties of the membrane

and cytoplasm of each of the branches.

s Topology ., Subsets ., Geometry ., Biophysics ., Management D Continuous Create

Figure 1.6. Top pand of the CellBuilder

The Subsets page deserves special comment. In almost every model that has more
than one branch, two or more branches will have at |east some biophysical attributes that
are identical, and there are often significant anatomical similarities as well. Furthermore,
we can amost aways apply the d_lambda rule for compartmentalization throughout the
entire cell (see below). We can take advantages of such regularities by assigning shared
properties to several branches at once. The Subsets page is where we group branches
into subsets, on the basis of shared features, with an eye to exploiting these
commonalities on the Geometry and Biophysics pages. This allows us to create amodel

specification that is compact, efficient, and easily understood.

Enter the specifications of the model cell

® Topology

We start by using the Topology page to set up the branched architecture of the model.
AsFig. 1.7 shows, when anew CellBuilder is created, it aready contains a branch (or

"section,” asitiscalled in NEURON) that will serve as the root of the branched

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 1 November 25, 2004

architecture of the model (the root of atreeisthe branch that has no parent). This root

sectionisinitially called "soma," but we can rename it if we desire (see below).

CellBuild[0]
Close
+ About 4 Topology ., Subsets ., Geometry ., Bi ics |:| Contil Create
Basename: |dend
Undo Last
Click and drag te
4 Make Section
.~ Copy Subtree
-~ Reconnect Subtree
-~ Repesition
. Move Label
5@“ Click to
-~ Insert Section
. Delete Section
. Delete Subtree
-~ Change Name
Hints

Figure 1.7. The Topology page. The left panel shows a simple diagram of the
model, which is called a " shape plot.” The right panel contains many functions

for editing the branched architecture of amodel cell.

The Topology page offers many functions for creating and editing individual sections
and subtrees. We can make the section that will become our apical dendrite by following
the steps presented in Fig. 1.8. Repeating these actions a couple more times (and

resorting to functions like Undo Last, Reposition, and Delete Section as needed to correct

mistakes) gives us the basilar dendrite and axon.

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Figure 1.8. Making a new section. Verify that the Make Section radio button is on, and then perform the

following steps.
Y N Place the cursor near one end of an existing section.
@ Click to start a new section. One end of the new section will automatically attach

to the nearest end of an existing section; the other end is tethered to the cursor

while the mouse button is held down.

s@h—% Drag to the desired length and orientation.

s@h—uenu—% Release the mouse button.

Our model cell should now look like Fig. 1.9. At this point some minor changes
would improve its appearance: moving the labels away from the sections so they are
easier to read (Fig. 1.10), and then renaming the apical and basilar dendrites and the axon

(Figs. 1.11 and 12). Thefinal result should resemble Fig. 1.13.

denEﬂ ' Figure 1.9. The model after all sections have been created.

Figure 1.10. To change the location of alabel,

Click and drag to

+, Make Section

~ Copy Subtree . .

- Reconnect Subtree click on the Move Label radio button,
Reposition

Move Label
T thenclick on thelabel,
W drag it to its new position,
Taena and release the mouse button.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.11. Preparing to change the name of a section. Each section we created was automatically given

aname based on "dend." To change these names, we must first change the base name as shown here.

dend Click the Basename button.

IYOC
Section name prefix:
| ESE B This pops up a Section name prefix window.
‘ Accept ¢ | ‘ Cancel |
Section name prefix: Click inside the text entry field of this new window, and type the
| apical N) o o
desired name. It is important to keep the mouse cursor inside the

text field while typing; otherwise keyboard entries may not have

an effect.

apical After the new base name is complete, click on the Accept button.

This closes the Section name prefix window, and the new base

name will appear next to the Basename button.

Figure 1.12. Changing the name of a section.
apical First make sure that the base name iswhat you want; if not, change the base name

(seeFig. 1.11).

Click to
+ Insert Section

e ge'ete Section)ik the Change Name radio button.
elete Subtree

x Change Name

de&d Place the mouse cursor over the section whose name is to be changed.
apifgl Click the mouse button to change the name of the section.
basilar \2:“ Figure 1.13. The shape plot of the model with labels positioned and
e . .
axon apical named as desired.

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

® Subsets
As mentioned above, the Subsets page (Fig. 1.14) isfor grouping sections that share
common features. Well-chosen subsets can save alot of effort later by helping us create

very compact specifications of anatomical and biophysical properties.

CellBuild[0]
Close

Create

~ About ., Topology 4 Subsets .. Geometry .. Bi ics |:| Contil

all A || First, select,

Select One
~ Select Subtree
~ Select Basename

then, act.

New SectionList

Selection->SecList

basilar : soma

axon apical

Delete SecList

Change Name

Move up

Move down

Hints

K

Figure 1.14. The Subsets page. The middle panel lists the names of all existing
subsets. In the shape plot, the sections that belong to the currently selected
subset are shown in red. When the Subsets page initially appears, it already has

an all subset that contains every section in the model.

The properties of the sectionsin this particular example suggest that we create two
subsets: one that contains the basilar and apical branches, which are passive, and another
that contains the soma and axon, which have Hodgkin-Huxley spike currents. To make a
subset called has_HH that contains the sections with HH currents, follow the stepsin

Fig. 1.15. Then make another subset called no_HH that contains the basilar and apical

dendrites.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 1

Figure 1.15. Making a new subset.

basilar \sﬁzla

axon K apical

[all differs from selection

Vov s

IYOC
Mew SectionList name
Jal s
‘ Accept ¢ | ‘ Cancel |
New SectionList name
|has_HH s
all
has_HH
® Geometry

November 25, 2004

With the Select One radio button on (Fig. 1.14), click on the
axon and soma sections while holding down the shift key. The

selected sections will beindicated in red. . .

... and thelist of subsetswill change to show that all is not the

same as the set { axon, soma} .
Next, click on the New SectionList button (asubset isalist of

sections).
This pops up awindow that asks you to enter a name for the new

SectionList.

Click inside the text entry field of this new window and type the

name of the new subset, then click on the Accept button.

The new subset name will appear in the middle panel of the

CellBuilder.

In order to use the Geometry page (Fig. 1.16) to specify the anatomical dimensions of

the sections and the spatial resolution of our model, we must first set up a strategy for

assigning these properties. After we have built our (hopefully efficient) strategy, we will

give them specific values.

The geometry strategy for our model is simple. Each section has different dimensions,

so the length L and diameter diam of each section must be entered individually. However,

for each section we will let NEURON decide how fine to make the spatial grid, based on

afraction of the length constant at 100 Hz (spatial accuracy and NEURON's tools for

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

adjusting the spatial grid are discussed in Chapter 5). Figure 1.17 shows how to set up

this strategy.

Having set up the strategy, we are ready to assign the geometric parameters (see

Figs. 1.18 and 19).

CellBuild[0]
Close
+ About ., Topology ., Subsets 4 Geometry ., Bi ics |:| Contil Create
ESpecify Strategy [L
diam
all A=
has_HH =l area
no_HH cireuit
soma —
apical T
basilar Spatial Grid
ol axon nses
asilar —]
sema _ d_lambda
axon apical S
v
Hints

Figure 1.16. When the Geometry page in anew CellBuilder isfirst viewed, ared
check mark should appear in the Specify Strategy checkbox. If not, clicking on

the checkbox will toggle Specify Strategy on.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 1 November 25, 2004

Page 18

Figure 1.17. Specifying strategy for assignment of geometric parameters. First make sure that

Specify Strategy containsared check (see Fig. 1.16). Then proceed with the following steps.

E Specify Strategy

all: d_lambda

has_HH
no_HH
soma
apical
basilar
axon

E Specify Strategy

all: d_lambhda
has_HH
no_HH

soma: L, diam

apical

E Specify Strategy

L

diam

area

cireuit
............. For the all subset, toggle d_lambda on.
Spatial Grid

nseg

d_lambda

4 v

all: d_lambda
has_HH
no_HH

soma: L, diam
apical: L, diam
basilar: L, diam

axon: L, diam

L
diam
erea Select soma in the middle panel, and then toggle L and diam on.

circuit

L

diam

area

cireuit Repeat for apical, basilar, and axon, and the result should

Spatial Grid resemble this figure.
nseg
d_lambda

d_X

D Specify Strategy | forsec all { ...

all d_lambda A \ {i lambda_w(f)*2 = diam/{4"PI"f"Ra"cm)

soma: L, diam i nseg = ~Li{d_lambda*lambda_w(100))
apical: L., diam {i fraction of space constant at 100Hz

basilar: L, diam
d_lambda | | [0 :

axon: L, diam

Figure 1.18. Ass3gning vauesto the geometric parameters. Toggling Specify Strategy

off makes the middle panel show only the subsets and sections that we selected

when setting up our strategy. Adjacent to each of these are the names of the

parameters that are to be reviewed and perhaps changed. Here the subset all is

selected; the right panel displays the current value of the parameter associated

with it (d_lambda) and offers us the means to change this parameter if

necessary. According to the d_lambda criterion for spatial resolution,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

The NEURON Book: Chapter 1

NEURON will automatically discretize the model, breaking each section into

compartments small enough that none will be longer than d_lambda at 100 Hz.

The default value of d_lambda is 0.1, i.e. 10% of the AC length constant. This

is short enough for most purposes, so we do not need to change it.

Discretization is discussed in Chapter 5.

Figure 1.19. Assigning values to the geometric parameters continued.

D Specify Strategy

| soma {...

all: d_lambda
soma: L, diam
apical: L, diam
hagilar- 1 dAiam

D Specify Strategy

L

L {um)

Nl

diam {(um)

| o—

[Il

| soma {...

[Il

all: d_lambda
% soma: L, diam

apical: L, diam

hagilar- 1 dAiam

L

L {um)

EC—r

diam {(um)

Elcaraat’

all: d_lambda
% soma; L, diam
x apical: L, diam
% basilar: L, diam

x axon: L, diam

The length and diameter of each section must

be changed from the default values.

To set the length of the soma to 30 pm, first
click inside the numeric field for L so that ared

editing cursor appears.
Then use the backspace key to delete the old

value, and finally type in the new value.
After doing the same for diam, the dimensions

of soma should ook like this. The checkboxes
adjacent to the L and diam buttons indicate that
these parameters have been changed from their
default values. The x in the middle panel is
another reminder that at |east one of the
parameters associated with soma has been

changed.
After adjusting L and diam for the dendrites and

the axon, the middle panel shows an x next to

the name of each section.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 1

Page 20

November 25, 2004

® Biophysics

The Biophysics page (Fig. 1.20) is used to insert biophysical properties of membrane
and cytoplasm (e.g. Ra, Cm, ion channels, buffers, pumps) into subsets and individual
sections. As with the Geometry page, first we set up our strategy (Fig. 1.21), and then we

review and adjust parameter values (Fig. 1.22). The CellBuilder will then contain a

complete specification of our model.

CellBuild[0]

Close

+ About ., Topology ., Subsets ., Geometry 4 Bi ics |:| Contil Create
E Specify Strategy forsec all { fispecify
AT |A Ra

has_HH em
no_HH
soma
apical extracellular
basilar hh

axon

pas

basilar soma

axon apical

Ll

Hints |

Figure 1.20. The Biophysics page, ready for specification of strategy. The right panel

shows the mechanisms that are available to be inserted into our model. For this ssimple
exampl e, the number of mechanisms is deliberately small; adding new mechanismsis

covered in Chapter 9: How to expand NEURON's library of mechanisms.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

The NEURON Book: Chapter 1

Figure 1.21. Specifying strategy for assignment of biophysical parameters. First make sure that Specify

Strategy contains a red check, then proceed with the following steps.

E Specify Strategy

forsec all { fispecify

all: manage ...
has_HH

no_HH
soma
apical
basilar
axon

E Specify Strategy

A

Ra

cm

pas
extracellular
hh

LLLIRIS)

forsec has_HH { fisp

all: manage ...

has_HH: manage .
no_HH

IS

AALLL]

Ra

cm

pas
extracellular
hh

forsec no_HH { /ispe

axon

soma
apical
basilar
axon

E Specify Strategy
all: manage ... A
has_HH: manage. [~ |
no_HH: manage ..
soma
apical
basilar

Ra
cm
pas
3

extracellular
hh

LLIgL]

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

For the all subset, toggle Ra (cytoplasmic resistivity) and cm

(specific membrane capacitance) on.

Select the has_HH subset in the middle panel, and then

toggle HH on.

Finally select the no_HH subset and toggle pas on.

Page 21

The NEURON Book: Chapter 1

November 25, 2004

Figure 1.22. Assigning valuesto the biophysical parameters. Toggling Specify Strategy off shows alist of

the names of the subsets that are part of the strategy. Beneath each subset are the names of the

mechanisms that are associated with it. Clicking on a mechanism brings up a set of controlsin the right

panel for displaying and adjusting the parameters of the mechanism.

D Specify Strategy

forsec all { # specify Ra

all

x Ra o

D Specify Strategy

4 ||| Ratohm-cm) | 4 [100 N

forsec no_HH { insert pas

all A

¥ Ra
cm

has_HH
hh

no_HH

[pas

D Specify Strategy

g_pas {(mholecm2) l:l |0.001 El

sl

e_pas (mY)

g_pas (mhotem2) | | [A75000 N E|

g_pas (mholem2) | 4 [0.0002 N E|

forsec no_HH { insert pas

all A

x Ra
cm
has_HH
hh
no_HH
X pas

Save the model cell

g_pas (mholcmz) E’ [0.0002 E|

e_pas (mV)

Ccaeat

For the subset al, change the value of Ra
from its default (80 Q cm) to the desired

vaue of 100 Q cm.

The sections in the no_HH subset have a
passive current whose parameters must be

changed from their defaults (shown here).

The value of g_pas can be set by deleting
the default and then typing 1/5000

(= /Rm).
Thefinal values of g_pas and e_pas. Not

shown: cm (all subset) and the parameters
of the hh mechanism (has_HH subset),
which have the desired values by default
and do not need to be changed, although it

is good practice to review them.

After investing time and effort to set up our model, we would be wise to take just a

moment to save it. The CellBuilder, like NEURON's other graphical windows, can be

saved to disk asa"session file" for future re-use, as shown in Figures 1.23 and 1.24. For

more information about saving and retrieving session files, including how to use the Print

Page 22

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

& File Window Manager GUI tool to select and save specific windows, see Using

Session Files for Saving and Retrieving Windows at

ht t p: / / waw. neur on. yal e. edu/ neur on/ docs/ saveses/ saveses. ht ni

B
lconify
[File Edit Build Tools Graph Vector Window |
"| load session
load hoc
load dll
|save session
working di
recent dir
Quit
Save Session Save Session
Enter filename: Enter filename:
| | /modelsimycell.ses N
course/ o
cvapp/
gstools/
ibminfo/
makenrninst/
models/
nrn/ %
nrna1/
usr/
foo.ses
Filter: |*.ses Filter: |*.ses
Save ¢+ Cancel Save Cancel

Figure 1.23. Top: To save al of NEURON's graphical windowsinto asessionfile, first
click on File in the NEURON Main Menu and scroll down to save session. Bottom | eft:
This brings up a directory browser that can be used to navigate to the directory where the
session file will be saved. Bottom right: Click in the edit field at the top of the directory

browser and type the name to use for the session file, then click on the Save button.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 1 November 25, 2004

Load
Enter filename:
] |./models/
lconify
-

|| File Edit Build Tools Graph WVector Window ” mycell.ses [%
|Ioad sessi&ni
load hoc
load dll
save session
working dir
recent dir
Quit

Filter:| *.ses

Load ¢ Cancel

Figure 1.24. Left: To recreate the graphical windows that were saved to a sessionfile,
first click on File in the NEURON Main Menu and scroll down to load session. Right:
Use the directory browser that appears to navigate to the directory where the session file

was saved. Then double click on the session file that you want to retrieve.

Execute the model specification

Now that the CellBuilder contains a complete specification of the model cell, we
could use the Export button on the Management page (see Chapter 6) to write out ahoc
file that, when executed by NEURON, would create the model. However, for this
example we will just turn Continuous Create on (Fig. 1.25). This makes the CellBuilder
send its output directly to NEURON's interpreter without bothering to writeahoc file.
The mode cell whose specifications are contained in the CellBuilder is now available to

be used in smulations.

__[\Centinuous Create Figure 1.25. Continuous Create isinitially off,
|¥[Centinuous Create but clicking on the adjacent button togglesit on

&Continuous Create gnd off.

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

If we make any changes to the model while Continuous Create is on, the CellBuilder
will automatically send new code to the interpreter. This can be very convenient during
model development, since it allows us to quickly examine the effects of any change.
Automatic updates might bog things down if we were dealing with alarge model on a
dow machine. In such a case, we could just turn Continuous Create off, make whatever

changes were necessary, and then cycleit on and off again.

4. Instrument the model

Signal sources

In the NEURON simulation environment, a synapse or electrode for passing current
(current clamp or voltage clamp) is represented by a point source of current whichis
associated with alocalized conductance. These signal sources are called "point
processes’ to distinguish them from properties that are distributed over the cell surface
(e.g. membrane capacitance, active and passive ionic conductances) or throughout the
cytoplasm (e.g. buffers), which are called "distributed mechanisms' or "density

mechanisms."

We have already seen how to use one of NEURON's graphical tools for dealing with
distributed mechanisms (the CellBuilder). To attach a synapse to our model cell, we turn
to one of NEURON's tools for dealing with point processes: the PointProcessManager
(Fig. 1.26). Using a PointProcessManager we can specify the type and parameters of the

point process (Fig. 1.27) and where it is attached to the cell.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 1 November 25, 2004

NEURON Main Menu E2

lconify

| File Edit Build | Tools | Graph Vector Window u
RunControl
RunButton
VariableStepControl
Point Processes Managersl Point Manager
Distributed Mechanisms | viewers |pgint Group
Fitting Electrode
Impedance

Miscellaneous

Figure 1.26. Bringing up a PointProcessManager in order to attach a synapse to
our mode! cell. In the NEURON Main Menu, click on Tools / Point Processes /

Managers / Point Manager, then proceed as shown in Fig. 1.27.

Figure 1.27. Configuring a new PointProcessManager to emulate a synapse.

PointProcessManager
Close |

SelectPointProcess |

Show |

None

at: soma(0.5)

A. Note the labelsin the top pandl. None means that a signal
source has not yet been created. The bottom panel shows a stick

figure of our model cell.

| SelectPointProcess |

none
IClamp B. SelectPointProcess / AlphaSynapse creates a point process
| Alp haSynap§e|
KSyn
SEClamp
VClamp
APCount

that emul ates a synapse with a conductance change governed by

Eq. 1.1, and shows us a panel for adjusting its parameters.

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

PointProcessManager
Close |

SelectPointProcess | C. Thetop panel of the PointProcessManager indicates what kind
Show |
AlphaSynapse[0]
at: soma(0.5)

of point process has been specified, and whereit islocated (in this

case, a the midpoint of the soma). The bottom panel shows the

AlphaSynapse[0]

parameters of an AlphaSynapse: its start time onset and time

onset (ms) :l IO :
tau {ms) :| o1 . constant tau (t, and t,in Eg. 1.1), peak conductance gmax (g,
gmax (umho) l:l |0 El
e (mV) :l in Eq. 1.1), and reversa potential e (Egin Table 1.2). The button
1A marked i (nA) isjust alabel for the adjacent numeric field, which

displays the instantaneous synaptic current.

onset (ms) 2 0.5

tau (ms) :I |0_1_|§| D. For this example change onset to 0.5 ms and gmax to 0.05 uS;
gmax (umho} l% [o05 El leave tau and e unchanged.
e (mV) IO :l

Signal monitors

Since one motivation for the model is to examine how synaptic responses observed at
the soma vary with synaptic location, we want a graph that shows the time course of
somatic membrane potential. In the laboratory this would ordinarily require attaching an

electrode to the soma, so ina NEURON simulation it might seem to require a point

process. However, the computer automatically evaluates somatic V,, in the course of a

simulation. In other words, graphing V, , doesn't really change the system, unlike

attaching a signal source, which adds new equations to the system. This means that a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 1 November 25, 2004

point process is not needed; instead, we just bring up a graph that includes somatic V,,in
the list of variables that it plots (see Fig. 1.28).

We could monitor V, at other locations by adding more variables to this graph, and
bring up additional graphsif this one became too crowded. However, it can be more
informative and convenient to create a "space plot” (Fig. 1.29), which showsV,_ asa
function of position along one or more branches of acell. This graph will change
throughout the simulation run, displaying the evolution of V, as afunction of space and

time.

Figure 1.28. Creating a graph to display somatic membrane potential as a function of time.

lconify
| File Edit Build Tools | Graph Vector Window "
Vol i . .
2rage = A. Click on Graph / Voltage axis in the
Current axis
State axis)
NEURON Main Menu.
Shape plot
Yector movie
Phase Plane
Grapher
B. In the graph that appears, the horizonta axisis
Close
in milliseconds and the vertical axisisin
0
ve9) millivolts. The label v(.5) signifies that this graph
0 | | | | ' will show V_ at the middle of the defauilt section.
(1 2 3 4 5
With the CellBuilder, thisis always the root
40 —
section, which in this example is the soma (the
a0 concepts of "root section” and "default section”

are discussed in Chapter 5.

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Figure 1.29. Setting up a space plot.
|

lconify

|Fi|e Edit Build Tools|Graph Vector Window m

Voltage axis

A. Thefirst step isto create a Shape plot by clicking

Current axis
State axis

Shaps plot on Graph / Shape plot inthe NEURON Main Menu.

Vector movie

Phase Plane

Grapher

Shape x-1083.15:713.15 y-849.68 :...

Close

B. This brings up a Shape plot window, which is

v used to create the space plot.

Shape x-1083.15:713.15 v -849.68 :...
Close

Wiew ...

Axis Type

Move Text

Change Text C. Right click in the Shape plot window to bring up

Delete

®5ection its primary menu. While till pressing the mouse

3D Rotate
Redraw Shape
Shape Style
Plot What?
Variable scale

Time Plot

button, scroll down the menu to the Space Plot item,

then release the button.

Space Plot
Shape Plot

D. Place the cursor just to the left of the distal end

of the axon and press the left mouse button.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 1

Graph x-1163:793 y-92:52

Close Hide

40

v

000 £00

200

40

200

600

80

November 25, 2004

E. While still holding the button down, drag the
cursor across the window to the right, finally
releasing the button when the cursor has passed the

distal end of the apical dendrite.
F. The branches along the sel ected path (axon,

soma, and apical dendrite) are now shown in red,
and a new graph window appears (see G). If you
like, you may now click on the Close button at the
upper left corner of the shape plot window to

conserve screen space

G. The x axis of the Space Plot window shows the
distance from the 0 end of the default section, which

in this example is the left end of the soma.

5. Set up controls for running the simulation

At this point we have amodel cell with a synapse attached to the soma, and a

graphical display of somatic V.. All that is missing is ameans to start and control the

subsequent course of asimulation run. Thisis provided by the RunControl window

(Fig. 1.30), which allows us to specify many more options than we will usein this

example.

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

6. Save model with instrumentation and run control

After rearranging the RunControl, PointProcessManager, and graph window, our
customized user interface for running simulations and observing simulation results should
look something like Fig. 1.31. For the sake of safety and possible future convenience, itis

agood ideato use NEURON Main Menu / File / Save Session to save this custom GUI to

asessionfile.
NEURON Main Menu =] RunControl
leonify Close Hide
|Fi|e Edit Build | Tools | Graph Vector Window m init (mv) ¢4 | | [65 .
[Runcontrol | Init & Run
RunButton
VariableStepControl Stop

Point Processes

Continue til (ms) ¢ l:l |5 :l
Distributed Mechanisms
Fitting Continue for (ms) « l:l |1 : ||

Impedance

Single Step

Miscellaneous
t (ms) 0

Tstop {ms) :l |5 :l
dtgms) | | [0.025
Points plottedims |40 :l

Guiet
Real Time (s) |0

Figure 1.30. Left: To bring up awindow with controls for running simulations,
click on the RunControl button in NEURON Main Menu / Tools. Right: The
RunControl window provides many options for controlling the overal time
course of asimulation run. For this example, only three of these controls are

relevant.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 1 November 25, 2004

1. Init (mV) setstimet to 0, assigns the displayed starting value (-65 mV) toV,|

throughout the model cell, and sets the ionic conductances to their their steady

state values at this potential.

2. Init & Run performs the same initialization as Init (mV), and then starts a

simulation run.

3. Points plotted/ms determines how often the graphical displays are updated

during asimulation.

Three other itemsin this panel are of obvious interest, although we will not do
anything with them in this example. Thefirst is dt, which sets the size of the
time intervals at which the equations that describe the model are solved. The
second is Tstop, which specifies the duration of asimulation run. Finally, the
button marked t doesn't actually do anything but is just alabel for the adjacent
numeric field, which displays the elapsed simulation time. Additional features
of the RunControl window are discussed in Chapter 7: How to control

simulations.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

FunControl

Close
Use variable dt
Local variable dt

nit mv) ¢ | | [45 :|

Close

Init & Run

Stop 40
v

Continue til (ms) 4 I:l |5 :l
Continue for {ms) ¢ l:l |1 :ll [\ | o | |

-1000 €00 -200 200 600

Single Step

t (ms) 0

40—
Tstop {ms) :l |5 :l

dt(ms) |_|[0025 :|
Points plottedims | | [40 :l 80 —

PointProcessManager
Close | Close
SelectPointProcess | 40 —
Show | v(.5)
AlphaSynapse[0]
at: somaf0.5) 0 | \ | | |
i 1 2 3 4 5

AlphaSynapse[0]

onset (ms) 0.5
Ky ¢ Il L L
tau (ms) :l |01_|§|
gmax (umho) BW
emv) | |fo :l 80—
0

i (&)

Figure 1.31. The windows we will use to run simulations and observe simulation results. Other
windows that are present on the screen but not shown in this figure are the NEURON Main Menu and

the CellBuilder.

7. Run the simulation experiment

We are now ready to use our "virtual experimental rig" to exercise the model. When

we run a simulation with the synapse located at the soma (Fig. 1.32 and 33), aspikeis

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 1 November 25, 2004

triggered. However, if we move the synapse even a small distance away from the soma
along the apical dendrite (Fig. 1.34) and run a new simulation, the epsp istoo small to
evoke aspike (Fig. 1.35).

The utility of the space plot as atool for understanding the temporal evolution of V|
throughout the cell can be enhanced by using it like a storage oscilloscope, as shown in

Fig. 1.36. Thisallows usto compare the distribution of V, at successive intervals during
arun. It might be helpful to do something similar with the plot of somatic V, vs. tif we

wanted to compare responses to synaptic inputs with different parameters or locations.

Figure 1.32. Running a simulation.
Init & Run A. Press Init & Run in the RunControl window to launch a simulation.

tms) Jo B.ThismakestimetadvancefromO. ..

... to 5msin 0.025 msincrements. The response of the model is shownin Fig.

t (ms) 5
w© m w© © ©
v v v v v v
PN I [(P A 0 R W L \/\(P L /\ . (L [N (L
00 200" w0 w00 000 w00 2000 20 0 00 600 2o’ o 00 000 60f 20020 0 1000 600 \z00'| 20 00 00 Sqo 200°| 20 00
ol 40 40 40 > 40
-80 — -80 -80 -80 -80 -80
© © © © © ©
" ws) " (s) " [ws) " /\ ws) " /\ ws) " /\ ws)
b S S SR ol o) S A N) S A N
111111111111111 1|2 s s T2 T s T2 T s
50 50 50 50 50 50

Figure 1.33. Snapshots of the space plot (top) and the graph of V, vs. t at the soma (bottom) taken at 1 ms

intervals. Synaptic input at the somatriggers a spike that propagates actively along the axon and spreads

with passive decrement into the apical dendrite.

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

The NEURON Book: Chapter 1

Figure 1.34. Changing synaptic location.
| A. In the top panel of the PointProcessManager, click on Show

AlphaSynapse[0]
at: soma(0.5)

e

| Shape |

Parameters

AlphaSynapse[0]
at: apical(0.195652)

=

and scroll down to Shape.

B. The top panel remains unchanged, but the bottom panel of the
PointProcessManager now displays a shape plot of the cell, with

ablue dot that indicates the location of the synapse.

C. Clicking on adifferent point in the shape plot movesthe
synapse to a new location. This change is reflected in the top and

bottom panels of the PointProcessManager.

40

Figure 1.35. Pressing Init & Run starts a new

5
v simulation. Even though the synapseis till quite

40 —

| close to the soma, the somatic depolarization is
now too small to trigger a spike (space plot not

shown).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 1

L
-1000

View . ..

Crosshair
Plot what?
Pick Vector

40

LI}

Color/Brush 200

Axis Type
| Keep Lines!
Family Label?

Erase

40

200

600

Move Text
Change Text

Delete

80

rom s 17T

ny %*’:NN
i
L

NSNSNS
) ?&C%

o

775

N

Page 36

November 25, 2004

Figure 1.36. A. Activating "keep lines" can help
visualize the evolution of V. more clearly. Right

click in the space plot window to bring up its primary
menu, then scroll down to Keep Lines and release the
mouse button. The next time the primary graph menu
is examined, ared check mark will appear next to
thisitem asan indication that keep lines has been

toggled on (Fig. 1.37 A).
B. To keep the graph from filling up with an opaque

tangle of lines, we should make sure the stored traces
will be sufficiently different from each other.
Plotting only 5 traces per millisecond will do the

trick for this example (leave dt = 0.025 ms).
C. Now pressing Init & Run generates a set of traces

that facilitate a close examination of the process of

excitation and impul se conduction over the model.

For this example the synapse was at the middle of the
soma (soma(0.5)). Before running another simulation
with a different synaptic location, it would be a good

idea to erase these traces (see Fig. 1.37).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

Figure 1.37. How to erase traces.

-1000,

N 8L Y

View ...

Crosshair
Plot what?
Pick Vector
Color/Brush
Axis Type
eep Lines

Family Label?

Move Text
Change Text
Delete

~ 00 600

40

-1000

500

200

40

200 600

80

8. Analyze results

The NEURON Book: Chapter 1

A. Bring up the primary graph menu and scroll down

to Erase.

B. Thetraces will disappear when the mouse button
isreleased. Since keep linesis active, running

another smulation will generate a new set of traces.

In this section we turn from our specific example to a consideration of the analysis of

results. Models are generally constructed either for didactic purposes or as a means for

testing a hypothesis. The design and analysis of any model are both strongly dependent

on this original motivation, which determines what features are included in the model,

what variables are regarded as important enough to measure, and how these

measurements are to be interpreted.

While computational models are arguably ssmpler than any (interesting) experimental

preparation, analysis of simulation results presents its own special problems. In the first

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Page 37

The NEURON Book: Chapter 1 November 25, 2004

place, attempting to use adigital computer to mimic the behavior of abiological system
introduces many potential complexities and artifacts. Some arise from the fact that
neurons are continuous in space and time, but adigital computer can only generate
approximate solutions for a finite number of discrete locations at particular instants. Even
so, under the right conditions the approximation can be very good indeed. Furthermore, a

well-designed simulation environment can reduce the difficulty of achieving good results.

Other difficulties can arise if there is a mismatch between the expectations of the user
and the level of detail that has been included in amodel. For example, the most widely
used computational model of a conductance change synapse is designed to do the same
thing each and every time it is "activated," yet most real synapses display many kinds of
use-dependent plasticity, and many also have a high degree of stochastic variability. And
even the venerable Hodgkin-Huxley model (Hodgkin and Huxley 1952), which is
probably the classical success story of computational neuroscience, does not replicate all
features of the action potential in the squid giant axon, because it does not completely
capture the dynamics of the currents that generate the spike (Moore and Cox 1976;
Fohlmeister et al. 1980; Clay and Shlesinger 1982). Such discrepancies are potentialy a
problem only if auser who is unaware of their existence attempts to apply a model

outside of itsoriginal context.

Thefirst analysisthat is required of all computational modeling is actualy the
verification that what has been implemented in the computer is a faithful representation
of the conceptual model. At the least, this involves checking to be sure that the intended
anatomical and biophysical features have been included, that parameters have been

assigned the desired values, and that appropriate initialization and integration methods

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

have been chosen. It may also be necessary to test the model's biophysical mechanisms to
ensure that they show the correct dependence on time, membrane potential, ionic
concentrations, and modulators. This means understanding the internals of the
computational model, which in turn demands a nontrivia grasp of the programming
language in which it is expressed. A custom graphical interface that includes well-
designed menus and "variable browsers' can make it easier to answer the frequently
occurring question "what are the names of things?' Even so, every simulation
environment is predicated on a set of underlying concepts and assumptions, and questions
inevitably arise that can only be answered on the basis of knowledge of these core

concepts and assumptions.

Verification should also involve the qualitative, if not quantitative, comparison of
simulation results with basic predictions obtained from experimenta observations on
biological preparations or generated with prior models. Discrepancies between prediction
and simulation are usually caused by trivia errorsin model implementation, but
sometimes the fault lies in the prediction. Detecting these more interesting outcomes
requires practical facility with the smulation environment, so that the level of effort does

not obscure one's thinking about the problem.

Agreement between prediction and simulation is reassuring and suggests that the
model itself may be useful for generating experimentally-testable predictions. Thus the
effort shifts from verifying the model to characterizing its behavior in ways that extend
beyond the initial test runs. Both verification and characterization of neural models may
entail determining not only membrane potential but aso rate functions, levels of

modulators, and ionic conductances, currents, and concentrations at one or more |ocations

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 1 November 25, 2004

in one or more cells. Thusit is necessary to be able to gather and manage measurements,
both within a single smulation run and across a family of runsin which one or more

independent variables are assigned different values.

Similar concerns arise in connection with optimization, in which one or more
parameters are adjusted until the behavior of the model satisfies certain criteria
Optimization also opens a host of new questions whose answers depend in part on the
user's judgment, and in part on the resources provided by the ssmulation environment.
Which parameters should remain fixed and which should be adjustable? What constitutes
a"run" of the model? What are the criteria for goodness of fit? What constraints, if any,
should be imposed on adjustable parameters, and what rules should govern how they are

adjusted?

In summary, analysis of results can be the most difficult aspect of any experiment,
whether it was performed on living neurons or on a computer model, yet it can also be the
most rewarding. Theissues raised here are critical to the informed use of any simulation
environment, and in the following chapters we will reexamine them in the course of

learning how to develop and exercise models with NEURON.

References

Bliss, T.V.P. and Lemo, T. Long-lasting potentiation of synaptic transmission in the
dentate area of the anaesthetised rabbit following stimulation of the perforant path. J.

Physiol. 232:331-356, 1973.

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Castro-Alamancos, M.A. and Connors, B.W. Distinct forms of short-term plasticity at
excitatory synapses of hippocampus and neocortex. Proc. Nat. Acad. Sci. 94:4161-4166,

1997.

Clay, J.R. and Shlesinger, M.F. Delayed kinetics of squid axon potassium channels do

not always superpose after time trandation. Biophys. J. 37:677-680, 1982.

Fohlmeister, J.F., Adelman, W.J.J., and Poppele, R.E. Excitation properties of the squid
axon membrane and model systems with current stimulation. Statistical evaluation and

comparison. Biophys. J. 30:79-97, 1980.

Hodgkin, A.L. and Huxley, A.F. A quantitative description of membrane current and its

application to conduction and excitation in nerve. J. Physiol. 117:500-544, 1952.
Ito, M. Long-term depression. Ann. Rev. Neurosci. 12:85-102, 1989.

Jack, J.J.B., Noble, D., and Tsien, R.W. Electric Current Flow in Excitable Cells.

London: Oxford University Press, 1983.

Moore, JW. and Cox, E.B. A kinetic model for the sodium conductance system in squid

axon. Biophys. J. 16:171-192, 1976.

Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of
Physiology, vol. 1, part 1: The Nervous System, edited by E.R. Kandel. Bethesda, MD:

American Physiological Society, 1977, p. 39-98.

Thomson, A.M. and Deuchars, J. Synaptic interactions in neocortical local circuits: dual

intracellular recordingsin vitro. Cerebral Cortex 7:510-522, 1997.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 1

Chapter 1 Index

A

AlphaSynapse 26
parameters 27

anaysis 37

approximation 38

assumptions 1

CellBuilder 7
bringingup 10
root section 12,28
CellBuilder GUI
Biophysics page 20
assigning values 22
specifying strategy 21
Continuous Create 24
Geometry page 16
assigning values 18

d_lambda 18

November 25, 2004

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

specifying strategy 18
Management page 24
Management page

Export 24
Subsetspage 11, 15

all subset 15

making a new subset 16
Topology page 11

basename 14

Basename 14

changing the name of a section

making a new section 13
cm 20-22
compartmentalization 11, 19

cytoplasmic resistivity 21

d lambdarule 11
detal

how much 1, 38

The NEURON Book: Chapter 1

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 1

diam 16

diameter 4

directory browser 23,24

discrepancy
between physical system and conceptual model
between prediction and ssimulation 38, 39

discretization 19, 38

distributed mechanism 20, 25

dt 32

elapsed smulation time 32

focus

cursor 14

good programming style
divideand conquer 7
modular programming 7

Graph

38

November 25, 2004

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

creating
Shapeplot 29
SpacePlot 29

Voltageaxis 28
Graph GUI
primary menu
Erase 37

KeepLines 36

hh mechanism 22
hoc 3,24

hypothesis 1,37

initialization 32, 38
initialization

membrane potential 32
instrumentation 7, 25
ion channel 20

ionic conductance 25

The NEURON Book: Chapter 1

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 1 November 25, 2004

judgment 1, 40

L 16
length 4
length constant 16, 19
M
membrane capacitance 21
membrane potential 27,28
membrane resistance 22
model
computationa 1, 7
anaysis 37
model specification 24
conceptual 1,4, 38

model specification 7,24

NEURON

starting and exiting 8

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

NEURON Main Menu 8

NEURON Main Menu GUI

Build

CellBuilder 10

File

load sesson 24

save sesson 23

Save Sesson 31
Graph
Shapeplot 29

Voltage axis 28
Tools

Point Processes 26

RunControl 31
NEURON program group 8
nrngui 8
numeric integration 38

O

optimization 40

The NEURON Book: Chapter 1

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 1

oscilloscope 34

parameters
biophysical 21, 22
geometric 18
pas mechanism 21
e pas 22
g _pas 22
PFWM 22
point process 25
PointProcessManager 25

configuring as

AlphaSynapse 26
creating 26
location 27,35
location

changing 35

parameters 27

PointProcessManager GUI

November 25, 2004

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

SelectPointProcess 26
Show

Shape 35

Ra 20,21
default value 22
RunControl 30
creating 31

RunControl GUI

dt 32
Init 32
Init & Run 32

Points plotted/ms 32
t 32
Tstop 32

running asimulation 34

section 11

currently accessed

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 1

Page 49

Page 50

The NEURON Book: Chapter 1

default section 28, 30
root section 12
sessionfile 22
loading
from NEURON Main Menu 24
from PFWM 22
saving
from NEURON Main Menu 23
from PFWM 22
shape plot 12,14
Shape plot
creating 29
Shape plot GUI
primary menu
SpacePlot 29
signa monitors 27
vS. signal sources 27
signal sources 25

simulation

November 25, 2004

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004

running 34
starting 34
time 32

simulation control 7,30

Space 28,29, 38
space plot 28
Space Plot
creating 29
squid axon 38
storage oscilloscope 34
synapse
AlphaSynapse 26
conductance change 26
system equations

effect of signal sources 27

t 32,34
time 28,32, 34,38

topology 10

The NEURON Book: Chapter 1

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 1 November 25, 2004

U
user interface
asvirtual experimental rig 33
custom GUI 31, 39
\Y
v 28

variable browser 39
variables
independent 40
verification 38
Vm 27
W

what are the names of things? 39

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 2

Chapter 2

The modeling perspective

This and the following chapter deal with concepts that are not NEURON-specific but

instead pertain equally well to any tools used for neural modeling.

Why model?

In order to achieve the ultimate goal of understanding how nervous systems work, it

will be necessary to know many different kinds of information:

e the anatomy of individual neurons and classes of cells, pathways, nuclei, and higher

levels of organization
e the pharmacology of ion channels, transmitters, modulators, and receptors

e the biochemistry and molecular biology of enzymes, growth factors, and genes that
participate in brain devel opment and maintenance, perception and behavior, learning

and forgetting, health and disease

But while this knowledge will be necessary for an understanding of brain function, it isn't
sufficient. Thisis because the moment-to-moment processing of information in the brain
is carried out by the spread and interaction of electrical and chemical signalsthat are

distributed in space and time. These signals are generated and regul ated by mechanisms

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 2 November 26, 2004

that are kinetically complex, highly nonlinear, and arranged in intricate anatomical
structures. Hypotheses about these signals and mechanisms, and how nervous system
function emerges from their operation, cannot be evaluated by intuition alone, but require
empirically-based modeling. From this perspective, modeling is fundamentally a means
for enhancing insight, and a simulation environment is useful to the extent that it

maximizes the ratio of insight obtained to effort invested.

From physical system to computational model

Just what isinvolved in creating a computational model of a physical system?

Conceptual model: a simplified representation
of a physical system

Thefirst step isto formulate a conceptual model that attempts to capture just the
essential features that underlie a particular function or property of the physical system. If
the aim of modeling is to provide insight, then formulating the conceptual model
necessarily involves ssimplification and abstraction (Fig. 2.1 left). When a physical system
is already ssmple enough to understand, there is no point in further simplification because
we won't learn anything new. If instead the system is complex, a conceptual model that

omits excess detail can foster understanding.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 2

be
Physical simplify Conceptual faithful Computational
system model model

Figure 2.1. Creating a computational model of a physical system involves two
steps. Thefirst step deliberately omits real-world complexities to produce a
conceptual modd. In the second step, this conceptual model must be faithfully
trand ated into a computational model, without any further subtractions or
additions.

But some models contain essential irreducible complexities, and even conceptual
modelsthat are superficially smple can resist intuition. To evaluate such amodel it is
often necessary to devise a hypothesis or test in which the behavior of the model is
compared against a prediction. Computational models are useful for performing such
tests. The conceptual model, and the hypothesis behind it, determine what isincluded in

the computational model and what isleft out.

When we formalize our description of abiological system, the first language we use
is mathematics. The conceptual model is usually expressed in mathematical form,
although there are occasions when it is more convenient to express the concept in the
form of a computer algorithm. Chapter 3 is concerned with mathematical representations

of chemical and electrical phenomena relevant to signaling in neurons.

Computational model: an accurate representation
of a conceptual model

A computational model is aworking embodiment of a conceptual model through the

medium of computer simulation. It can assist hypothesis testing by serving as a virtua

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 2 November 26, 2004

laboratory preparation in which the functional consequences of the hypothesis can be
examined. Such tests can be valid only if the computational model is as faithful to the
conceptual model as possible. This means that the computational model must be
implemented in away that does not impose additiona simplifications or introduce new
properties that were not consciously chosen by the user; otherwise how can the user tell
whether simulation results truly reflect the properties of the conceptual model, and are
not a byproduct of distortions produced by trying to implement the model with a
computer? Thisideal isimpossible to meet, and the proper use of any simulator requires
judgment by the user as to whether discrepancies between concept and concrete

representation are benign or vicious.

A useful ssimulation environment enables experimental tests of hypotheses by
facilitating the construction, use, and revision of computational models that are faithful to
the original idea and its subsequent evolution. NEURON is designed to meet this goal,
and one of the aims of this book isto show you how to tell whether the model you have

in mind is matched by the NEURON simulation you create.

An example

Page 4

Suppose we are interested in how the cell of Fig. 2.2 A respondsto current injected at
the soma. We could imagine an enormously complicated conceptual model that attempts
to mimic all of the detail of the physical system. But if we'rereally interested in insight,
we might start with amuch smpler conceptual model, like the ball and stick shown in

Fig. 2.2 B. Most of the anatomical complexity of the physical system liesin the dendritic

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 2

tree, but our conceptual model approximates the entire dendritic tree by avery smple

abstraction: acylindrical cable.

So going from the physical system to the model involved ssimplification and

abstraction. What about going from the conceptual model to a computational model ?

The statementsin Fig. 2.2 C specify the topology of the computational model using
hoc, NEURON's programming language. Note that everything in the conceptua model
has a direct counterpart in the computational model, and vice versa: the transition
between concept and computational model involves neither ssmplification nor additional
complexity. All that remainsisto assign physical dimensions and biophysical properties,
and the computational model can be used to generate smulations that reflect the behavior

of the conceptua model.

dendrite
create somn, dendrite
soma connect dendrite(0), soma(l)
A B C

Figure 2.2. A. Detailed morphometric reconstruction of Cal pyramidal neuron (from
D.A. Turner). B. "Ball and stick" conceptual model for studying charging properties of
aneuron as seen from the soma. C. The computational implementation of the

conceptual model in hoc, NEURON's programming language.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 2

Chapter 2 Index

A
abstraction 2,5
accuracy 3

approximation 5

ball and stick 4

complexity 1,3, 4

detail 2,4

discrepancy

between conceptual model and computational model

hypothesis

testing 2, 3

insight 2,4

intuition 2,3

November 26, 2004

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004

judgment 4
M

model
ball and stick 4
computational 2, 3

implementation 4,5

conceptual 2

modeling
empirically-based 2

rationale 2

physical system 2
representing by a model 2,4

prediction 3

smplification 2,4,5
simulation environment

utility of 2,4

The NEURON Book: Chapter 2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 2 November 26, 2004

space 1
T

time 1

topology 5
U

understanding 1,2

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Chapter 3

Expressing conceptual models in mathematical terms

Computational neuronal modeling usually focusses on voltage and current in
excitable cells, but it is often necessary to represent other processes such as chemical
reactions, diffusion, and the behavior of electronic instrumentation. These phenomena
seem quite different from each other, and each has evolved its own distinct "notational
shorthand." Because these specialized notations have particular advantages for addressing
domain-specific problems, NEURON has provisions that allow users to employ each of
them as appropriate (see Chapter 9: How to expand NEURON's library of
mechanisms). Apparent differences notwithstanding, there are fundamental paralels
among these notations that can be exploited at the computational level: all are equivalent
to sets of algebraic and differential equations. In this chapter, we will explore these
parallels by examining the mathematical representations of chemical reactions, electrical

circuits, and cables.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 3 November 26, 2004

Chemical reactions

g gqq Vesicle
ACh v

alZ(V) 0(co v (\/\
@ @ @ i(:a Internal free calcium

B,W B, O O O
NN N
O O O

Saturable calcium buffer

Fig. 3.1. Left: avoltage-gated channel modeled as a three-state kinetic scheme
with voltage-dependent rate constants. Right: cartoon of amodel of
acetylcholine (ACh) release that involves the influx, buffering, and diffusion of
calcium, exocytosis requiring binding of three calcium ions per vesicle, and
enzymatic breakdown of ACh (rate constants omitted for clarity).
A natural first step in thinking about voltage-dependent or ligand-gated channel
models or elaborate cartoons of dynamic processesis to express them with chemical
reaction notation, i.e. kinetic schemes (Fig. 3.1). Kinetic schemes focus attention on

conservation of material (in a closed set of reactions, material is neither created or

destroyed) and flow of material from one state to another.

The notion of "state" is context-dependent: it may mean actual material quantity of a
molecular species (sometimes moles, sometimes mass), the well-stirred molar
concentration in avolume or the density on asurface, or the probability of a particle
being in aparticular state. Thus when we refer to "the value of state A" we mean avalue

expressed in the dimensions of A. When A isin units of concentration or density, "the

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

material in state A" isthe product of A and the size of the compartment (volume or

surface) in which A is distributed.

Flux and conservation in kinetic schemes

In akinetic scheme, arrows that point toward or away from a state represent paths
along which material enters or leaves the state. For each state there is adifferential
eguation that expresses how the amount of material in the state is affected by fluxes that
enter and leave it. These differential equations are specified by the states in the kinetic
scheme and the paths along which material can move between them.

Thus

k
AKX B Eqg. 3.1
means that material leaves state A a arate that is proportional to the product of the value
of A and arate constant k, where A and k are understood to be nonnegative. From the
standpoint of state A, the flux along this path is -kA, and this defines aterm in the

differential equation for this state.

dA_ LA Eq. 3.2a
t

But the flux that leaves A in EQ. 3.1 isjust the flux that enters B, so

B _ A Eq. 3.2b

Suppose we have a closed system in which Eq. 3.1 isthe only chemical reaction that

can occur. Adding Egns. 3.2a and b together, we have

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 3 November 26, 2004

dA | dB _ Eq. 3.3
a a0

which we can integrate to get
A+ B = aconstant Eq. 34

Equation 3.4 is a statement of the principle of conservation of material: in a closed

system with the reaction described by Eqg. 3.1, the sum of A and B is conserved.

Any kinetic scheme is easily trand ated into a corresponding set of differential
eguations. Each differential equation expresses the rate of change of each state as the
difference between the flux entering the state and the flux leaving the state. For example

the kinetic scheme

K

PR
K K
AleSE
k3

C D

has five states, and is equivalent to five differential equations. Focussing on B, we see

Eqg. 3.5

that the flux entering is the sum of k; A, k; C, and k, D, while the flux leaving is the sum

of k, B and kg B, so the corresponding differential equation is

aB _ _ Eqg. 3.6a
dt_klA (k,+kg) B+k,C+k, D q
The differential equations for the other states are

dA _ Eqg. 3.6b-
i k, A+ ks E q e

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

EszB_kSC
> _
E— k4D

dE _

E_kSB_k6E

To derive the conservation rules for a kinetic scheme, we just find linear
combinations of these equations that add up to O, and then integrate them. For the

example of Eqg. 3.6, we see that adding all of the equations together gives

dA, dB _ dC db , dE _ Eq. 3.7
ot Ta Ta T Ta

which we integrate to obtain the conservation rule
A+ B+ C+ D+ E=aconstant Eqg. 3.8

i.e. the sum of the five states is conserved.

Stoichiometry, flux, and mole equivalents

In the reaction

A+B — C Eq. 3.9

~ 1

we see that producing one mole of C requires consumption of two moles: one mole of A,

and one mole of B. That is, achange of Cimplies equal (but opposite) changes of A

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 3 November 26, 2004

and B. Theforward flux is kf A B and the backward flux is kb C, so thisreaction

translates to the differential equations

dA

o = " Kf AB+k,C

B _ Eq. 3.10
T ke AB+k,C q
dc _

o = Kt AB—k,C

from which we can generate several different linear combinations that add up to zero.

Two obvious combinations are

dA , dC _ Eqg. 3.11a
at “ar O

and
a8, dC _ Eqg. 3.11b
at " ar O

from which we conclude that both A + C and B + C are conserved. Note that A, B, and C

must have the same units (otherwise Egns. 3.11a and b would involve the addition of
dimensionally inconsistent values), while k, has units of 1/time and k; isin units of

1/time x units of A.

Confusion may occur with reactions like

A+A B Eq. 3.12

~ 11

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

or the equivalent

2A — B Eqg. 3.13

1

=~

if the underlying principle of conservation is overlooked. Thereis certainly no question

that the equation for B is

aB _ 2 Eqg. 3.14
o = K A=k, B 9.3

but what can we say about dA/dt?

To answer this question, we reexamine Eq. 3.13 and realize that it means that two
moles of A produce one mole of B. So an increase of B implies twice as large a decrease

of A i.e

dA _ 2
o = 2(—k¢ A%+ kK, B) Eqg. 3.15

From Egns. 3.14 and 15 we see that, in a closed system described by Eq. 3.13,

dA L ,dB _ Eq. 3.16

dt dt

and the conservation ruleisthat A + 2B is constant.

Compartment size

Textbook treatments of kinetic schemes generally begin with the explicit assumptions
that al states use identical dimensions (usually concentration) and are distributed in the

same volume. Up to this point, we have tacitly made the same assumptions, because they

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 3 November 26, 2004

allow kinetic schemes to be translated into differential equations without having to take
compartment size into account.

However, in neuronal modeling thisis often too restrictive. Consider amodel of the
role of diffusion and active transport in regulating the amount of calcium in athin shell
adjacent to the cell membrane (Fig. 3.2). Some of the calcium is pumped out, and some

diffuses between the shell and a bulk internal compartment ("core") at arate that is

proportional to a constant k.

Fig. 3.2. Inthismode, [Ca?*] in athin shell just inside the cell membraneis
regulated by a pump in the cell membrane and by diffusional exchange with

bulk stores of calcium in the core of the cell.

A kinetic scheme formulation of thismodel is

=
o

Eqg. 3.17ac

Ca Cabulk

< T 1

Ca, + Pump : Ca Pump

k2
k3
CaPump ~— Ca,+ Pump
(_
k

N

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Here the active transport of calcium is represented by apair of first order reactions
between calcium ionsin solution on either side of cell membrane, and a calcium pump

that is restricted to the membrane. The states of this model are the amounts of calcium in
the extracellular fluid (Ca,), the shell (Ca,), and the core of the cell (Ca,,;,), and the

membrane-associated pump in its "free" and " calcium-bound" forms (Pump and CaPump,
respectively). We want to trandate these reactions into a corresponding set of differential

eguations, but the reactants occupy four regions, each of which has a different size. If the
volume of the core (vol,, ;) is much larger than that of the shell (voly), then asmall
amount of calcium could move from the core to the shell and have a significant effect on
the concentration Ca; while there is amost no change in the concentration Ca,, .. And

how do we deal with Eq. 3.17b and c, in which some reactants are described in terms of

concentration, i.e. material/volume, while others are material dendities, i.e. material/area?

In such situations, it is useful to realize that what we're trying to do isto write an
eguation for each state variable that expresses the rate of change of material as the
difference between fluxes (material/time) into and out of the state. We start by defining
the quantity of material as the product of the state variable and the size of its

compartment, and then ensure that each term in the equation has the same units.

To see how thisworks, let's translate Eq. 3.17a-c into the corresponding differential

equations. In order to avoid the distraction of scale factors, we start by assuming that

areas and volumes and are in [cm?] and [cm?], respectively, while material densities

(Pump and CaPump) are in micromoles per cm? [pumole/cm?] and concentrations (Ca,,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 3 November 26, 2004

Ca, and Ca, ,,) arein [umol e/cmq)]. Later we will relax this assumption to see how scale

factors enter into the picture.

We start with Ca, ., which has the smplest equation.

_ _ Eq. 3.18
Volpuk =gt~ Ka©& — KqCapyy

The total material in this stateis vol bulk Cqpulke the flux that entersitis kd Ca;, and the

flux that leavesit isky Ca, .- Theleft hand side of Eq. 3.18 is the rate of change of

material in this state, and it has units of [pmole/ms]. Since every term in this equation

must have the same units, it is clear that k, must bein [cm®/ms].

The equation for Ca,, is

dCa
Eqg. 3.1
5 2 = k,CaPump — k,Ca_Pump g.-3.19

vol o

which, like Eq. 3.18, has units of [umole/ms] on the left hand side. Since CaPump isin
[umole/cm?], it follows that ky must have units of [cmZ/ms], and k, must bein
[cm®/ms umole].

The state CaPump appears in two reactions, so its differential equation has more

terms.

dCaPump _
area . ——— = k,Ca Pump + k,Ca_ Pump Eq. 3.20

pump dt
— (k, + kg)CaPump

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Once again the left hand side isin [umole/ms], and it is clear that k; must have the same

unitsask,, i.e. [cm®/ms pmole], while the units of k, must be [cmZ/ms], identical to those
of k.

The equation for Pump is

d Pump _
g (k2 + k3) CaPump

— (k,Ca, Pump + k ,Ca_ Pump)

area Eq. 3.21

The terms on the right hand side of this equation are the same as those in Eq. 3.20 but

with opposite signs, and units are obvioudy consistent throughout.

For Ca, the equationis
dCa
VOl et g = K Cpuk — K Cay Eq. 3.22
—klcai Pump + kZCaPump

and the units of all terms are consistent.

Scale factors

Up to this point we have used the same units for all calcium concentrations:
[pmole/cm3]. What if we prefer amore customary measure for Ca,, e.g. [millimole/liter]?

No problem--1 pmol elcmlis equivalent to 1 millimolée/liter, i.e. the values are
numerically equal, so we can use the same rate constants and equations as before, without

having to insert scale factors into our equations.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 3 November 26, 2004

Now suppose we decide that [cm3] is too large a unit for intracellular volumes, and

that we would prefer to use [um?d] instead for vol bulk and vol . ? At first this seems
perplexing, because the units of the left hand side of Eq. 3.18 would be

[um?3 pmole/ms cm?], while the right hand side is till in [pumole/ms]. We are rescued
from confusion by recalling that 1 pm = 10"* cm, so [um® pmole/ms cm3] is equivalent to
1012 [pmole/ms], and we have

dCayy _

VOl ik it

10% (kqCa — kyCap i) Eq.3.23

The 102 on the right hand side of Eq. 3.23 isascale, or "conversion,” factor, and if we
wanted to be pedantic we would point out that it has units of [cm3/um?3]. In any case, its
numeric value makes sense, because a small net movement of calcium will have a much

larger effect on the concentration Cay,y, if Vol is 1 pm? rather than 1 cm?.

Of course we also have to apply ascale factor in Eq. 3.22, the other equation that

involves an intracellular volume. By identical reasoning we obtain

dCa 12
VOl el g = 107 [Kg Capu — K4 Cay Eq. 3.24

—klcai Pump + kZCaPump

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Electrical circuits

Anelectrical circuit (Fig. 3.3) can be trandated to an equivalent set of equations by
combining Kirchhoff's current and voltage laws with the characteristics of the individual
devicesin the circuit. Here we present a brief heuristic approach to how this can be done.
Space and time preclude discussion of related topics such as graph theory; for amore
thorough development of circuit analysis, motivated readers are referred el sewhere (e.g.

(Nilsson and Riedel 1996)).

—o<

.|||—

Cell

Fig. 3.3. Left: A simple parallel RC circuit. Right: Circuit for recording from a

cell while passing current through the same electrode. Amplifier A; and

capecitor C; are used to compensate for the electrode capacitance C...

To develop the equations that describe a circuit, we will employ Kirchhoff's current
law which states that the algebraic sum of al currents entering a node (a connection
between two or more device terminals) is always zero. Every node in acircuit has a
voltage, and every connection between nodes ("branch" or "edge") has a current. In order
for voltage throughout a circuit to be determined unambiguously, each node must be on a

path that ultimately leads to ground. We can then write the current balance equation for

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 3 November 26, 2004

each node (the "node equations'), and solve these equations to find the potential at each

node and the current through each element in the circuit.

Table 3.1 lists common circuit elements with their characteristic equations and
schematic representations. The arrows in the figures of the resistor and capacitor indicate
the direction of current flow when i given by the characteristic equation is positive. For
the voltage source we have adopted the usual convention for the direction of positive
current flow (away from the "positive" terminal, which is symbolized by the longer of the

two transverse lines).

Table 3.1. Common cir cuit e ements

Typeof element Characteristic equation Schematic representation

Ground v=0 i
Wire Vl = V2 v, v,
. R
Linear resistor i=(v,—Vv,)/R o> AAA—0
1 2
C
Linear capacitor i =Cd(v,—v,)/dt M |—8
1 2
E
Voltage source v, — v,= E(t) o—<——>o
1 2
Current source i=1(t) o9

Ideal amplifier

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Figure 3.4 illustrates the application of Kirchhoff's current law to a circuit consisting
of acapacitor in parallel with aresistor. There are two nodes, but one is grounded so its
potential is 0. Since only one node has a potentia that is unknown, this circuit can be

described by a single node equation.

The current flow aong all branches attached to the ungrounded node is indicated by
the diagram on the right side of Fig. 3.4. To apply Kirchhoff's current law to this node,
we must assume a positive direction for current flow along every edge that attaches to the
node. We want to emphasi ze that these assumed directions are completely arbitrary, and
no matter what we decide, the final equations will be the same. Here we have chosen the
convention that current away from anode adds to the current balance equation, which

gives us

+1,=0 Eq. 3.25

Referring to Table 3.1 for the device properties of capacitors and resistors, we obtain the

ordinary differential equation

av vV _ Eqg. 3.26
Cqxtg=0

whose solution is

V(t)=v e /RC Eq. 3.27

where V istheinitia voltage on C.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 3 November 26, 2004

—o<
<

.|||—

Fig. 3.4. Left: Schematic diagram of asimple parallel RC circuit, which has
only one node at which potential is unknown. Right: Node diagram indicating

the flow of current away from this single node.

The dightly more complex circuit of Fig. 3.5 has four nodes. There are only two
nontrivial equations for the voltages at these nodes, since we already know that the
grounded nodes have a voltage of 0. The potentials at the two ungrounded nodes are
unknown, and we need to formulate the node equations for them. Once again, we can

assign the directions of all currents arbitrarily, but once we have chosen the positive

direction of current flow through R, we have committed ourselves to the positive
direction of |, relativeto both node 1 and node 2. So if we assume that positive current
3

inC;, Ry, and R, flows away from node 1, and apply the convention that "current away
from a node adds to the current balance equation,” we have

o+ lg+1g=0 Eq. 3.28a

Cl 1 3

which is the current balance equation for node 1.

To get the other current balance equation, we will assume that the positive direction

for currentin C, and R,, are away from node 2, so these currents add to its current

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004

The NEURON Book: Chapter 3

balance equation. However, we have already chosen a direction for positive current flow

in Ry, and it happens to be toward node 2. The current flow diagrams for nodes 1 and 2

(Fig. 3.5 bottom right) underscores the fact that resistor R, makes equal but opposite

contributions to current balance at nodes 1 and 2. Consequently the current I, is
3

subtracted from the current balance equation for node 2.

l.+1,—1,=0
CZ R2 R3
V. V.
?l R3 |R3 ?2
AVAYA
lcq Ir1 lco Ir2
Ci—— R § C=—— R §
L L
Vq s IR V>

Fig. 3.5. Top: A circuit with three nodes. Bottom: Current flow diagram at each

of the two nodes where potentia is unknown. Note the direction of current flow

in Rs.

Substituting device properties into these equations gives

dav Vv (V.—V.,)
1 1 1 2
Cl dt R, R, 0
av, V, B (vl—vz) B
C,—= + == =0
2 dt R, R,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Eqg. 3.28b

Eqg. 3.29a

Eqg. 3.29b

Page 17

The NEURON Book: Chapter 3 November 26, 2004

Again note the - sign applied to the current in R, in the second node equation. This pair

of coupled first order differential equations constitutes a second order initial value

problem, which has a solution of the form

b Eq. 3.30a-b

where A,, By, A,, and B, are determined by the valuesof V, and V, at t = 0, and the

time constants T, and T, arethe eigenvalues of the matrix

_afa, 1 1
C.|R, 'R C.R
i s 13 Eq. 3.31
1 a1,
CZRB CZ I:22 R3

Asafina example of the equivalence between an electrical circuit and a set of
eguations, let us consider acircuit that could be used to compensate for el ectrode
capacitance. Anyone who has ever recorded from a cell with a microel ectrode knows that
electrode resistance and capacitance can interfere with experimental measurements.
Figure 3.6 shows asmplified circuit of acommon method used to compensate for
el ectrode capacitance when recording with a sharp microel ectrode under current clamp.

Thiscircuit includes a cell, a microelectrode whose electrical properties are represented

by an equivaent circuit consisting of aseries resstance R, and a single lumped

capacitance C, located at the "amplifier” end of the electrode, a current source | for

clamp

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

injecting current into the cell, and a "headstage amplifier” A,. It aso has an amplifier A

and capacitor C; that provide positive feedback to compensate for the electrode

capacitance.

QI;J

Fig. 3.6. Capacitance compensation under current clamp. The capacitance C, of
the microel ectrode distorts recordings by slowing and attenuating the response

of V tochangesinV and| Amplifier A; and capacitor C; compensate

clamp’

for this by supplying charging current to C,.

The open circles mark the nodes that are not grounded. The first node is the site at
which the electrode is attached to the cell, and the voltage at thisnode sV, the local

membrane potential of the cell. AsFig. 3.7 suggests, the current balance equation for this

nodeis

—i_=0 Eq. 3.32

i.e. the current i, that flows through the electrode resistance equal's the current iinj that is
e

injected into the cell.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 3 November 26, 2004

Cell

Fig. 3.7. Thefirst node of the circuit in Fig. 3.6. The current injected into the

cell equalsthe current that passes through the electrode resistance R,

The voltages at the remaining three nodes are unknown, so we will need three
equations. Taking advantage of the characteristic equations for an amplifier (Table 3.1),
we see immediately that the nodes at the outputs of the feedback and headstage amplifiers

have voltages that are given by

V. =G,V Eqg. 3.33
and

V =G,V Eqg. 3.34

where G; and G, are the "gains’ or amplification factors of the feedback and headstage

amplifiers, respectively. For the third equation, we apply Kirchhoff's current law to the
remaining node, which is diagrammed in Fig. 3.8. The current balance equation for this

nodeis

— i.+i,=0 Eq. 3.35

clamp_ ’

e e

Each device attached to this node contributes aterm to Eq. 3.35, e.g. i~ isthe current that
e

charges the electrode capacitance, and i~ isthe current supplied by the feedback
f

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

capacitor C;. Referring to Fig. 3.6 and Table 3.1, we replace each term in Eq. 3.35 by the

corresponding characteristic equation to get

V-V e dVe_ | e d(V,— V)
Re e dt clamp f dt

+0=0 Eqg. 3.36

which rearranges to

V \/ vV _—V
d e_Cfd f__"m e_|_| Eq. 3.37
dt Re clamp

(C,+ C) .

Interested readers may wish to combine Egns. 3.33, 34, and 37 to derive asingle

differential equation that relates the "output” voltage V , to the "input” voltage V..

1L C
- f
R s Vi {'c i
e e e f +
“W\ +
A
, ’]‘ | 1
C c clamp —

Fig. 3.8. The third node of the circuit in Fig. 3.6. Perfect compensation for

electrode capacitance (which can never be achieved with real amplifiers and

electrodes) requiresthat i~ balancesi- exactly.
f e

Cables

The spread of electrical and chemical signalsin a cable are described by equations
that combine conservation laws with formulas that express how voltage and

concentration gradients drive the movement of charge and mass. This discussion focusses

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 3 November 26, 2004

on electrical signals, since the basic form of these equationsisidentical for chemical
sgnas (Rall 1977; Crank 1979; Carslaw and Jaeger 1980; Jack et al. 1983), and similar

considerations arise in connection with their numerical solution.

The propagation of electrical signals along an unbranched cable is governed by the

one-dimensional cable equation

2
N trv)=2Y

Eqg. 3.38
oT 5 X2

where V and F are continuous functions of space and time, which are represented by X
and T (with appropriate scaling) (Rall 1977; Jack et al. 1983). The branched architecture
typical of most neuronsis dealt with by combining partial differential equations of this
form with appropriate boundary conditions. Thisis the approach taken in NEURON,
whose programming language hoc and graphical user interface have special features that
allow usto avoid the task of writing families of cable equations and puzzling out their
boundary conditions. Instead, we construct models by specifying the properties of
individual neurites and how they are interconnected. NEURON then applies the standard
strategy of spatial and temporal discretization to convert our specification into algebraic
difference equations, which it solves numerically (Rall 1964; Crank 1979; Cardaw and

Jaeger 1980) (see Chapter 4: Essentials of numerical methods for neural modeling).

We can derive the cable equation by combining the physical principle of conservation
of charge with Ohm's law. Focussing on these separately providesinsight into the process

of spatial discretization and the meaning of boundary conditions. In addition we can

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

easly handle issues of branching and spatially-varying diameter that were assumed away

in the cable equation but are dominant physical features of real neurons.

Conservation of charge requires that the sum of currents flowing into any region from
all sources must equal zero. For example, if Figure 3.9 represents part of a cell,

conservation of charge means that

Zia—iimdA=0 Eq. 3.39
where the first term is the sum of all axia currentsi, (in [mA]) flowing into the region
through cross-section boundaries, and the second term is the total transmembrane current
found by integrating the transmembrane current density i, (in [mA/cm?]) over the

membrane area A (in [cm?]) of the region. The usual sign convention is that outward
transmembrane current is positive and axial current into aregion is positive. If electrode
current sources are present, they are treated exactly the same as membrane currents

except for the sign convention, i.e. electrode current into a cell (depolarizing current) is

positive. Including electrode current i in the conservation equation gives
Zia_iimdAJF{isdA:O Eq. 3.40

The physical size of electrode current sources is generally very small compared to the

spatial extent of aregion, so the mathematical form for i is usually a delta function of

position ig [MA] - 8(X-X, Y=Y Z-Z) [cm™?]. It becomes amatter of personal preference

whether to keep electrode currents under an integral, analogous to distributed membrane

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 3 November 26, 2004

currents, or merely to add i, [mA] to the sum of i_ in whatever region the electrode

happensto be. In either case, the extraterms add nothing to the conceptual analysis, so

we will omit them from the following equations to reduce irrelevant clutter.

Fig. 3.9. The net current that flows into any region of a cell is 0. The arrows

indicate the positive directions for transmembrane (i) and axial (i,) currents.

A standard approach in computer ssmulation is to divide the neuron into regions or
compartments small enough that the spatially-varying i in any compartment j is well

approximated by its value at the center of the compartment. Equation 3.40 then becomes
i A =D
m;] Zk: 3y, Eqg. 341
where Aﬁ isthe surface area of compartment j.

Up to this point we have relied entirely on the principle of conservation of charge.
Ohm'slaw isinvoked to resolve the axial currents between compartment j and its

neighbors (right hand side of Eq. 3.41): each axial current is approximated by the voltage

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

drop between the centers of the compartments divided by the resistance of the path

between them (the "axial resistance")
iy = (v~ Vj)/rjk Eq. 3.42
Thistransforms Eq. 3.41 into

imjAjzzk:(Vk_ Vj)/rjk Eq. 3.43

This automatically takes care of the direction of axial current flow, since Vi <V implies

that current flows into compartment j.

The total membrane current is the sum of capacitive and ionic components

i YL Eq. 3.44
|m_Aj—ch+|ionj(vj,t) q. 5.

where G is the membrane capacitance of the compartment and i; on (vj ,) includes the

effects of varying ionic channel conductances. In summary, the spatial discretization of

branched cablesyields a set of ordinary differential equations of the form

de _ /
ch—Hionj(vj,t)—zk:(vk— vi) ITy Eq. 3.45

As mentioned above, injected source currents would be added to the right hand side of
this equation.

Equation 3.45 involves two approximations. First, axial current is specified in terms
of the voltage difference between the centers of adjacent compartments. The second

approximation is that spatially-varying membrane current is represented by its value at

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 3 November 26, 2004

the center of each compartment. Thisis much less drastic than the often heard statement
that a compartment is assumed to be "isopotential.” It isfar better to picture the
approximation in terms of voltage, membrane current, and axial current varying linearly
between the centers of adjacent compartments. Indeed, the linear variation in voltageis
implicit in the usual description of acablein terms of discrete electrical equivalent
circuits where all the membrane channelsin a compartment have been pushed into a

single point at the center of the compartment.

Two special cases of Eq. 3.45 deserve particular attention. The first of these allows us
to recover the usual parabolic form of the cable equation. Consider the interior of an
unbranched cable with constant diameter. The axial current consists of two terms

involving compartments with indicesj-1 and j+1, i.e.

V. .— V. V. .— V.
¢+ ion (vj 1) = S—=— + = Eq. 3.46
j Mi—1k Fi+1 k

If each compartment has length Ax and diameter d, its capacitance is C 7 d Ax and the

axid resistanceisR, Ax/ (d/2)2, where C,, is specific membrane capacitance and R, is

cytoplasmic resistivity. Equation 3.46 then becomes

m gt iV = AR sz Eq. 3.47

where the total ionic current i, . isreplaced by the ionic current density | i AsAx — 0,
]

the right hand term becomes the second partial derivative of membrane potentia with

respect to distance at the location of the now infinitesmal compartment j, and we have

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

ov | . _d 2y
Cmat +|(v,t)—4Ra P Eg. 3.48
Multiplying both sides by R, and recognizing that i R, = v gives
ov . _ ARy 5%y

}dR
Scaling t and x by the time and space congtants t,, =R C_and A = % = m (i.e
a

subgtituting T =t/ 1, and X = x/ A) transforms Eq. 3.49 into the form shown in Eq. 3.38.

The second specia case of Eq. 3.45 alows usto recover the boundary conditions.
Thisis an important issue since naive discretizations at the ends of the cable have
destroyed the second order accuracy of many simulations. The boundary condition for the
terminal end of anerve fiber isthat no axial current flows at the end of the cable, i.e. the
end isseded. Thisisimplicit in Eq. 3.45, where the right hand side will consist only of

the single term (vj_1 - vj) / i1 when compartment j lies at the end of an unbranched

cable.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 3 November 26, 2004

References

Cardaw, H.S. and Jaeger, J.C. Conduction of Heat in Solids. 2 ed. Oxford: Oxford

University Press, 1980.
Crank, J. The Mathematics of Diffusion. 2 ed. London: Oxford University Press, 1979.

Jack, J.J.B., Noble, D., and Tsien, R.W. Electric Current Flow in Excitable Cells.

London: Oxford University Press, 1983.

Nilsson, JW. and Riedel, S.A. Electric Circuits. 5 ed. Reading, MA: Addison-Wesley,

1996.

Rall, W. Theoretical significance of dendritic tree for input-output relation. In: Neural
Theory and Modeling, edited by R.F. Reiss. Stanford: Stanford University Press, 1964, p.

73-97.

Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of
Physiology, vol. 1, part 1: The Nervous System, edited by E.R. Kandel. Bethesda, MD:

American Physiological Society, 1977, p. 39-98.

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004

Chapter 3 Index

A
accuracy
effect of boundary conditions 27

activetransport 8,9

amplifier 14
gan 14,20
headstage 19

approximation 24, 25
assumptions 7,9, 15, 16, 23, 26
axial current 23-25, 27
axial current
positive current convention 23

axial resistance 25, 26

boundary conditions 22
sealed end 27
branched architecture 22, 25

buffer 2

The NEURON Book: Chapter 3

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 3

C
cable 21
branched 25
unbranched 22, 26, 27
calcium
amount of 8
concentration 9
pump 9
channel 26
channel
conductance 25
ligand-gated 2
model 2
voltage-gated 2
charge 21
conservation 22, 24
circuit 13
anaysis 13
branch 13

November 26, 2004

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004

edge 13

element 14
amplifier 14
capacitor 14

current source 14

ground 14
resistor 14
voltage source 14
wire 14

equivalent 18, 26

node 13

parallel RC 15

positive current convention 14
closed system 2,3,7
compartment 3,24

adjacent 25

sze 3,7,9 24
concentration 2,7,9

gradient 21

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 3

Page 31

The NEURON Book: Chapter 3

conservation law 21
core 8
current 13

density 23, 26

electrode 19, 20, 23
source 23, 25
current clamp 18

cytoplasmic resistivity 26

density 2,9
diffusion 8

discretization 22

gpatial 22, 25, 27
temporal 22
E
eigenvalue 18
electrode

capacitance 18

compensation 18

November 26, 2004

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

resistance 18
eguation
algebraic 1
cable 22,26
characteristic 14
current balance 13, 15
difference 22
differential 1,3,4,6,9, 10, 15, 18, 21

ordinary 15, 25

partia 22
=

feedback
amplifier 19
capacitor 19
positive 19

flux 359

flux
backward 6
forward 6

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 3 November 26, 2004

function
continuous
of space 22
of time 22
delta 23
G

graph theory 13

initial value problem 18

kinetic scheme 2,3
compartment size 8
conservationrules 5
equivaent differential equations 4

Kirchhoff's current law 13

M
mass 21
material 2

amount 2,9

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

concentration 2

conservation 2

density 2
membrane area 23
membrane capacitance 25
membrane current

capacitive 25

ionic 25

positive current convention 23
membrane potential 19, 26
membrane potential

isopotential 26
model

conceptual 1

mole equivalents 5

neurite 22

O

Ohm'slaw 24

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 3

rate constant 3

scale factor 11

shell 8

signa
chemical 21
electrical 21

specific membrane capacitance 26

State 2,4,7,9

state

as amount of material 2

as concentration

as density 2

as probability 2
stoichiometry 5

surface area 24

time constant 18

November 26, 2004

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

U
units 2
consstency 6,911
\Y
voltage 13

gradient 21

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

November 27, 2004 The NEURON Book: Chapter 4

Chapter 4

Essentials of numerical methods for neural modeling

NEURON uses many strategies to achieve computational accuracy and efficiency,
some of which are detailed el sewhere (Hines 1984). It also draws on severa numerical
methods libraries for vector (Press et al. 1992) and matrix (Stewart and Leyk 1994)
methods, solving systems of sparse equations (Sparse 1.3 (Kundert 1986)), and adaptive
integration (CVODES (Hindmarsh and Serban 2002) and IDA (Hindmarsh and Taylor
1999)). These al make their own special contributions to NEURON's performance, but
they are already well documented el sewhere so this chapter will not discuss them in any
detail. Instead, the emphasis will be on how NEURON deals with the fact that neurons
are distributed analog systems that are continuous in time and space, but digital
computation is inherently discrete. Because of this fundamental disparity, implementing a
model of aneuron with adigital computer raises many purely numerical issues that have
no relationship to the biologica questions that are of primary interest, yet must be

addressed if simulations are to be tractable and produce reliable results.

We saw in Chapter 3 that the principle of conservation of charge can be expressed

with asingle ordinary differential equation

av
CN =11y Eq. 4.1

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 4 November 27, 2004

so long as the transmembrane current density is nearly uniform over the surface of a cell.
If current density varies too much, the computational representation must consist of two

or more coupled compartments. These are described by a set of equations of the form

V,—V.
kK 7] Eq. 4.2
+|inj. q

av.
B I [
Cj dt * I'O”j % M ik

where the second term on the right hand side is the sum of al axial currentsfrom
neighboring compartments. Additional terms and equations are necessary if extracellular
fields (theext r acel | ul ar mechanism) or electronic instrumentation (linear circuits)

are to be included in the ssimulation.

Selection of amethod for numerical integration of these equationsis guided by
concerns of stability, accuracy, and efficiency. In this chapter we review these important
concepts and explain the rationale for the integrators used in NEURON. We start with a
theoretical analysis of the errors that are introduced by discretizing the linear cable
eguation. Then we move on to a comparative analysis of methods for computing
numerical solutions, whichisillustrated by a series of case studies that bring up issues

related to the practical concerns of empirically-based modeling.

Spatial and temporal error
In discretized cable equations

A linear cable with uniform propertiesis described by the equation

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

2

oV a o°Vv Ea. 4.3

C=—+gV=os—"— q.
dt 2Ra 6X2

where V is the membrane potentia in volts, ¢ the specific membrane capacitance in
[F/cm?], g the specific membrane conductance in [S/cm?], athe radiusin [cm], R, the

cytoplasmic resistivity in [Q cm], and x the distance along the cable in [cm], so that each

term in Eq. 4.3 has units of [A/cm?]. We assume that the cable is L cm long, and that the
axial current at each end is zero, i.e. "sealed end" boundary conditions, which implies that
0V /0x =0at x=0and x= L. The membrane potential is afunction of time and
location V(t,x), and the initial condition V(0,x) can be any spatial pattern that satisfiesthe

boundary conditions.

Analytic solutions: continuous in time and space

The gpatial patterns that preserve their shape, changing only in amplitude, are the

Fourier cosine terms cos(wnx/L). From Fourier theory, we know that any spatial pattern

can be represented as an infinite sum of such cosine patterns (Strang 1986).

These cosine patterns always satisfy the boundary condition at x=0 because sin(0)=0.
Satisfaction of the boundary condition at x =L, i.e. sin(rtn) = O, requires that n be an
integer. The pattern preserves its shape because substituting V(t,x) = V,(t) cos(rtnx/L) into

Eq. 4.3 gives

+gV,(t)=— V(1) Eq. 4.4

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 4 November 27, 2004

Page 4

which has the solution
vV (t) =V (O) _knt Eq 4.5a
n " Vn e

where nis the number of half waves in the cosine pattern, V,(0) isitsinitial amplitude,
and the rate of decay is

2.2
K =9, m™nha Eq. 4.5b
n 2
¢ 2R L%

When n = 0, voltage is independent of |ocation aong the length of the cable and

decays with the membrane time constant <, = c/g seconds (top graphin Fig. 4.1). If nis

large, i.e. when the spatial frequency of the cosine pattern is high, the second term on the
right hand side of Eq. 4.5b is dominant, so the pattern decays very quickly at aratethat is
proportional to the square of the number of half waves on the cable (see Fig. 4.1,
especially the bottom graph). In a continuous cable, there is no limit to the spatial

frequency, but high spatial frequencies decay extremely quickly.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

0 | | | | J
0.2 0.4 0.6 0.8

arc length

=

a}rc Iengtt|1

_l =

1

o\. A
anth l

_1_n_

1

INANYA
v \0/ 1
arclength

-1t n=4

lg

===

0.1 0.2 0.3 0.4
time / T

Figure 4.1. Top five graphs: These are the first five spatial patterns of V that preserve
their shape aong a uniform cylindrical passive cable. V is plotted as a function of
normalized distance along the cablefor n =0, 1, 2, 3, and 4 haf cycles. The decay of

these patterns with time isillustrated by "snapshots® takenat t =0, 0.1, 0.2, 0.3, and 0.4

times the membrane time constant .. Note that larger nimplies faster decay. Bottom

graph: Amplitudes of these patterns plotted as functions of normalized time. Starting
with the top trace and working down, n=0, 1, 2, 3, and 4. Dots mark the amplitudes at

the times of the snapshots shown in the upper graphs. These amplitudes assume cable

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 4 November 27, 2004

length is timesits DC length constant A, so that n = 1 makes the first and second terms

of Eq. 4.5b equal. Shorter cables have bigger k,, hence decay is more rapid.

Adding a current stimulus to the equationsis not difficult, but the detailed derivation
IS not necessary to our discussion of discretization error. Two points are worth
mentioning, however. First, any stimulus can be represented as a Fourier sum. Second, a
cosi ne stimulus with a specific spatial frequency excites a voltage response with the same
gpatial frequency and an amplitude that follows a single exponential decay,

asymptotically approaching a steady state.

Spatial discretization
Now let us compare the continuous cable solution of Eq. 4.5 with the solution of a

cable equation that has been discretized in space by replacing 8%V 16 x? with the second

order correct approximation

0%V V(X+AX) =2V (x)+V (x—AX) Eq. 4.6
6X2 AX2

For concreteness we need to specify precisely which values of x are allowed. The

ordinary approach is to suppose m points with the first point at x = 0 and the last point at
x =L, sothat Ax = L/(m-1). However, NEURON takes a different approach to
discretization, in which there are mintervals of length Ax = L/mand the m points are at

the centers of these intervals. Thusthe centersareat x = (i + 0.5)L/mwhere0<i<m.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

With either method, mis the number of pointsin space at which a numerical solution
for Vis computed, and m = 1 corresponds to a spatia frequency of O, i.e. uniform
membrane potential along the entire cable. Furthermore, for either approach the largest
number of half waves that can be represented in the discretized systemisn=m-1 so the
highest spatial frequency is (m-1)/2L cycles per unit length. Thisresult is related to the
Nyquist sampling theorem, which states that at |east two samples must be captured per

cyclein order to accurately measure the frequency of asignal (Strang 1986).

The ordinary method puts the ith point at x = iL/(m-1), so cos(nnx/L) =
cos(rt(m-1)iL/(m-1)L) = cos(mi), and the value of V alternates sign at adjacent points.
With NEURON's method, the largest nis also m-1 because, at n = m, cos(rthx/L) =
cos(tm(m+0.5)L/mL) = cos(rt(m+0.5)) = 0.

With the ordinary method, the second difference at the ith point is most easily

computed from the real part of

ejrrn(i+1)/(m—1)_ 2ejrrni/(m—l) i—1)/(m-1)

+el™l

_ (ejrrn/(m—l) _9o4 e—jrrn/(m—l)) ejrrni/(m—l)
= 2 (cos(mrn/(m—1)) — 1) el ™M/(M~Y) Eq. 4.7
whichis
2 (cos(rrn/(m—1)) — 1) cos(rrni/(m—1)) Eq. 4.8
NEURON's method gives

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 4 November 27, 2004

2 (cos(mrn/m) — 1) cos(mrn(i +0.5)/(m—1)) Eqg. 4.9

Therefore, for either method

nm Eqg. 4.10
d _knmvnm a
where
K = 9. (1-cos(mnAx/L))a Eq. 411
c R, cA X2
The solution of Eq. 4.10 is
Vv (t) =V (O) _knmt Eq. 4.12
nm‘~/ " nm €

Note that k approaches k. (Eq. 4.5b) when nAX/L is << 1 (because cos(¢) ~ 1 - ¢%/2

when ¢ is small). This makes sense when one realizes that L/n is half of the wavelength

of the spatial pattern, so "nAx/L issmall" means that the discretization interval Axis short
compared to the wavelength of the spatial pattern. Thus the discrete system is "sampling"
the spatial pattern at an interval that is fine enough to allow a smooth representation of
the pattern. Restating this in more formal terms, the discretized system approximates the

original continuous system more closely at those spatial frequencies for which the

discretization interval Axis short compared to the spatial wavelength.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

number of half waves

5 10 15 20

+ ordinary method
O NEURON's method

-1 e analytic solution
log 10tau

Figure 4.2. Normalized time constant for decay of spatial patternsvs. number of
half waves along a uniform passive cylindrical cable (cable parametersasin

Fig. 4.1).

Figure 4.2 shows the normalized time constant of decay t = Ukt asafunction of the

number of half waves for the continuous cable of Fig. 4.1 aswell asfor discretized
models of this cable with 2, 4, 8, and 16 points. We must point out that, for both
discretization methods, doubling the number of points reduces the error in the time
constant for a given spatia frequency by afactor of 4. Also note that, for small numbers
of compartments and at the highest spatial frequencies, the spatial error of NEURON's

discretization method is significantly less than that of the ordinary method.

Adding temporal discretization

So far we have solved the spatially continuous and spatially discretized cables
analytically with respect to time. Now we complete the discretization with respect to
time. The numerical integration methods that have seen the widest use in empirically-
based neural modeling are forward Euler, backward Euler, and Crank-Nicholson. Later in

this chapter we will examine each of these individually and in more detail. For the

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 4 November 27, 2004

purpose of our present theoretical analysis, it is better to treat them all at once by

introducing a parameter 6 so that

v V(t+AD) - V(1) Eq. 4.13a
dt At

isevauated at t+6At by using V interpolated from itsvalues at t and t+0At, i.e.
V(t+0At)=(1-0)V(t)+ 0V (t+At) Eqg. 4.13b
Thus Eg. 4.10 becomes

V(t+At) = V(t)

I =—k,,V (t+8At) Eq. 4.14
Drawing on Eq. 4.13b, we can write this as
VAUV __y (1-g)v () + 6V (t+A1) Eq. 4.15

At
When 6 = 0 Eq. 4.15 isthe forward Euler method, 6 = 1 turnsit into the backward Euler
method, and 6 = 0.5 gives us the Crank-Nicholson method.

From Eq. 4.15 weimmediately get the iteration equation

1- (1-0)k, At
1+0k At

_ Eq. 4.1
V o (t+At) = m(t) g.4.16

The first term on the right hand side of this equation is the iteration coefficient; if its

magnitude for any spatial frequency is> 1, the iterations will diverge. With the forward

Euler method (6 = 0), the iteration coefficient with the largest magnitude is for the spatial

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

frequency at which n = m. At this frequency, the cos(tnAx/L) term in Eq. 4.11is-1,

making the decay rate constant

K = % +—2a Eq. 4.17

mm 2
R,C A X
so we see that the magnitude of the iteration coefficient is> 1 whenk At> 2. If we
want the discretized system to represent high spatial frequencies, Ax must be small, and

this makes the second term in k.. dominant. Substituting ® = 0and k. ~ 2a/ Rach2
into Eq. 4.16 and rearranging, we find that, for the forward Euler method to avoid

numerical instability, the combination of At and Ax must obey the constraint

R
At R Eq. 4.18
AX2 a

With the backward Euler method (6 = 1), there is no constraint on At because k. is
always positive and so the iteration coefficient is greater than 0 and less than 1. For the
Crank-Nicholson method (6 = 0.5), the iteration coefficient never becomes less than -1,

so this method is formally stable for all At.

Numerical integration methods

Now we continue our comparative analysis of numerical methods for integrating
Eg. 4.1 and 4.2 by examining them in the context of practical examples. We start with the

simplest approach: explicit or forward Euler, which is not used in NEURON for reasons

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 4 November 27, 2004

that will become clear. Then we consider the implicit or backward Euler method, Crank-

Nicholson, CVODE, and DASPK, which are all availablein NEURON.

Forward Euler: simple, inaccurate and unstable

Suppose we are modeling a neuron that has nearly uniform transmembrane current
density. For our conceptual model of this cell, we also assume that its resting potential is
0 mV, its membrane conductance g is constant and linear, and that we are not injecting
any current into it. The techniques we use to understand and control error in simulations

of thislinear, passive model are immediately generalizable to active and nonlinear cases.

Conservation of charge in thismodel is described by Eq. 4.1, which ssimplifiesto

% LKV =0 Eq. 4.19

where the rate constant k is the inverse of the membrane time constant 7, = g/c. The

anaytic solution of Eq. 4.19 is

—kt Eqg. 4.20

Let us compare this to a numeric solution computed with the forward Euler method.

The forward Euler method is based on a simple approximation. From the initial
conditions we know the starting value of the dependent variable (V(0)), and the
differential equation that describes the model (Eg. 4.19) gives ustheinitial ope of the
solution (-kV(0)). The approximation assumes that the slope of the solution is constant for
ashort period of time. Then we can extrapolate from the value of V at time 0 to anew

value abrief interval into the future. Now we see why thisis called the "forward" Euler

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

method: we are starting from something that is already known and projecting into the
future. The forward Euler method is one of many integrators that calculate future values
entirely on the basis of present, and possibly also past, values; these are called "explicit"
integrators to distinguish them from "implicit" integrators, such as backward Euler and

Crank-Nicholson (see below), which involve future values in the calculation.
In general terms, if a system is described by the differential equation
% — f(V, 1) Eq. 4.21
then the forward Euler method approximates a solution by repeatedly applying
V(t+ At) =V (t)+ F(V(1),1) At Eq. 4.22
For this example, Eq. 4.22 becomes

V(t+At)=V(t)—kV(t) At Eg. 4.23

(cf. Eqg. 4.16 with 6 = 0).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 4 November 27, 2004

1 0.12 — error
0.8
\) 0.08 —
061 \ anal)_/uc
solution
04F \
\ 0.04 —
\
0.2 |- forward \ ~
Euler \
0 | 0 | | J
0 1 2 3 0 1 2 3

Figure 4.3. Left: anaytic solution to Eq. 4.19 (solid line with circles) and results

of the forward Euler method (squares) for V(0) =1, k=1/s,and At=0.5s

(modified from (Hines and Carnevale 1997)). Right: absolute error of the

forward Euler method with At = 0.5 (squares), 0.25 (circles), and 0.125 s (+).

The left panel of Fig. 4.3 shows the forward Euler solution obtained for rate

parameter k = 1/s (i.e. 1/second), initial condition V(0) = 1, and time interval At over
which we extrapolate, assuming the transmembrane ionic current is constant within each
interval. The current that isused for agiven interval is found from the value of the
voltage at the beginning of the interval (filled squares). This current determines the slope

of the line segment that |eads to the voltage at the next time step. The dashed line shows
the value of the voltage after the first time step as afunction of At. Corresponding values

for the analytic solution (solid line) are indicated by filled circles.

The issue of accuracy in numerical simulation is complex, and we discussit more
thoroughly later in this chapter (see Error). For the moment we only mention that the

forward Euler method has "first order accuracy," which means that the local error is

proportional to At. Thisis demonstrated in the right panel of Fig. 4.3, where the absolute

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

difference between the analytic solution and the results of the forward Euler method is
plotted for At = 0.5, 0.25, and 0.125 s (squares, circles, and +, respectively). Cutting At by

afactor of 2 reduced error by very nearly half (At was comparable to the model's time

constant (1 s) so slight deviations from strict proportionality are to be expected).

Numerical instability

We have already broached thistopic from atheoretical standpoint in the setting of a
uniform cable model (see Adding temporal discretization above), but it is still useful to
consider stability of numerical integration in the context of "simpler" compartmental

models. What would happen if the forward Euler method were applied to Eq. 4.19 using a

very large time step, e.g. At = 3 s? The smulation would become numerically unstable,
with the first step extrapolating down to V = -2, the second step goingtoV =-2 + 6 = 4,
and each successive step oscillating with geometrically increasing magnitude.
Simulations of the two compartment model on the left of Fig. 4.4 demonstrate an
important aspect of instability. Suppose the initial conditionisV = 0in one compartment
and V = 2in the other. According to the analytic solution, at first the potentials in the two
compartments converge rapidly toward each other (time constant = 1/41 s), and later they

decay slowly toward O (time constant = 1 3).

If we use the forward Euler method with At = 0.5 s, we realize that there will be a

great deal of trouble during the time where the voltages are changing rapidly. We might

imagine that we can deal with this by choosing a At that will carefully follow the time

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 4 November 27, 2004

course of the voltage changes, i.e. let At be small when they are changing rapidly, and

larger when they are changing slowly.

The results of this strategy are shown on theright of Fig. 4.4. After 0.2 swith At =

0.001 s, the two voltages have nearly come into equilibrium. Then we changed At to
0.2 s, which is small enough to follow the slow decay closely. Unfortunately, no matter
how small the difference between the voltages, the difference grows geometrically at
each time step. This happens even if the difference consists only of roundoff error,
because the time step used in the forward Euler method must never be more than twice

the smallest time constant in the system.

Earlier in this chapter (see Spatial

Linear algebra clarifies the notion of "time . _
and temporal error in discretized

constant” and its relationship to stability. For a cable equations) we saw that the

linear system with N compartments, there are eigenfunctions for auniform

exactly N spatial patterns of voltage over all cylindrical cable with sealed ends

. took the form of cosine waves. The
compartments such that only the amplitude of the

S) decay ratesk, and k., of that
pattern changes with time, while the shape of the
theoretical discussion egqual -1 times

pattern is preserved. The amplitudes of these
the corresponding eigenval ues.

ta,
patterns or "eigenfunctions’ aregivenby € ', where A, is called the eigenva ue of the

ith eigenfunction. The real part of each eigenvalue is the reciprocal of one of the time

constants of the solutions to the differential equations that describe the system. Theith

pattern decays exponentially to O if the real part of A, is negative; if thereal partis

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

positive, the amplitude grows catastrophically. If A; has an imaginary component, the
pattern oscillates with frequency @, = Im(2;). In apassive electrical system that contains
only resistance and capacitance, all A; are real and negative.

Our two compartment model has two such patterns. In one, the voltages in the two

compartments are identical; this pattern decays with the time course e’ The other

pattern, in which the voltages in the two compartments are equal but have opposite sign,

decays with the much faster time course € .

15
0.05

0.5

Figure 4.4. Left: The two compartments of this model are connected by a small
axial resistance, so the membrane potentials are normally in quasi-equilibrium
with each other while at the same time decaying fairly slowly toward O.

Right: The forward Euler method (dashed lines) is numerically unstable
whenever At is greater than twice the smallest time constant. The analytic
solution (solid lines) is the sum of two exponentials with time constants 1 s and
1/41 s. The solution step size was 0.001 sfor the first 0.2 s, after which it

increased to 0.2 s. Modified from (Hines and Carnevale 1997).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 4 November 27, 2004

The key ideais that aproblem involving N coupled differential equations can always

be transformed into a set of N independent equations, each of which is solved separately.
Numerical solution of these equations must use atime step At that is small enough for the
solution of each equation to be stable. Thiswhy stability criteria that involve At depend

on the smallest time constant.

If the ratio between the dowest and fastest time constantsis large, the system is said

to be stiff. Stiffnessis a serious problem because a simulation may haveto run for avery
long timein order to show changes governed by the slow time constant, yet a small At

has to be used to follow changes due to the fast time constant.

Signal sources may change the stability properties of a system by altering the time
constants that describeit. A current source (perfect current clamp) does not affect
stability because it does not affect the time constants. Any other signal source imposes a
load on the compartment to which it is attached, changing the time constants and the
corresponding elgenfunctions. The more closely it approximates a voltage source (perfect

voltage clamp), the greater this effect will be.

Backward Euler: inaccurate but stable

The numerical stability problems of the forward Euler method can be avoided if the

equations are evaluated at timet + At, i.e. the approximate solution is found from

V(t+ A =V (1) + f(V(t+At), t + At) At Eq. 4.24

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

whichis called the implicit or backward Euler method. This equation can be derived from

Taylor's series truncated at the At term but with t + At in place of t.

For our example with one compartment, the backward Euler method gives

V(t+zn)=-liﬁl_ Eq. 4.25
1+kAt

(cf. Eq. 4.16 with © = 1). Figure 4.5 shows several iterations of Eq. 4.25. Each step moves

to anew point (t;,4, V(t;,4)) such that the slope there points back to the previous point

(4, V(t,)). If Atisvery large, the solution does not oscillate with geometrically increasing

amplitude like the forward Euler method, but instead converges geometrically toward the

Steady state.

0.8

\ \ backward
\\ Euler
0.6 — N\

04—

analytic
solution

0.2

Figure 4.5. Comparison of analytic solution to Eq. 4.19 (solid line with circles)

with results from the backward Euler method (Eq. 4.25, squares) for V(0) =1, k =

1/s, and At =1 s. At the end of each step, the slope at the new value (heavy lines)

points back to the beginning of the step. The dashed line shows the voltage after

the first time step as afunction of At. Modified from (Hines and Carnevale 1997).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 4 November 27, 2004

The robust stability of the backward Euler method are readily demonstrated by

applying it to the two compartment model (Fig. 4.6). Notice that alarge At givesa
reasonable qualitative understanding of model behavior, even though the solution does
not follow the early rapid voltage changes. Furthermore the step size can be changed

according to how quickly the state variables are changing, yet the solution remains stable.

The backward Euler method requires solution of a set of nonlinear s multaneous
eguations at each step. To compensate for this extra work, the step size needs to be as
large as possible while preserving good quantitative accuracy. Like the forward Euler

method, backward Euler has first order accuracy (see Error below), but it is more
practical for initial exploratory simulations since reasonable values of At produce fast
simulations that are almost always qualitatively correct, and, as we have seen here, tightly

coupled compartments do not generate large error oscillations but instead come quickly

into equilibrium because of its excellent stability.

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

&
At = 0.02
0.2

15

l —
05 0.5 \\

Figure 4.6. Simulation of the two compartment model of Fig. 4.4 using the
backward Euler method. Left: At =0.2 s, much larger than the fast time
congtant. Right: At was initially 0.02 s, small enough to follow the first time

congtant closely. After 0.1 s, At increased to 0.2 s but the solution remained
stable. Thin lines are analytic solution, thick lines are backward Euler solution.

Modified from (Hines and Carnevale 1997).

Crank-Nicholson: stable and more accurate

The central difference or Crank-Nicholson method (Crank and Nicholson 1947) is an
implicit integrator that is equivalent to advancing by one half step with backward Euler
and then advancing by another half step with forward Euler (Fig. 4.7). The value at the
end of each step isalong aline determined by the estimated dope at the midpoint of the

step. Thelocal error of this method is proportional to the square of the step size, so for a
given At we can expect alarge accuracy increase. In fact, smulation of our one
compartment model with At =1 s(Fig. 4.7) is much more accurate than the forward Euler

simulation with At = 0.5 s (Fig. 4.3).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 4 November 27, 2004

A most convenient feature of the central difference method is that the amount of

computational work for the extra accuracy beyond the backward Euler method istrivial,

since after computing V(t + At/2) with backward Euler, we just have

V(t+At)=2V(t+%)—v(t) Eq. 4.26

so the extra accuracy does not cost extra computations of the model functions.

\ analytic
A\

solution
AN

0.8
0.6

0.4

Crank- \\

021~ Nicholson N

Figure 4.7. Simulations of the one compartment model with the Crank-Nicholson
method, which uses the slope at the midpoint of the step (short thick lines) to
determine the new value (squares). These are almost indistinguishable from the

analytic solution (solid line with circles). The dashed line shows the voltage after the

first time step as a function of At. Modified from (Hines and Carnevale 1997).

One might well ask what effect the forward Euler half step has on numerical stability.

The left panel in Fig. 4.8 shows the solution for the two compartment model of Fig. 4.4

computed using the central difference method with At much larger than the fast time
constant. The sequence of a backward Euler half step followed by aforward Euler half

step approximates an exponential decay by

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

V(t+At) =V (1)

The NEURON Book: Chapter 4

1+ 0.5k At

(cf. Eq. 4.16 with 8 = 0.5). As At becomes very
large, the step multiplier approaches -1 from
above, so the solution oscillates with decreasing
amplitude. Technically speaking the Crank-
Nicholson method is stable because the error

oscillations decay with time.

This example demonstrates that artifactual
large amplitude oscillations may result if the time

step istoo large. Such oscillations can affect

To prevent oscillations in the numeric
solution for amodel of a cylindrical
cable, the normalized incrementsin
time (AT = At/) and space (AX =
AX/A, where Ax is the distance between

adjacent nodes and A is the DC length
constant) must satisfy the relationship
AT/AX < 1/2 (see chapter 8 in Crank

(1979)).

simulations of models that involve voltage clamps or in which very small resistances

couple adjacent segments. However, in some cases oscillations can be minimized by

using small At while the solution contains a large amplitude component that is changing

rapidly, and increasing At after the slower components dominate the solution (Fig. 4.8

right).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 4 November 27, 2004

0.02
0.2

At =

15

Figure 4.8. Simulations of the two compartment model using the Crank-Nicholson

method. Left: Significant error oscillations can appear when the simulation has a

large amplitude component with atime constant much smaller than At. However, the

simulation is numerically stable because the oscillation amplitude decreases at each

step. Right: At wasinitially 0.02 s, i.e. smaller than the fastest time constant

(~0.0244), so the simulation followed the rapid collapse of the fast component.

After 0.1 s, Atincreased to 0.2 s; this provoked oscillations, but their amplitude is
only asmall fraction of the total response and decays rapidly, so the trgectories
appear smooth. Thin lines are analytic solution, thick lines are Crank-Nicholson

solution. Modified from (Hinesand Carnevale 1997).

Efficient handling of nonlinearity

Nonlinear equations generally need to be solved iteratively to maintain second order
accuracy. However, voltage-dependent membrane properties, which are typically
formulated in analogy to Hodgkin-Huxley (HH) type channels, allow the cable equation
to be cast in alinear form that can be solved without iterations yet is still second order
correct. A direct solution of the voltage equations at each time stept — t + At using the

linearized membrane current 1(V,t) = g (V - E) is sufficient as long as the dope

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

conductance g and the effective reversal potential E are known to second order at time

t + 0.5At. HH type channels are easy to solve at t + 0.5At since the conductanceis a
function of state variablesthat can be computed using a separate time step offset by 0.5At
with respect to the voltage equation time step. That is, to integrate a state from t - 0.5At to

t + 0.5At we only require a second order correct value for the voltage-dependent rates at

the midpoint timet.

Figures 4.9 and 10 illustrate the differences between the unstaggered and staggered
time step approaches. The left panel of Fig. 4.9 shows membrane potential v and the
gating variable m from an action potential simulation computed with the ordinary, i.e.
unstaggered, implementation of the Crank-Nicholson method. The superior accuracy
achieved with staggered time stepsis apparent in Fig. 4.10. The middle panels of these
two figures zoom in on the solutions between 2.0 and 2.2 msto reveal the sequence of
calculations. The right panels demonstrate that using staggered time steps turns a system
of differential equations with nonlinear coupling into a linear system of decoupled

eguations, so that second order accuracy is achieved without having to resort to iterations.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 4

Page 26

November 27, 2004

15 — |verror unstaggered
— Iy 40 — unstaggered mv I l 99
mV = -
staggered | [\\ unstaggered dt=0.1ms - dt=0.02 ms
dt=0.001 ms \\ dt=0.1ms 20
! ‘ Y I 10
/
s
\ 0 | | J
118 19 2 2.1
- -
_ ms
201 P ®
//
- °
0
_ .
40._ 0
0.8 —
m _~ 0.08 — |m error|
P
s
e 0.06
0.6 |- //
s
s
P o 00401
-~
0.4 L PR
// [}
- 0.02 |-
[)
L]
0.2 | | J 0 | |
1.8 1.9 2 2.1 0 1 2 3 4 5

Figure 4.9. Simulated response of a 100 um? patch of membrane with HH
channelsto a 0.025 nA current lasting 0.5 ms, computed with the ordinary
(unstaggered) Crank-Nicholson method using time step At = 0.1 ms. Left: The
spike was noticeably delayed compared to the standard for accuracy (dashed
traces, computed with Crank-Nicholson using staggered time steps and At =
0.001 ms). Similar errors were observed in h and n (traces omitted for clarity).
Middle: A magnified view of these solutions from 2.0 to 2.2 ms. Dots mark the
individual values computed by the unstaggered Crank-Nicholson method. The
unstaggered method advances the solution in two stages. First the new membrane
potential v(t + At) is computed from the values of v, m, h, and n at t. Then the new
values of m, h, and n are computed anaytically from their values at t and the
average of the old and new membrane potentials (v(t) + v(t+At)) / 2. Right: The
absolute error of vand mis proportional to the integration time step At, i.e. the

solution has only first order accuracy.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

For HH equations in a single compartment, using staggered time steps converts four
simultaneous nonlinear equations at each step to four independent linear equations that
have the same order of accuracy. Since the voltage-dependent rates use the voltage at the
midpoint of the integration step, integration of channel states can be done analytically
with just a single addition and multiplication and two table lookup operations. While this

efficient scheme achieves second order accuracy, the tradeoff is that the tables depend on

the value of At and must be recomputed whenever At changes.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 4 November 27, 2004

8 — |verror| staggered
40 — 40 — staggered mvV
mv mv dt=0.1ms ~®
staggered staggered P 6L
dt =0.001 ms dt=0.1ms 20 e
0 | | J
1 3 4 5 // 41
ms 0 | Pl ; J
1{8 19 2 2.1
-a0l 7 ms 2|
-201- RO dt=0.05 ms
-~
//
¢ 0
-8oL -40L 0 1 2 3 4 5
ms
08 —m staggered m _ 0.05— |merror|
dt=0.001and0.1ms -~
b
e 0.04
0.6 |- e
7 0.03
e
g 0.02
0.4 - P
e
L~ 0.01
0.2 | 1 | 0
1.8 1.9 2 2.1

Figure 4.10. Simulated action potential from the same model asin Fig. 4.9, but

computed with Crank-Nicholson using staggered time steps. Left: The solution

with At = 0.1 ms was amost indistinguishable from the standard for accuracy.

Similar improvements were observed in h and n. Right: An expanded view of
these solutions, with dots marking the values computed with At = 0.1 ms. First
the valuesof m, h, and nat t + 0.5At are computed ana ytically from their values
at t - 0.5At and the membrane potential v at t. Then the values of m, h, and n at

t + 0.5At are used to update v from t to t + At. Right: Plots of the absolute error

of v and m show that the error is proportional to the square of the integration

time step At, i.e. using staggered time steps increases solution accuracy to

second order.

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

Adaptive integration: fast or accurate, occasionally both

Thereisawide variety of problems for which an adaptive time step method might

have much higher performance than a fixed step method, e.g. At could grow very large
when all states are varying slowly, as during interspike intervals. On the other hand, in
problems involving propagating action potentials or networks of cells, it may happen that
some state somewhere in the system is always changing quickly. In such cases At is
always small in order to follow whichever stateis varying fastest. Thusit is often not
clear in advance that the increased overhead of an adaptive time step method will be

repaid by an occasional series of long time steps.

Implementational considerations

The variable order variable time step integrator CV ODE was written by Cohen and
Hindmarsh (Cohen and Hindmarsh 1994, 1996) to solve ordinary differential equation

(ODE) initia value problems of the form

Eq. 4.28a-c

y e RN

where y” isthefirst derivative of y with respect to t, and bold faceis used to signify
vectors (lower case) and matrices (upper case). Since there are many different adaptive
integrators, it isworthwhile to review the reasons why CVODE is particularly relevant to

NEURON.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 4 November 27, 2004

1. CVODE employs Backward Differentiation Formula (BDF) methods suitable for stiff

Page 30

problems, which are common in neuronal modeling.

CVODE was easily interfaced to the existing NEURON structure. It would be neither
convenient nor efficient to gather all of the equations for every compartment and
every membrane mechanism into one huge bag and throw it at a solver. The interface
between ODE solver and the definition and setup of equations that are already
distributed among membrane mechanisms requires a map between the internal

NEURON states and the ODE state vector y, as well as a map between the internal
computations for f and the ODE state derivative vector y’. Programming an efficient

map between the distributed internal Jacobian (J = of/dy) evaluation and a sparse
matrix representation is possible but complex. The CVODE solver obviates this
problem since it alows programmers to define their own problem-dependent linear
solvers. This means NEURON can exploit the existing block structure of the Jacobian
matrix and reuse the local block solversthat are already distributed within the

membrane mechanism objects.

CVODE (and DA SPK --see below) allows a sophi sticated balance between accuracy
of solution of M y = b and solution time by supporting the preconditioned iterative

Krylov method, which requires one to only supply a solver for Py = b, where P isin

some sense an approximation to M such that P1 M is approximately the identity
matrix and is chosen so that computation of the inverse of P is much faster than
computation of the inverse of M. Small off-diagonal elementsin the Jacobian are

usually ignored for Gaussian elimination efficiency, but can occasionally have an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

adverse effect on stability and thereby limit the effective time step. It isnot yet clear
which method is more robust when such off-diagonal terms are ignored in the context
of nerve simulations: the Krylov method, or direct use of the approximate Jacobian in

CVODE.

4. Finally, CVODE was implemented using encapsulated data structures, so it was
conceptually smpleto place it in an object-oriented class wrapper for usein
implementing alocal variable time step method. An important pre-existing feature of
CVODE that helped support local variable time steps was the ability to efficiently

retreat to any time within the previous integration interval.

Unfortunately, models that contain linear circuits and extracellular fields cannot be
expressed, or at least are not easy to express, in the form shown in Eg. 4.28. Such models

take the form

Cy'=f(y,t) Eq. 4.29a-c

y e RN

where some rows in the C matrix may be O (introduction of algebraic equations), and the
nonzero rows may have off-diagonal elements (capacitors between nodes). In principle

one could use the singular value decomposition of C to recast the system as

2'=g(z, x, 1) Eqg. 4.30aand b

0=h(z, x,t)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 4 November 27, 2004

and satisfy the latter constraint directly whenever f is calculated. Thisis what NEURON
does with the zero area nodes at the ends of sections, where membrane potentia is
governed by an algebraic equation rather than an ODE, without too much trouble and
with no loss of efficiency. However, in practice f(y, t) is given by an algorithm which one
cannot multiply by a matrix. Also the sparse structure of f isgeneraly lost in the

transformation, making g much more dense and hence less efficient to solve.

For these reasons, when extracellular or linear circuit mechanisms are present and a
variable step integration method is requested, the fast CVODE method is replaced by the
dower but more robust DASPK method of Brown, Hindmarsh, and Petzold (Brown et al.

1994), which isavailablefromht t p: // net | i b. or g.

The user's perspective

A key feature of using CVODE isthat one does not set the integration step size, but

instead specifies tolerance criteriafor local relative and absolute errors. The solver then

adjusts At and the local error order of the implicit difference approximation (from first

order up to O(At®)) so that the local error for each state is less than the sum of itsrelative

and absol ute error tolerances.

Figure 4.11 illustrates the performance of CVODE in simulations of the two
compartment model using two different values for the local absolute error tolerance.
CVODE is capable of ahigh degree of accuracy, but caution must be exercised in setting
the error tolerance, and it is a good idea to compare results against fixed time step

methods during (and even after) model development.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

For amore biologically relevant example of how CVODE can reduce the time
necessary to produce accurate simulations, let us compare simulations of a neocortical
layer V pyramidal cell model (Mainen and Sejnowski 1996) generated with the Crank-
Nicholson and CVODE integrators. The model was subjected to a 900 ms depolarizing
current applied to the soma, which evoked two bursts of spikes (Fig. 4.12 top). A series
of ssimulations was run with the Crank-Nicholson method using progressively smaller At

until the time at which the last action potential crossed above 0 mV converged to a

constant value; this occurred for At < 0.01 ms, and a simulation performed with At =
0.01 mstook 340 seconds to complete on a 2.2 GHz Pentium 4 PC with 512 K cache.

Solutions computed with CV ODE converged to the same zero crossing time of the last

spike, i.e. same global error, when absolute tolerance was 2.5 - 10°3 for all states except

[Ca?*];, which had an absolute tolerance of 2.5 - 1077; using these tolerances, the solution

runtime was 19 seconds. Thus CV ODE achieved the same accuracy as the most accurate

fixed time step solution, but with a runtime that was almost 20 times faster.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 4 November 27, 2004

15 CVode.atol(0.005) 15 CVode.atol(0.1)

Figure 4.11. Simulations of the two compartment model using CV ODE. Left:

Filled circles on one of the traces mark the times at which CVODE cal cul ated

solutions. When the solution is changing rapidly, At isvery smal, but it grows
quite large when the solution changes slowly. If the local absolute error
tolerance is sufficiently strict (0.005 for this example), thereis no visible
difference between the computed and analytic solutions. Right: Thin lines are
the analytic solution, thick lines the CVV ODE solution. Increasing the error
tolerance allows CVODE to take larger steps, but spurious transients may occur

if the criterion istoo lax.

The bottom panel of Fig. 4.12 demonstrates the control that CV ODE exerted over At

throughout the entire simulation. When states were changing most rapidly, At fell to
values much smaller than 0.01 ms, but during the long interburst interval it increased to a
maximum of ~4.4 ms. The smallest steps were restricted to the onset and offset of the
injected current (t = 5 and 905 ms) and brief intervals starting just before the threshold
and ending shortly after the depolarized peak of each spike, as can be seenin an

expanded view of the transition from the interburst interval to the beginning of the second

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

The NEURON Book: Chapter 4

burst (Fig. 4.13). The remarkable speedup by CVODE is due to the fact that At was much

larger than 0.01 ms for most of the simulation.

-2

200

400

600

800

1000

ms

400

600 |

00

1000
ms

dt=0.01 ms

Figure 4.12. Top: CVODE was used to compute somatic membrane potential in

amodel of aneocortical layer V pyramidal cell subjected to along depolarizing

current pulse; Crank-Nicholson method with At = 0.01 ms produced results that

are indistinguishable at the scale of this figure. Bottom: For most of the

simulation, CVODE used time steps much larger than 0.01 ms. The order of

integration (not shown) ranged from 2 to 5, most steps being second or third

order. Figure from (Hines and Carnevale 2001).

The only difficulty that CVODE introduced is an excessive literalness required for

interpretation of discrete functions. To see what this means, consider this strategy for

emulating a"ramp clamp": filling the elements of aVVect or with alinearly increasing

sequence of values and then using the Vect or classspl ay() method to drive the

command potential of avoltage clamp. Figure 4.14 shows this technique applied to a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 4 November 27, 2004

single compartment model with HH currents that was clamped by an SEQ anp (series
resistance r s = 10% Q). The elements of aVect or were assigned the series of values
-65+0.125i for 0 < i < 401, i.e. alinear ramp that swept from -65 to -15 mV over the

course of 10 ms, assuming At = 0.025 ms. A second Vect or filled with the
corresponding times (0.025i) was used to insure that each command potential in the

sequence was applied at the proper time.

Simulations of this model using the implicit Euler method with a 0.025 ms time step
display smoothly varying membrane potential and clamp current, even when examined at
the scale of individual time steps (Fig. 4.14 right). Thisis because the stream of values
delivered by the Vect or isequivalent to a second order piecewise linear function, i.e.

command potential itself varies smoothly with time.

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

672
ms

2
=)
o
N
o
3
)
~
[
)
N
=
&

670 670.5 671 671.5 672
ms

—\—\ CVODE
-2
\ r’ dt=0.01 ms

Figure 4.13. Top: An expanded view of the first spike in the second burst from Fig. 4.12. The

times of computed solutions are marked by + symbols. Bottom: At fell below 0.01 ms from just
before the threshold of each spike until shortly after its peak. Figure from (Hines and Carnevale

2001).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 4

Page 38

-15
mV
-25

-35

0.8
nA
0.6
0.4

0.2

-0.2

-59.6
mV

-59.8

0.15
nA

0.1

0.05

November 27, 2004

1.02

1.04

1.06 1.08 11
ms

1.02

1.04

106 1.08 11
ms

Figure 4.14. Ramp clamp using the Vect or class's pl ay() method works well with

fixed At integration because command potentia is effectively a continuous function

of time. Top traces are membrane potentia, bottom traces are clamp current.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

-15— -59.6 —
mv mv
-25
-59.8-
-35-
-451
-60
-551
-65 1 1 1 1 J -60.2 | | | | J
0 2 4 6 8 10 1 1.02 104 106 1.08 1.1
ms ms
0.15 —
nA
0.8
nA
0.6 0.1
0.4
0.05
0.2
0 y
0 2 v 8 10 0 | | | | |
ms 1 1.02 1.04 1.06 1.08 1.1
-0.2 ms

Figure 4.15. Using Vect or . pl ay() with CVODE produces large capacitive transients in clamp
current (bottom traces) because the value sequence in the Vect or that drives command potential
istreated as afirst order step function. The local absolute error tolerance parameter at ol is0.001

inthissimulation and in Fig. 4.16.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 4 November 27, 2004

-15— -59.6 —
mv mv
—250
-59.8-
-35-
—451
-60
-55
-65 | | | | J -60.2 | | | | J
0 2 4 6 8 10 1 1.02 1.04 1.06 1.08 1.1
ms ms
0.15 —
nA
0.8 —
nA
0.6 — 0.1
041
0.05 |-
0.2
0 | | | J

2 6 8 10 0 1 : : :]
ms 1 1.02 104 106 1.08 11
-0.2- ms

Figure 4.16. Vect or . pl ay() with interpolation workswell with CVODE because the Vect or

that drives command potential istreated as a piecewise linear function. See text for details.

However, under CVODE the stream must be considered afirst order equivalent step
function. Driving the voltage clamp with this step function makes membrane potential
jump from one level to another and produces substantial capacitance current transients at

each step discontinuity (Fig. 4.15).

This problem has been addressed in NEURON 5.4 by adding alinear interpolation

option to the Vect or classspl ay() method. This

In the future, pl ay() will be

option, which works both with fixed At and extended to cubic spline and will

CVODE, treats our two vectors asif they defined a alow "continuous” play of asmooth

piecewise linear function. This means we can function defined by a vect or .

represent the ramp command used in this example by a pair of vectors whose el ements

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

are-65, -15 and 0, 10, respectively. Simulation results using Vect or . pl ay() with

linear interpolation under CVODE are shown in Fig. 4.16.

Error control

An important issue in adaptive integration is selection of appropriate values for local
error control. Variable time steps elevate the issue of "physiological accuracy"” (see Error
below) to alevel of high concern. Experience so far suggests that control of local
absolute error is much more important than control of local relative error. One can
specify an error criterion based on local relative error, but in neural modeling thereis
hardly ever areason to require increasing absolute accuracy around the O value of most

states, especially voltage.

The scale of statesis often a crucial consideration, in that the maximum absolute error

must be consistent with the desired resolution of each state. An extreme exampleisa
calcium pump model with pump density measured in [moles/cm?]. Here an appropriate

valueis 1014 [mole/cm?], and an allowable error of 0.01 is clearly nonsense. For this

reason, it is essentia that each state that is badly scaled, e.g. [Ca2+]i measured in [mMM],

be given its own explicit maximum absolute error. NEURON accommodates this need by
allowing the user to set specific error criteriafor individual states that take precedence

over any global criterion.

NEURON's default error setting for CVODE is 10 puV for membrane potential and

0.1 nM for internal free calcium concentration, so that a simulation of the classical

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 4 November 27, 2004

Hodgkin-Huxley action potential at 6.3° C has accuracy comparable to a second order

correct simulation with fixed At = 25 ps.

Local variable time step method

NEURON provides a network connection (Net Con) class for network ssmulationsin
which cell to cell communication can be abstractly represented by the (possibly delayed)
delivery of logical events, as opposed to graded interaction via gap junctions or electrical
synapses (see Chapter 10). The notion of a cell driven by discrete input events naturally
suggests an expansion of the simulation domain wherein variable time step methods

provide substantial performance gains.

It may happen that only afew cellsin anetwork are active at any one time, but with a
global time step these active cells govern the time step for al (Fig. 4.17). NEURON's
local variable time step method merely uses a separate CVODE solver instance for each
cell, thus integrating that cell's states with time steps governed only by those state

dynamics and the discrete input events.

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

1.0
01 0.1
103 points
40 — 107 advance
mv 5 interpolate ,ﬁ"'n. it
4 init ! h Lo
177 f(y) | " | ",
0 | | I' | |II ‘l f
1 2 3 W 4 5
| Iy, ms
| Iy
| I iy
-40 o “\‘ II'III
! ! h
T mul””\ RN |III
i
-80 Global step: 8 states/f(y)
8x177 = 1416
78 points 71 points
76 advance 68 advance
1 interpolate 2 interpolate
40 — 2init - pw, 3init gy,
mv 138 fy) [My, 1151 [
! " 1 “ ! I
I' 1 | I
0 | | . | o] J
1 2 3 I'| 4 5
| N ms
1 b
) ' |
-40— Il ! Y
1 !
! J! 1
MOIEAR w"“ll‘ vt II'I.I
-80L Local step: 4 states/f(y)

4x(138+115) = 1012

Figure 4.17. Integration with local variable time steps can significantly improve
computationa efficiency. The top figure shows a simple feedforward network
implemented with aNet St i martificial spiking cell (white) and a pair of single
compartment biophysical model neurons with Hodgkin-Huxley membrane (black and
red). All synapses are excitatory, with latencies between presynaptic spike and
postsynaptic conductance change shown in ms. The white cell produces a single spike at
t =0 ms. Thistriggers a spikein the black cell, but the red cell requires inputs from both
synapses to make it fire. The short vertical lines in the middle and bottom figures mark
the times at which solutions are computed using the global (middie) and loca (bottom)

variable time step methods. Note that, if rapid changes occur in any cell (e.g. onset of an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 4 November 27, 2004

epsp, or the upstroke and peak of a spike), the global method forces extra computations
in al cels, even those in which nothing much is happening. This does not occur with the
local method. The total computational cost of a simulation depends chiefly on the total
number of times that new STATES are calculated. The global method evaluated f(y) (see
Eq. 4.29a) 177 times, calculating 8 STATES each time (4 STATES per cell), for atotal of
1416; the local method required 253 eva uations of f(y), but these were in individua
cells so only 4 STATEs were calculated each time, and the local method's total was 1012.
Therefore the global method was ~1.4 times more costly than the local method.

All cells are always on alist ordered by their current time and all outstanding events
areon alist ordered by their delivery time. These lists are implemented as splay treesto
minimize insertion and removal times (proportional to the log of the size of the list), and
the least time element can be accessed in constant time. The last fact that prepares our

arenafor action isthat a CVODE instance can, without integrating equations, retreat from

its current time to any time back to the beginning of its previous time step.

The network simulation advances in time by checking the cell and event liststo find
the least time cell or event, whichever isfirst. If acell isfirst, that cell isintegrated
according to its current time step, and moved to alocation on the cell list appropriate to
itsnew time. If an event isfirst, it is delivered to the proper cell. That cell retreats to the
delivery time and becomes the least time cell, and the event is removed from the list and

discarded.

It is easy to devise networks in which the speed improvement of the local time step
approach is arbitrarily great. e.g. chains of neurons. However, this method yields no
benefit in periods of synchronous activity. If events are extremely numerous, neither the

local nor the global variable time step method improves simulation speed. When multiple

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

events per reasonable At arrive regularly, fixed time step integration nicely aggregates all
eventsin a step without regard to their temporal microstructure, whereas variable step
methods' scrupulous handling of each event is out of all proportion to the conceptual

approximation of the network.

The choice of methods is thus dependent on the problem and the user'sintent. To
encourage the exploration that is necessary to determine which method may be best
suited for a particular application, NEURON allows any of its fixed or variable time step

methods to be used with no changes to the user-level specification of the problem.

The local variable time step method considerably increases the complexity of the
underlying communication between interpreter and solver with respect to recording
results. With aglobal time step, whether fixed or variable, the f advance() function (see

Chapter 7) has a clear and precise meaning, i.e. the exit time differs from the entry time
by the interval At. The problem isthat, with the local variable time step, each cell hasits
own time stream, so each recorded variable must be mapped to the appropriate time

stream. This problem is solved by the CVode classsrecor d() , which records both a

variable and its associated times into apair of Vect or s.

Discrete event simulations

One limiting case of the variable step simulation style isthe "event-driven" or
discrete event simulation, in which cells jump from event to event. Here asingle
compartment is used merely as a stage in which the voltage never changes (the natural

time step isinfinite), and the "cells" are represented by point processes that receive

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 4 November 27, 2004

events from, and produce eventsto, the Net Con instances. A large variety of useful
artificial spiking cells (e.g. integrate and fire, firing frequency dependent on input), as
well as mechanisms of use-dependent synaptic plasticity, are susceptible to discrete event
simulation because their equations can be solved analytically, so that "cell" state needs

only to be computed at the event. Thistopic is discussed more thoroughly in Chapter 10.

Error

The total or global error in a simulation is a combination of errors from two sources.
The local error emerges from the extrapolation process within atime step. For the

backward Euler method thisis easily analyzed with Taylor's series truncated at the term

proportional to At.

At?

V(t+A1) =V (1) + V' (t+A1) At = V" (t*) — = 431

where t <t*<t+At,

The forward and backward Euler methods both ignore second and higher order terms,
so the error at each step is proportional to At2. Integrating over atime interval T requires
T/At steps, so the error that accumulates in thisinterval is on the order of At2T/At, i.e. the
local error for the Euler methods is proportional to At. Applying asimilar analysisto the

Crank-Nicholson method finds that its local error is proportional to At2. Therefore we can

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

always decrease the local error of these fixed step methods as much as we like by

reducing At.

The second contribution to total error comes from the cumulative effect of past errors,

which have moved the computed solution away from the trgjectory of the analytic

solution. Thus, if our computer solution has a nonzero total error at timet;, then even if

we could solve the equations exactly from that time forward using the state values at t; as

our initial condition, the future solution will be inaccurate because we are on a different
trajectory. This means that the second component of total error depends on the dynamics

of the system itself.

The total error of asimulation is therefore not easy to analyze. For the one and two
compartment models we have examined in this chapter, all trgjectories end up at the same
steady state, so total error tends to decrease with time, but not all systems behave like
this. Particularly treacherous are systems with chaotic behavior, in which, once the
computed solution diverges even dightly from the proper trgectory, it subsequently

moves rapidly away from the original and the time evolution becomes totally different.

Chaos is not the only circumstance that may produce high sensitivity to numerical
error. Consider the Hodgkin-Huxley membrane action potentials elicited by two current
stimuli, one near threshold and the other twice as strong. The left panel of Fig. 4.18
shows action potentials computed with the backward Euler method using time steps of 25
and 5 ps, the Crank-Nicholson method using At = 25 ps, and CVODE using local

absolute error tolerance = 0.01. For the strong stimulus, al three integration methods

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 4 November 27, 2004

produced nearly identical results. However, the backward Euler method displayed a
noticeable error when the 25 ps time step was used to compute the response to the weak
stimulus (dashed line). The weak stimulus allowed membrane potential to hover near
spike threshold, so that a small error due to the time step could grow into alarge error in

the time of occurrence of the action potential. The error was much smaller in the

simulation computed with At =5 ps.

However, behavior near threshold is highly sensitive to ailmost any factor, beit a
parameter of the numerical integration method (e.g. At or AX) or a parameter of the model

itself. Thisis seen in the right panel of Fig. 4.18, where all solutions were computed with

CVODE (loca absolute error tolerance = 0.01) and the sodium channel density 9y, was

varied by only 1%. This small variation of gy, did almost nothing to the response to the
strong stimulus, but its effect on the latency of the spike elicited by the weak stimulus

was comparable to the integration error of the backward Euler method with At = 25 ps.

This demonstrates that it isimportant to know the sensitivity of results to every model

parameter, and At isjust one more parameter that is added as a condition of being able to

run smulations on a digital computer.

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

Figure 4.18. Simulations of Hodgkin-Huxley membrane action potentials

elicited by 0.3 ms current stimuli with amplitude of 0.0225 or 0.045 mA/cm?2.
Left: Sengitivity to integration time step. For each stimulus amplitude,

responses were computed using CVODE (loca absolute error tolerance = 0.01),

Crank-Nicholson (At = 25 ps), and backward Euler (At = 25 and 5 ps). The

backward Euler solution with 25 s time step showed a noticeable error. Right:

Sensitivity to variation in 9y . All traces were computed with CVODE (local

absolute error tolerance = 0.01). Peak sodium conductance was 0.12 Sem?
(solid lines) + 1% (dotted and dashed lines). The three traces elicited with the

large stimulus are indistinguishable in this graph.
Using extremely small At might seem to be the best way to reduce error. However,
computers represent real numbers as floating point numbers with a fixed number of
digits, so if you keep adding 102° to 1 you may always get a value of 1, even after

repeating the process 1020 times. Operations that involve the difference of similar
numbers, as when differences are substituted for derivatives, are especially prone to such

roundoff error. Consequently thereis alimit to the accuracy improvement that can be

achieved by decreasing At.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 4 November 27, 2004

Generaly speaking, it would be desirable to use what might be called "physiological”

values of At, i.e. time steps that give a good representation of the state trgjectories without
having a numerical accuracy that is orders of magnitude better than the accuracy of our
physiologica measurements (which is generally not as good as 5%, and seldom better).
The question is not so much how large the error of asimulation is relative to the anaytic
solution, but whether the simulation error leads us to tragjectories that are significantly
different from the set of trgectories defined by the error in our parameters. Insofar as
removal of any source of error has value, there is atemptation to treat the model
equations as sacred runes which must be solved to an arbitrarily high precision.
Nevertheless, determining the meaning of a simulation run requires judgment. A
misplaced emphasis on numerical accuracy should not obscure the fact that qualitative
results may be quite sufficient. We agree with John Moore, our mentor and colleague,
who isfond of quoting R. Hamming: "The purpose of computing isinsight, not numbers’

(Hamming 1987).

Summary of NEURON's integration methods

NEURON offers the user a choice of several different integration methods. For any
particular problem, the best way to determine which is the method of choiceisto run
comparison simulations with several values of At or local error tolerance to see which
executes most quickly while achieving the desired accuracy. In performing such trials,
one must remember that the stability properties of asimulation depend on the entire

system that is being modeled. Because of interactions between "biological" components

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

and any "nonbiological" elements, such as stimulators or voltage clamps, the time
constants of the entire system may be different from those of the biological components
alone. A current source (perfect current clamp) does not affect stability because it does
not change the time constants. Any other signal source imposes aload on the
compartment to which it is attached, changing time constants and potentially introducing
troublesome stiffness. The more closely a signal source approximates a voltage source

(perfect voltage clamp), the greater this effect will be.

Fixed time step integrators

Implicit integrators are used as NEURON's fixed time step methods. Thisisin part
because of their superior stability compared to explicit integrators (Dahlquist and Bjorck

1974).

Default: backward Euler

NEURON's default integration method is backward Euler, afixed step first order
implicit scheme that produces good qualitative results with large time steps when
extremely stiff ODEs and even algebraic equations are present in the system, e.g. models
that involve voltage clamps. Because of its robust stability, it can be used with extremely

large time steps to find the steady state solution for alinear ("passive") system.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 4 November 27, 2004

Crank-Nicholson
When the global parameter secondor der isset to 2, NEURON uses avariant of the

Crank-Nicholson method. This has local error proportional to At? and is therefore

particularly accurate for small time steps.

In implicit integration methods, all current balance equations must be solved

simultaneously. The backward Euler algorithm does not resort to iteration to deal with

nonlinearities, since its numerical error is proportional to At anyway. The special feature
of the Crank-Nicholson variant isits use of a staggered time step algorithm to avoid
iteration of nonlinear equations (see Efficiency in the section Crank-Nicholson: stable
and more accurate above). This converts the current balance part of the problem to one
that requires only the solution of simultaneous linear equations, making the

computational cost per time step almost identical to the backward Euler method.

The second order fixed time step method works with HH-type Ohm's law channels,
but its accuracy isreally only first order when the instantaneous current-voltage relation
of the channelsis nonlinear or when channel gating model s are expressed with kinetic
schemes (the SOLVE scherme METHOD spar se statement in NMODL solveskinetic
schemes using the fully implicit method). Accuracy is aso formally first order for models
involving changing ion concentration, though that is a negligible issue when dt is small

enough to accurately follow voltage changes.
Although the Crank-Nicholson method is formally stable, models with tiff equations

require small At to avoid numerical oscillations (Fig. 4.8). It is unusable in the presence

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

of voltage clamps, extracellular mechanisms, or linear circuits, since the solution of

algebraic equations gives results with large numerical oscillations.

Adaptive integrators

NEURON's adaptive integrators free the user from having to choose an integration

step size. Instead, they automatically adjust integration order and At so that the solution
satisfies a user-specified error criterion. While this may be the most salient feature of
these methods, there are several reasons why they may be preferable to fixed step

integrators:
e Adaptive integrators usually require less time for a given degree of accuracy.

e They avoid the problem of "empty temporal resolution” (many solution points when

nothing is happening) that occurs with fixed time step integration.

e Currents, voltages, and conductances are all known to the same accuracy at the same

time, unlike the staggered Crank-Nicholson method.

e Eventsoccur at their actual times instead of being constrained to multiples of At. For
example, with fixed time steps, current step discontinuities are only first order correct
unless they are defined to lie on time step boundaries. Precise timing may be

particularly important in network simulations.

Switching between fixed and variable time step methods is as easy as a button press
(NEURON Main Menu / Tools / VariableStepControl / Use variable dt) and does not
affect any GUI tools. Plots of expressions vs. time still look the same, and Vect or

recording of temporal streams still works. There is no need to change model descriptions,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

The NEURON Book: Chapter 4 November 27, 2004

or at least to change the statements that define the equations. Ease of switching is crucial
since relative performance between high overhead variable step and low overhead fixed
step methods ranges widely. For example, simulation of the demonstration models by
Mainen and Segjnowski (1996) slowed down by a factor of 2 or sped up by afactor of 7,
depending on number of spikesin asmulation run and whether there were long intervals

in which no state changed rapidly.

CVODE

CVODE handles any kind of model description involving DERI VATI VE or KI NETI C
representations of gating states, ion accumulation/diffusion, or nonlinear current-voltage
relations. It does not work with models that involve extracellular mechanisms, linear
circuits, perfect voltage clamps, or capacitors between nodes. Each cell in a network
simulation may have its own local time step, but time steps must be global if there are
gap junctions between different cells. Cell mechanisms that have analytical solutions (e.g.
integrate and fire artificial spiking cells) can be implemented in away that allows discrete

event simulations.

DASPK

The DASPK method is suitable for models that involve extracellular mechanisms,
linear circuits, perfect voltage clamps, or capacitors between nodes. However, thereis no

local variable step variant of DASPK.

Page 54 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

References

Brown, P.N., Hindmarsh, A.C., and Petzold, L.R. Using Krylov methods in the solution
of large-scale differential-algebraic systems. S AM Journal of Scientific Computing

15:1467-1488, 1994.

Cohen, S.D. and Hindmarsh, A.C. CVODE User Guide. Livermore, CA: Lawrence

Livermore National Laboratory, 1994.

Cohen, S.D. and Hindmarsh, A.C. CVODE, astiff/nonstiff ODE solver in C. Computers

in Physics 10:138-143, 1996.
Crank, J. The Mathematics of Diffusion. 2 ed. London: Oxford University Press, 1979.

Crank, J. and Nicholson, P. A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type. Proceedings of the Cambridge

Philosophical Society 43:50-67, 1947.

Dahlquist, G. and Bjorck, A. Numerical Methods. Englewood Cliffs, New Jersey:

Prentice-Hall, 1974.

Hamming, R.W. Numerical Methods for Scientists and Engineers. 2 ed: Dover

Publications, 1987.

Hindmarsh, A.C. and Serban, R. User documentation for CVODES, an ODE solver with

sensitivity analysis capabilities: Lawrence Livermore National Laboratory, 2002.

Hindmarsh, A.C. and Taylor, A.G. User documentation for IDA, adifferential-algebraic
eguation solver for sequential and parallel computers. Lawrence Livermore National

Laboratory, 1999.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

The NEURON Book: Chapter 4 November 27, 2004

Hines, M. Efficient computation of branched nerve equations. Int. J. Bio-Med. Compuit.

15:69-76, 1984.

Hines, M.L. and Carnevale, N.T. The NEURON simulation environment. Neural

Computation 9:1179-1209, 1997.

Hines, M.L. and Carnevale, N.T. NEURON: atool for neuroscientists. The

Neuroscientist 7:123-135, 2001.

Kundert, K. Sparse matrix techniques. In: Circuit Analysis, Smulation and Design, edited

by A. Ruehli: North-Holland, 1986.

Mainen, Z.F. and Sginowski, T.J. Influence of dendritic structure on firing pattern in

model neocortical neurons. Nature 382:363-366, 1996.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. Numerical Recipesin

C. 2 ed. Cambridge: Cambridge University Press, 1992.

Stewart, D. and Leyk, Z. Meschach: Matrix Computationsin C. Proceedings of the
Centre for Mathematics and its Applications. Vol. 32. Canberra, Australia: School of

Mathematical Sciences, Australian National University, 1994.

Strang, G. Introduction to Applied Mathematics. Wellesley, MA: Welledey-Cambridge

Press, 1986.

Page 56 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

Chapter 4 Index

%DELTA t 11, 14, 15, 19, 21, 23, 25, 27

%DELTA x 6, 8, 11

A
absolute error 14, 26, 28
local 32
tolerance 32,41
accuracy 14

physiologica 41, 50
guantitative 20
vs. speed 30
analytic solution 3
trajectory 47
approximation
of a continuous system by a discrete system 8
artificial spiking cell 43, 46
under CVODE 54
atol 39

axial current 2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

The NEURON Book: Chapter 4

backward Euler method 10, 18, 19, 21

iteration coefficient

loca error 20, 46

stability 20
summary 51
biophysical neuron model
boundary condition
sedledend 3
BREAKPOINT block
SOLVE

sparse 52

cable
passive cylindrical
calcium
concentration
free 41

pump 41

11

43

2,4,59

November 27, 2004

Page 58 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

channel
density 438

gating model 52

HH type 24

under CVODE 54
linear 52
nonlinear 52

under CVODE 54

compartment 9

compartment
adjacent 2
computational efficiency 22,24, 27, 29, 30, 32, 43, 52, 54

computational efficiency

and STATEs 44
concentration

and accuracy 52
conductance

dope 24

Crank-Nicholson method 10, 21, 23, 25, 26, 28

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

The NEURON Book: Chapter 4 November 27, 2004

hybrid of backward and forward Euler 21
iteration coefficient 11
local error 21, 46
kinetic scheme 52
stability 23
staggered time steps 25, 26, 28
summary 52
unstaggered time steps 25, 26
CVODE 29, 30, 32, 35, 40, 42, 44
and model descriptions 54
default error criteria 41
local error 32,41
summary 54
CVode class
record() 45

cytoplasmic resistivity 3

DASPK 30, 32

summary 54

Page 60 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

DERIVATIVE block

and CVODE 54
diffusion

under CVODE 54
discrete event simulation 45, 54

discrete event simulation
conditionsfor 46, 54

discretization 2

eigenfunction 16, 18
eigenvalue 16
eguation
algebraic 31,51,53
differentia 13, 16
coupled vs. independent 18, 25
sacred runes 50
event 44,53
event

delivery 42, 44

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

The NEURON Book: Chapter 4 November 27, 2004

input 42
logical 42

extracellular mechanism 2,32,53

forward Euler method 10
iteration coefficient 10
local error 14, 46
stability 11,15

Fourier theory 3

frequency 17

frequency

spatial 4, 6,7,9, 10

function
discrete 35
piecewise linear 36, 40
G
gap junction
under CVODE 54

Gaussian elimination 30

Page 62 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

Hamming, R.W. 50

insight 50
integrate and fire 46, 54

ion accumulation

under CVODE 54

iteration
coefficient 10

eguation 10

Jacobian
approximate 31

judgment 50

KINETIC block

and CVODE 54

linear algebra 16

The NEURON Book: Chapter 4

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

The NEURON Book: Chapter 4

linear circuit 2, 32,53

M

modeling 30, 41

modeling

empirically-based 9

numeric integration 2,11, 50

Page 64

adaptive 29,53
global time step 42-44, 54
local time step 31, 42-44, 54
switching to fixed time step 53
analytic integration of channel states 27
explicit 13,51
fixed time step 32,51
event aggregation to time step boundaries
switching to adaptive 53
implicit 13,51, 52
instability 11,15

iteration of nonlinear equations 24,52

45

November 27, 2004

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

order of accuracy 27, 32, 46
stability 31,50
effect of signal sources 18,51
summary 50
numerical error 46
chaotic system a7
control 12, 41
global 33, 46
local 14,21, 32, 46
oscillations 20, 23

roundoff 16

gpatia 2,9
temporal 2
effect of spatial discretization 9

Nyquist sampling theorem 7

parameters

sensitivity to 48

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

The NEURON Book: Chapter 4

Q
gualitative results 20
R
relative error
local 32,41
local
tolerance 32
S

secondorder 52
section

nodes

zero area 32

gpatial accuracy

second order 6
gpatial grid 6
specific membrane capacitance 3
specific membrane conductance
standard run system

fadvance() 45

November 27, 2004

Page 66 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

state variable 20, 25, 30
synaptic plasticity 46
system
continuous 1,3,5,6,8,9
discretized 6, 8,9
linear 16, 25, 51
nonlinear 25, 27, 52
giff 18, 30, 51, 52
system equations
matrix form 29
extracellular field 31

linear circuit 31

Taylor'sseries 19, 46

temporal accuracy

empty 53

user's intent 45

The NEURON Book: Chapter 4

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 67

The NEURON Book: Chapter 4 November 27, 2004

variables
abrupt change 53
Vector class
play() 35
under adaptive integration 40
under fixed time step integration 36, 40
with interpolation 40
voltage clamp

ramp clamp 35

Page 68 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Chapter 5

Representing neurons with a digital computer

Information processing in the nervous system involves the spread and interaction of
electrical and chemical signals within and between neurons and glia. From the
perspective of the experimentalist working at the level of cells and networks, these
signals are continuous variables. They are described by the diffusion equation and the
closely-related cable equation (Crank 1979; Rall 1977), in which potential (voltage,
concentration) and flux (current, movement of solute) are smooth functions of time and
space. But everything in adigital computer isinherently discontinuous. memory
addresses, data, and instructions are all specified in terms of finite sequences of Os and 1s,
and there are finite limits on the precision with which numbers can be represented. Thus
thereis no direct parallel between the continuous world of biology and what existsin
digital computers, so specia effort is required to implement digital computer models of
biological neural systems. The aim of this chapter isto show how the NEURON

simulation environment makes it easier to bridge this gap.

Discretization

To smulate the operation of biological neurons, NEURON uses the tactic of

discretizing time and space, which means approximating these partial differential

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 5 November 27, 2004

Page 2

eguations by a set of algebraic difference equations that can be solved numerically
(numerical integration; see Chapter 4: Essentials of numerical methods for neural
modeling). Indeed, spatial discretization, in one form or another, lies at the core of all

simulators used to model biological neurons.

Discretization is often couched in terms of "compartmentdization,” i.e. goproximating the
cable equation by a series of compartments connected by resistors (see Chapter 4 and
Cables in Chapter 3). However, it is more insightful to regard discretization as an
approximation of the original continuous system by another system that is discontinuous
in time and space. Viewed in this way, ssimulating a discretized model amounts to
computing the values of spatiotemporally continuous variables over a set of discrete
pointsin space (a"grid" of "nodes') for afinite number of instantsin time. The size of
the time step and the fineness of the spatial grid jointly determine the accuracy of the
solution, and may also affect its stability. How faithfully a computed solution emulates
the behavior of the continuous system depends on the spatial intervals between adjacent
nodes, and the temporal intervals between solution times. These should be small enough
that the discontinuous variables in the discretized model can approximate the curvature in

space and time of the continuous variablesin the original physical system.

Choosing an appropriate discretization is a recurring practical problem in neurd
modeling. The accuracy required of a discrete approximation to a continuous system, and
the effort needed to compute it, depend on the anatomical and biophysical complexity of
the original system and the question that is being asked. Thus finding the resting

membrane potential of an isopotential model with passive membrane may require only a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

few large time steps at one point in space, but determining the time course of V, |
throughout a highly branched model with active membrane as it fires a burst of spikes

demands much finer spatiotemporal resolution; furthermore, selecting Ax and At for

complex models can be especially difficult.

Although the time scale of biophysical processes may suggest anatural At, itis
usually not clear at the outset how fine the spatial grid should be. Both the accuracy of
the approximation and the computation time increase as the number of nodes used to
represent a cable increases. A single node is usually adequate to represent a short cablein
its entirety, but alarge number of closely spaced nodes may be necessary for long cables
or highly branched structures. Also, as we intimated above, the choice of a spatial grid is
closaly related to the choice of the integration time step, especially with NEURON's
Crank-Nicholson (second order) integrator, which can produce spurious oscillations if the

time step istoo long for the spatial grid (see Chapter 4).

Over the years, a certain amount of folklore and numerous unreliable rules of thumb
have emerged concerning the topic of "compartment size." Among the topics we cover in
this chapter are a practical method for quickly testing spatial accuracy, and arational
basis for specifying the spatial grid that makes use of the AC length constant at high

frequencies (Hines and Carnevale 2001).

No less important is the practical question of how to manage all the parameters that
exist throughout a model. Returning briefly to the metaphor of "compartments,” let us
consider membrane capacitance, a parameter that has a different value in each

compartment. Rather than specify the capacitance of each compartment individually, it is

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 5 November 27, 2004

better to deal in terms of a single specific membrane capacitance that is constant over the
entire cell, and have the program compute the values of the individual capacitances from

the areas of the compartments. Other parameters such as diameter or channel density may
vary widely over short distances, so the granularity of their representation may have little

to do with numerically adequate discretization.

How NEURON separates anatomy and biophysics
from purely numerical issues

Thinking in terms of compartments leads to model implementations that require users
to keep track of the correspondence between compartments and anatomical locations. If
we change the size or number of compartments, e.g. to see whether spatial discretization
is adequate for numerical accuracy, we must aso abandon the old mapping between

compartments and locations in favor of acompletely new one.

So even though NEURON is a compartmental modeling program, it has been
designed to separate the specification of biological properties (neuron shape and
physiology) from computational issues such as the number and size of compartments.
This makes it easy to trade off between accuracy and speed, and enables convenient
verification of the numerical correctness of simulations. It aso shields users from

numerical details, so they can focus on matters that are biologically relevant.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

NEURON accomplishes this by employing four related concepts: sections, range,
range variables, and segments. These concepts are defined in the following paragraphs,

and discussed later in this chapter under the heading How to specify model properties.

Sections and section variables

A section is a continuous length of unbranched cable with its own anatomica and
biophysical properties. Each section in amodel can be the direct counterpart of a neurite
in the original cell. This reduces the difficulty of managing anatomically detailed models,
because neuroscientists naturally tend to think in terms of axonal and dendritic branches

rather than compartments.

Figure 5.1 illustrates how a cell might be mapped into sections. The cartoon at the top
shows how an anatomist might regard this cell: the soma gives rise to a branched
dendritic tree and an axon hillock which is connected to a myelinated axon. The bottom
of Fig. 5.1 shows how to break this cell into sections in order to build aNEURON model.
Notice that each biologically significant anatomical structure corresponds to one or more

sections of the model: the cell body (Soma), axon hillock (AH), myelinated internodes
(1), nodes of Ranvier (N,), and dendrites (D;). Sections alow thiskind of

functional/anatomical parcellation of acell to remain foremost in the mind of the person

who constructs and uses a NEURON model.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 5 November 27, 2004

Soma

Soma
Iy Iy AH

Figure 5.1. Top: Cartoon of a neuron indicating biologically significant
structures. Bottom: How these structures are represented by sectionsin a
NEURON model. Reproduced from (Hines and Carnevale 1997).
Certain properties apply to a section as awhole. These properties, which are
sometimes called section variables, are length L, cytoplasmic resistivity Ra, and the

discretization parameter nseg (see Table 5.1 and following section).

Table5.1. Section variables

Name Meaning Units
L section length [um]
Ra cytoplasmic resistivity [Q cm]

nseg discretization parameter [1], i.e. dimensionless

Range and range variables

Many variablesin real neurons are continuous functions of position throughout the
cell. In NEURON these are called range variables (see Table 5.2 for examples). While
each section is ultimately discretized into compartments, range variables are specified in

terms of a continuous parameter: normalized distance along the centroid of each section.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

This normalized distance, which is called range or arc length, varies linearly from O at
one end of the section to 1 at the other. Figure 5.2 depicts the correspondence between
the physical distance of apoint along the length of a section and its location in units of

normalized distance.

Table 5.2. Some examples of range variables

Name Meaning Units
di am diameter [um]
cm specific membrane capacitance [uf/cm?]
v membrane potential [mV]
i na sodium current [mA/cm?]
nai internal sodium concentration [mM]
n_hh Hodgkin-Huxley potassium conductance [1], i.e. dimensionless
gating variable
physical
distance physical
0 v length
[]
normalized
distance
0 v 1

Figure 5.2. Top: The arrow indicates the location of apoint at a particular physical
distance from one end of a section. Bottom: In NEURON, this location is expressed in

terms of normalized distance ("range") along the length of the section.

One way to access the values of range variables and other section propertiesis by dot
notation, which specifies the name of the section, the name of the variable, and the

location of interest. Thus

soma. di am(0) = 10

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 5 November 27, 2004

sets the diameter closest to the O end of the soma section to 10 um, and
dend. v(0.5)

returns the membrane potential at the middle of the dend section. Note that the value
returned by sect i onnane. rangevar (x) isthe vaue at the center of the segment (see
below) that contains x, not the linear interpolation of the values associated with the
centers of adjacent segments. If parentheses are omitted, the position defaults to 0.5
(middle of the section), i.e. dend. v(0. 5) and dend. v both refer to membrane potential

at the midpoint of dend.

Range variables and related topics are covered more thorougly below in How to

specify model properties.

Segments

As aready mentioned, NEURON computes membrane current and potential at one or
more discrete positions ("nodes") that are equally spaced along the interior of a section.
In addition to these internal nodes, there are terminal nodes at the 0 and 1 ends. However,
no membrane properties are associated with terminal nodes so the voltage at the 0 and 1
locations is defined by a simple algebraic equation (the weighted average of the potential
at adjacent internal nodes) rather than an ordinary differential equation. Each section has
aparameter nseg that controls the number of internal nodes. These nodes are located at

arclength=(2i -1)/2nseg wherei isaninteger intherange[1, nseg] (Fig. 5.3).

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

nseg =1 ¢ [[}
nseg = 2 ¢ D L] []
nseg =3 ¢ @ ° o @

Figure 5.3. Each section has a discretization parameter nseg that governs the
number of internal nodes (black dots inside the section) at which membrane
potential is computed. The thin lines mark conceptual boundaries between
adjacent segments.

Y ou can think of a section as being broken into nseg segments of equal length,
which are conceptually demarcated by evenly spaced boundaries at intervalsof 1/ nseg,
so that each segment has one node at its midpoint. Thisinternal node is the point at which
the voltage of the segment is defined. The transmembrane currents over the entire surface
areaof a segment are associated with its node. Nodes of adjacent segments are connected

by resistors that represent the resistance of the intervening cytoplasm (Fig. 5.7).

Each section in amodel can have adifferent value for nseg. One way to specify this

valueiswith dot notation, e.g.
axon. nseg = 3

ensures that membrane current and potentia will be computed at three points aong the
length of the section called axon. The value to choose for nseg depends on the degree of
gpatial accuracy and resolution that is desired: larger values of nseg mean more nodes
spaced at shorter intervals, so that the piecewise linear approximation in space becomes
more accurate and smoother. Strategies for selecting appropriate values of nseg are

discussed later in this chapter under Discretization guidelines.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 5 November 27, 2004

Implications and applications of this strategy

Range, range variables, and nseg free the user from having to keep track of the
correspondence between segment number and position along each branch of a model.
This avoids the tendency of compartmental modeling approaches to confound
representation of the physical properties of neurons, which are biologically relevant, with
implementational details such as compartment size, which are mere artifacts of having to
use adigital computer to emulate the behavior of a distributed physical system that is

continuous in time and space.

For a concrete exampl e of the complications that can arise in a compartment-oriented
simulation environment, suppose the axon shown in Fig. 5.4 is 1000 um long and we are
particularly interested in the membrane potentia at a point 700 um from itsleft end. If
our model has 5 compartments numbered O to 4, then we want to know the membrane
potential in compartment 3, but if there are 25 compartments, it is compartment 17 that
deserves our attention. It is easy to see that dealing with highly branched models can be
quite confusing. But in NEURON, the membrane potential of interest issimply called

axon. v(0. 7), regardless of the value of axon's discretization parameter nseg.

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

700 pm
0 V 1000 um
]

0 3 4
[\ T]

0 17 24
[EEEEEEEEEEEEEEEEE EEEEEEE

Figure 5.4. Boxed in by compartments. Top: Conceptual model of an
unbranched axon 1000 pm long. We are interested in membrane potential at a
point 700 um from itsleft end. Middle and bottom: The index of the
compartment that corresponds to the location of interest depends on how many

compartments there are.

Spatial accuracy

Aswe mentioned in Chapter 4, the spatia discretization method employed by
NEURON produces solutions that are second order correct in space, i.e. spatia error
within a section is proportional to the square of its segment length. It is crucial to realize
that the location of the second order correct voltage is not at the edge of a segment but
rather at its center, i.e. at itsnode (Fig. 5.3; also see Spatial discretization in

Chapter 4). This has severa important consequences.

e To alow branching and injection of current at the precise ends of a section while
maintaining second order correctness, extra voltage nodes that represent compartments
with O area are defined at the section ends. It is possible to achieve second order
accuracy with sections whose end nodes have nonzero area compartments, but the

areas of these terminal compartments would have to be exactly half that of the internal

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 5 November 27, 2004

compartments, and extra complexity would be imposed on administration of channel

density at branch points.

e To preserve second order accuracy, localized current sources (e.g. synapses, current
clamps, voltage clamps--see Point processes below) must be placed at nodes. For

the same reason, al sections should be connected at nodes.

e If nsegiseven, dend. v(0.5) and dend. v will return avalue that actually comes
from "the nearest internal node" which is not at the middle of dend but instead
depends on roundoff error. Using odd values for nseg avoids such capricious

outcomes by ensuring that there will be a node at the midpoint of each section.

e Second order spatial accuracy means that the results of a NEURON simulation are a
piecewise linear approximation to the continuous system. Therefore second order
accurate estimates of continuous variables at intermediate locations in space can be

found by linear interpolation between nodes.

A practical test of spatial accuracy

A convenient way to test the spatial accuracy of amodel isto start by running a
"control" simulation with the current resolution that will serve as abasis for comparison.

Then execute the command
forall nseg *= 3

which increases spatial resolution by afactor of 3 throughout the model and reduces

gpatial error terms by afactor of 9. Now run a"test" smulation and seeif a significant

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

gualitative or quantitative change has occurred. The absence of asignificant changeis

evidence that the control simulation was sufficiently accurate in space.

Why triple nseg instead of just doubling it? Because NEURON uses a piecewise
linear approximation to emulate the continuous variation of membrane current and
voltage in space. The breakpoints in this piecewise linear approximation are located at the
internal nodes of each section. Multiplying nseg by an even number will shift these
breakpoints to new locations, making it hard to compare the results of the control and test
simulations. For instance, with nseg = 1, voltage is computed at arc length = 0.5, but
with nseg = 2 it iscomputed at arc length = 0.25 and 0.75 (see Fig. 5.3). If simulations
with nseg =1 and nseg = 2 did produce different results, it could be difficult to know
whether this reflectsimproved spatia accuracy or isjust due to the fact that the two
simulations computed solutions at different points in space. Tripling nseg adds new
breakpoints (at arc length = 1/6 and 5/6 in Fig. 5.3) without changing the locations of any
that were already there (at 0.5 in this case). Any odd multiple could be used, but 3isa
practical value since it reduces spatial error by ailmost an order of magnitude, which is

probably enough to detect inadequate spatial accuracy.

While repeatedly tripling nseg throughout an entire model is certainly a convenient
and effective method for testing the spatial grid, thisis generally not agood way to
achieve computational efficiency, especially if geometry is complex and biophysica
properties are nonuniform. Models based on quantitative morphometric data often have
several branches that need nseg > 9, while many other branches require only 1 or 3

nodes. By the time the spatial grid isjust adequate in the former, it will be much finer

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 5 November 27, 2004

than necessary in the latter, increasing storage and prolonging run time. Wereturn to this

problem at the end of this chapter in the section Choosing a spatial grid.

How to specify model properties

In Chapter 1 we used the CellBuilder to implement a computational model of a
particular conceptual model. First we specified the topology (branched architecture) of
the computational model, then its geometry (physical dimensions), and finaly its
biophysical properties. Thisis aso a good sequence to follow when implementing a
computational model by writing hoc code, and we will examine each of these stepsin
turn. However, at some pointsit will be necessary to address syntactic details. The first
syntactic detail hasto do with "the currently accessed section,” an idea so fundamental

that we must consider it before proceeding to topology.

Which section do we mean?

Most of our attention in the following paragraphs will be devoted to sections. We will
see how to create sections, assemble them into a model with the desired topology, and
specify their geometric and biophysical attributes. Because sections share property names
(e.g. length L, diameter di am), it isalways necessary to specify which section is being

discussed. Thisis called the currently accessed section.

NEURON offers three ways to specify the currently accessed section, each being

compact in some contexts and cumbersome in others: dot notation, section stack, and

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

default section. We consider them in order of precedence, starting with the method that

has highest priority.

1. Dot notation

Syntax sectionnane. vari abl enane

Examples

dendrite[2].L = dendrite[1].L + dendrite[O0].L
axon.v = sonm.V
print sona.gnabar

axon. nseg = 3*axon. nseg

Comments
e Thistakes precedence over the other methods
e Dot notation is necessary in order to refer to more than one section within a
single statement

2. Section stack

Syntax sectionnanme { stnt }
where st nt isone or more statements. sect i onnane becomes the currently
selected section during execution of st nt . Afterwards, the currently selected
section reverts to whatever it was before sect i onnane was seen.
Comments

e Thisisthe most useful method for programming, since the user has explicit

control over the scope of the section and can set several range variables.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 5 November 27, 2004

e Nesting isallowed to any level, i.e.

sectionnanel {
stnt1
sectionnane2 {
stnt2
sectionnane3 {
etc.
}

}
}

e Avoidtheerror
soma L=10 di an¥10
(i.e. missing curly brackets), which sets soma. L, then pops the section stack

and sets di amfor whatever section is then on the stack.

e Control flow should reach the end of st nt in order to automatically pop the
section stack. Therefore st nt should not include the cont i nue, br eak, or

r et ur n statement.

e A section cannot be used as a variable for assgnment or passing as an
argument to a function or procedure. However, the same effect can be
obtained with the Sect i onRef class, which allows sections to be referenced
by normal object variables. The use of push_sect i on() for this purpose

should be avoided except as alast resort.

e Looping over sets of sectionsis most often done withthef oral | and

f or sec commands.

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

3. Default section

Syntax access sectionnane

defines a default section that will be the currently selected section when the first
two methods are not in effect. If amodel has a conceptually privileged section
that gets most of the use, it is best to declare it as the default section, e.g.

access sona
Having done this, one can determine the values of voltage and other variables by
aminimum of typing at the interpreter's oc> prompt. Thus after soma is declared
to be the default section,

print v, ina, gk_hh
will print out the membrane potential, sodium current, and Hodgkin-Huxley
potassium conductance at soma(0. 5) .

Comments

e Dot notation and stack of sections both take precedence over this method.

e Theaccess statement should only be used once in aprogram. The
sectionnane { stnt }

form is almost always the right way to specify the current section.

How to set up model topology

In the NEURON simulation environment, the A tree has the property that any
] two points on it are connected
branched topology of amodel cell is constructed by
by a unique path.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 5 November 27, 2004

creating sections and attaching them to each other in the form of atree. Sections are

created with hoc statements of the form
create sectionnanme

They can be attached to each other with the syntax
connect child(0 or 1), parent(x)

which connectsthe O or 1 end of chi | d to location x on par ent . The aternative syntax
connect child(0 or 1), x

attaches chi | d to location x on the currently accessed section.

Loops of sections

A model of acell cannot contain aloop of sections. If a sequence of connect
statements produces aloop of sections, an error is generated when the internal data
structures are created, and NEURON's interpreter will require that the loop be broken by
disconnecting one of the sections in the loop. Tight electrical loops can be implemented

with the Li near Mechani smclass.

Loops that involve sections are allowed if at least one element in the loop isa
membrane mechanism, e.g. agap junction. For the sake of stability it may be preferable
to use the the Li near Mechani smclassto set up this kind of nonlocal coupling between
system equations. Gap junctions can aso be implemented with mechanisms that use
PO NTER variables, but this may cause spurious oscillations if coupling istight (see

Example 10.2: a gap junction in Chapter 10).

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

A section may have only one parent

If an attempt is made to attach a child to more than one parent, anotice is printed on
the standard error device saying that the section has been reconnected. To avoid the

notice, disconnect the section first with the procedure di sconnect () .

The root section

Each section in atree has a parent section, except for the root section. The root
section is determined implicitly by the fact that we never "connect" it to anything. Any
section can be used as aroot section, and the identity of the root section has no effect on
computational efficiency. The root section and the default section (i.e. the section
specified by the access statement) are different things and shouldn't be confused with
each other. Every model has aroot section, and most often this turns out to be something
called soma, but there is no absolute requirement that a model have a default section.
Usually it ismost convenient to construct amodel in such away that the root and default

sections are the same, but thisisn't mandatory.

Attach sections at 0 or 1 for accuracy

Section attachments must be located at nodesto preserve second order spatia
accuracy. It isgenerally best for x to be either O or 1, rather than an intermediate value.
Attempting to connect a section to a non-node location will result in the section actually
being connected to the nearest internal node of the parent, which depends on the value of
nseg and may be quite far from the intended position. Even if a section is connected to

an internal node, if nseg isthen changed, e.g. to test for spatial accuracy, the attachment

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 5

could be repositioned to a different site (another reason to
increase nseg by an odd factor). Thiswould affect the
electrotonic architecture of the model, causing spurious
changesin simulation results. Therefore the best policy is
to connect child sections only to the O or the 1 end of the

parent, and not to intermediate |ocations. Because of their

small size, dendritic spines are a possible exception to this

rule.

Checking the tree structure with t opol ogy()

November 27, 2004

Note that sections attached to
internal locations will not be
repositioned if nseg is
increased by an odd factor.
Nonetheless, the best policy is
to attach only to the O or 1 end

of the parent section.

Thet opol ogy() function prints the tree structure using a kind of "typewriter art.”

Each section appears on a separate line, starting with the root section. The root section is

shown with its 0 and 1 ends at the left and right, respectively, and marked by a| (vertical

bar). The remaining sections are printed with a™ (grave) at the end that is attached to the

parent, and a| at the other end. Each segment in every section is marked by a -

(hyphen).
For exampl e the statements

create somn, dend[3]
soma for i=0,2

connect dend[i](0), 1
}

create a section named soma and an array of three sections named dend[0] , dend[1],

and dend] 2] , and then attaches the O end of each dend to the 1 end of sona. If we now

type

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

t opol ogy()

at the oc> prompt, NEURON's interpreter will print

This confirmsthat soma isthe root section of thistree, that the three dend[] sections are

attached to its 1 end, and that all sections have one segment.

Viewing topology with a Shape plot

For agraphica display of the topology of our model, we can execute the statements

objref s
s = new Shape()

to create a Shape plot (Fig. 5.5). The labelsin thisfigure have been added to identify the
sections and their orientation. The root section is soma, and the three child branches are
dend[0] - dend] 3] . Each of the child sections are connected to the 1 end of soma, and
al sections are drawn from left (0 end) to right (1 end). If a section were attached to the O
end of the root section, it would be drawn right to left. The rules that govern the
appearance of amodel in a Shape plot are further discussed under 3-D specification

below and under Strange shapes? in Chapter 6.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 5 November 27, 2004

1
dend[0]

dend[1]
0 soma 1

dend[2]

Figure 5.5. A Shape plot display of the topology of a model in which the 0 ends

of three child sections are attached to the 1 end of the root section.

How to specify geometry

A newly created section has certain default properties, as we can see by executing

oc>create axon

oc>forall psection()

axon { nseg=1 L=100 Ra=35.4
/*location O attached to cell 0*/
/* First segnent only */
i nsert norphol ogy { di am=500}
i nsert capacitance { cn¥l}

}
where the units are [um] for length L and diameter di am [Q2 cm] for cytoplasmic

resistivity Ra, and [pf/cm?] for specific membrane capacitance cm Users will generally

want to change these values, except for cmand perhaps Ra.

Below we discuss the two ways to specify the physical dimensions of a section: the
"stylized method" and the "3-D method." Regardless of which method is used, NEURON
calculates the values of internal model parameters, such as average diameter, axial
resistance, and compartment area, that are assigned to each segment. This calculation

takes any nonuniformity of anatomical or biophysical properties into account.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Stylized specification

With the "stylized method" one assigns values directly to section length and diameter

with statements like

axon { L=1000 dianFl }

Thisis appropriate if the notions of cable length and diameter are authoritative and three

dimensional shapeisirrelevant.

Segment surface areaar ea and axial resistancer i are computed asif the section
were a sequence of right circular cylinders of length L / nseg, whose diameters are given
by the di amrange variable at the center of each segment. Cylinder ends do not contribute
to surface area, and segment surface areais very close to the surface area of atruncated
cone as long as diameter does not change too much. Abrupt diameter changes should be
restricted to section boundaries, for reasons that are explained below (see Avoiding
artifacts). For plotting purposes, L and di amare used to automatically generate 3-D

information for a stylized straight cylinder.

One fact that is often useful when working with stylized modelsis that the surface
areaof acylinder with length equal to diameter isidentical to that of a sphere of the same

diameter. Another fact to remember is that, when the surface area of asingle

compartment model is 100 um?, total transmembrane current over the entire surface of

the model in [nA] will be numerically equal to the membrane current density in
[mA/cm?]. Thisimplies that the current delivered by acurrent clamp in [nA] will also be

numerically equal to the membrane current density in [mA/cm?].

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 5 November 27, 2004

3-D specification

The alternative to the stylized method is the 3-D method, in which one specifies a list

of (X, y, z) coordinates and corresponding diameters, e.g.

dend {
pt 3dadd(10,0,0,5) // x, vy, z, diam
pt 3dadd(16, 10, 0, 3)
pt 3dadd(25, 14, - 3, 2)
NEURON then computes section length and diameter from these values. The 3-D method
is preferable if the model is based on quantitative morphometry, or if visualization is

important.

The anatomical dataare kept in aninternd list of (X, y, z, diam) "points," in which the
first point is associated with the end of the section that is connected to the parent--thisis
not necessarily the 0 end--and the last point is associated with the opposite end. There
must be at least two points per section, and they should be ordered in terms of
monotonically increasing arc length. This 3-D information, or "pt3d list,” isthe
authoritative definition of the shape of the section and automatically determines section
length L, segment diameter di am ar ea, and ri . Properly used, the 3-D method allows
substantial control over the appearance of amodel in a Shape plot (see Strange
Shapes? in Chapter 6). However, side-effects can occur if geometry was originally

specified with the stylized method (see Avoiding artifacts below).

To prevent confusion, when using the 3-D method one should generally attach only
the 0 end of a child section to a parent. Thiswill ensure that di an{ x) (segment

diameter) as x ranges from 0 to 1 has the same sense asdi anBd(i) (the actual

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

morphometric diameters) asi rangesfrom 0to n3d() -1 (n3d() isthe number of (x,y,
z, diam) points used to specify the geometry of the section). It can also prevent
unexpected distortions of the model appearance in a Shape plot (see The case of the

disappearing section in Chapter 6).

When 3-D specification is used, a section is treated as a sequence of frusta (truncated
cones), asin the example shown in Fig. 5.6. The morphometric data for this particular
neurite consist of four (x, y, z, diam) measurements (Fig. 5.6 A). These 3-D points define
the locations and diameters of the ends of the frusta (Fig. 5.6 B). The length L of the
section is the sum of the distances from one 3-D point to the next. The effective di am
ar ea, and axial resistanceri of each segment are computed from this sequence of points
by trapezoidal integration along the centroid of the segment. This takes into account the
extra area introduced by diameter changes, even degenerate cones of 0 length can be
specified (i.e. two points with identical coordinates but different diameters), which add
surface area but not length to the section. No attempt is made to deal with the effects of

centroid curvature on surface area.

The number of 3-D points used to describe the shape of the section has nothing to do
with nseg and does not affect smulation speed. Thus if we represent the neurite of with
asection using nseg = 1, the entire section will have only one node, and that node will
be located midway along its length (x = 0.5in Fig. 5.6 C). The membrane properties

associated with this node are computed by integrating over the entire surface area of the

section (0 < x <1). The values of the axial resistors to either side of the node are

determined by integrating the cytoplasmic resistivity aong the paths from the 0 and 1

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 5 November 27, 2004

ends of the section to its midpoint (dashed linein Fig. 5.6 C). Thusthe left and right hand
axial resistances of Fig. 5.6 D are evaluated over the x intervals[0, 0.5] and [0.5, 1],

respectively.

Figure 5.7 shows what happens when nseg = 2. Now the section is broken into two
segments of equal length that correspond to x intervals [0, 0.5] and [0.5, 1]. The

membrane properties over these intervals are attached to the nodes at 0.25 and 0.75,
respectively. The three axial resistors Ri;, Ri,, and Ri; are determined by integrating the

path resistance over the x intervals [0, 0.25], [0.25, 0.75], and [0.75, 1].

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Figure 5.6. A: cartoon of an unbranched neurite (thick lines). Quantitative morphometry
has generated successive diameter measurements (circles) centered at X, y, z coordinates
(crosses). B: Each adjacent pair of diameter measurementsis treated as parallel faces of
atruncated cone or frustum. The central axis of the chain of solids isindicated by a thin
centerline. C: After straightening the centerline so the faces of adjacent frustaare flush
with each other. The scal e beneath the figure shows the distance along the midline of the
section in terms of arc length, symbolized here by the variable x. The vertical dashed
line at x = 0.5 divides the section into two halves of equal length. D: Equivalent circuit
of the section when nseg = 1. The open rectangle includes all mechanismsfor ionic

(non-capacitive) transmembrane currents. Reproduced from (Hines and Carnevale 1997).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 5 November 27, 2004

x=0 0.25 0.75 1.0
| .

%— Rl1 ‘ Rl2 ‘ R|3
[| M2 |
x=0 0.5 1.0
R|1 Ri2 Rl3

Figure 5.7. Representation of the neurite of Fig. 5.6 when nseg = 2. The equivalent
circuit now has two nodes. See text for details. Reproduced from (Hines and Carnevale

1997).

Avoiding artifacts

Beware of zero diameter

If diameter equals 0, axial resistance becomes essentially infinite, decoupling adjacent
segments. The diameter at the 0 and 1 ends of a section generally should equal the

diameter of the end of the connecting section.

A blatant attempt to set diameter to 0 using the stylized method, e.g. with a statement

such as
dend. di an{0.3) = 0
will produce an error message like this

nrniv: dend dianeter diam= 0. Setting to 1le-6 in dd. hoc near |ine 16

While NEURON prevents the diameter from becoming 0, 10 um is so narrow that axial

resistance in the affected region is, for modeling intents and purposes, infinite. Models

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

constructed with the stylized specification can be checked for narrow diameters by

executing
foral | for (x) if (dian{x)<1l) { print secnane(), " ", x, " ", dian{x) }

which reports all locations at which di amfalls below 1 pm. The numeric criterion in the
i f statement can be changed from 1 um to whatever valueis appropriate for the datain
guestion. However, thiswill not produce definitive results if the geometry has been

reinterpreted as 3-D data, in which case the 3-D data points need to be tested (see below).

The 3-D specification is more often a source of diameter problems. Morphometric
data files sometimes contain measurements with diameters that are extremely small or
even 0. This may occur because of operator error, or because the soma (or some other
structure) was treated as a sphere with initial and terminal diameters equal to 0. Such
problems can be difficult to track down because morphometric data files generally
contain hundreds, if not thousands, of measurements. Furthermore, the hoc interpreter
does not issue an error message when it encounters apt 3dadd() with adiameter

argument of 0.

When 3-D data points exist, the value returned by di am(x) isthe diameter of aright
cylinder that would have the same length and area as the segment that contains x. This
means that di am(x) may seem reasonable even though the 3-D data contain one or more
points with zero (or very small) diameter so that axial resistance blows up. Thereforeitis
little use to check di an{ x) when 3-D data exist. Instead, we must test the 3-D diameters

by executing

forall for i=0,n3d()-1 if (dian8d(i)==0) { print secnane(), " ", i }

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 5 November 27, 2004

Thisusesf oral | toiterate over all sections, testing each 3-D data point, and printing the

name of the section and the index of each point at which diameter is found to be O.

Stylized specification may be reinterpreted as 3-D specification

When amode is created using the stylized specification of geometry, the 3-D data
listisinitially empty. If thedef i ne_shape() procedureisthen called, a number of 3D
pointsis created equal to the number of segments plus the end areas. This happens
automatically if a Shape object is created, either with hoc statements or by using the
GUI to bring up a Shape plot or any of the GUI tools that show the shape of the model,
e.g. aPointProcessManager. As we mentioned above, when 3-D points exist, they
determine the calculation of L, di am ar ea andri . Therefore di am area, andri can

change dightly merely dueto Shape creation.

After this happens, when L and di am are changed, there isfirst a change to the 3-D
points, and then L and di amare updated to reflect the values of these 3-D points. In
genera, specifying avarying di amwill not give exactly the same diameter values asin

the case where no 3-D information exists.

For example, this code

Create a

access a

L=100

Ra=100

nseg = 3

di am=10

di am(0. 66: 1) =20: 20

defines a section with three segments, with di am= 10 pm in the segments centered at

0.16666667 and 0.5, and 20 um in the segment centered at 0.83333333. Since the stylized

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

method was used to create this section, there will be no 3-D points. We can verify this by
typing n3d() and noting that the returned value is 0. We can also check di amand the

computed values of ar ea and ri with the statement
for (x) print x*L, diam(x), area(x), ri(x)
If we now create a Shape, e.g. by executing

objref s
s = new Shape()

wewill find that n3d() returns5, i.e. there are now five 3-D points. The statement
for i=0, n3d()-1 print arc3d(i), dianmBd(i)

(arc3d(i) istheanatomical distance of thei th 3-D point from the O end of the section)

produces the output

0 10

16. 666666 10
50 10

83. 333336 20
100 20

which shows that the 3-D diameters have taken on the values that we had assigned using

the stylized method.

However, the values of di am ar ea, andri have been altered in the segments
adjacent to the diameter change (Fig. 5.8). This effect issmaller when nseg islarger. It is
caused by the fact that the 3-D points define a series of truncated cones rather than right
circular cylinders. Thereported di an(x) isthe average diameter over the corresponding
length of the 3-D model, and ar ea(x) istheintegral of the 3-D surface; thisis not
necessarily equal to the stylized area PI * di anm(x) *L/ nseg, which ignores end area

associated with abrupt diameter changes. This latter difference may be small, asin this

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 5 November 27, 2004

case where ar ea(x) for the second and third segmentsis 1185 and 1974 pm?
respectively, compared to 1178 and 1963 um? for the stylized area (all values rounded to

the nearest pm?), but actual results depend on model geometry and whether these have a
significant effect on ssmulation results can only be judged on a case by case basis. What
isclear for al cases, however, isthat abrupt diameter changes should only take place at
the boundaries of sectionsif we wish to view shape and aso use the smallest possible

number of segments.

2

20 — diam (um) 2000 — area (um’) 0.5 — ri (megQ)
15 1500 o4r

03
10 1000 —

0.2
5 500 —

0.1
0 | | | | J 0 1 1 1 1 J 0 1 1 1 1]

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
arc length arc length arc length

Figure5.8. di am area, andri at theinternal nodes of a 100 pm long section

with nseg = 3 and Ra = 100 © cm. Thin lines with + show the values
immediately after geonet r y was specified, when no 3-D points existed. Thick
lines with circles show the values after def i ne_shape() was executed,

creating a set of 3-D points and forcing recalculation of di am area, andri .

How to specify biophysical properties

Aswe mentioned in How to specify geometry, the only biophysical attributes of a

new section are cytoplasmic resistivity Ra and specific membrane capacitance cm whose

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

default values are 35.4 Q cm and 1 pf/cm?, respectively. A new section has no membrane
conductances, pumps, or buffers. It is assumed to liein an extracellular medium with zero
resistance or capacitance, and there are no synapses, gap junctions, or voltage or current

clamps. Anything other than the bare bones framework of Ra and cmmust be added.

Distributed mechanisms

Many biophysical mechanisms that generate or modulate electrical and chemical
signals are distributed over the membrane or throughout the cytoplasm of acell. In the
NEURON simulation environment, these are called distributed mechanisms. Examples of
distributed mechanisms include voltage-gated ion channels like those that generate the
Hodgkin-Huxley currents, active transport mechanisms like the sodium pump, ion
accumulation in arestricted space, and calcium buffers. Distributed mechanisms
associated with cell membrane are often called "density mechanisms' because they are
specified with density units, e.g. current per unit area, conductance per unit area, or pump

capacity per unit area (see Table 5.3).

Distributed mechanisms are assigned to a section with ani nsert statement, asin

soma i nsert hh

dend insert pas

These particular statements would add the hh (Hodgkin-Huxley) mechanism to soma and

the pas (passive) mechanismto dend.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 5 November 27, 2004

Point processes

Distributed mechanisms are not the most appropriate representation of all signa
sources. Localized membrane shunts (e.g. a hole in the membrane), synapses, and
electrodes are called point processes. They are best specified using absolute units, i.e.
microsiemens and nanoamperes, rather than the density units that are appropriate for

distributed mechanisms (see Table 5.3).

Table 5.3. Examples of units associated with distributed mechanisms

and point processes

Name Meaning Units

gna_hh conductance density of open Hodgkin-Huxley [S/cm?]
sodium channels

ina net sodium current density (i.e. produced by all [mA/cm?]
mechanisms in a section that generate sodium
current)

rs series resistance of an SECI anp [10% Q]

gmax peak conductance of an Al phaSynapse [uS]

[total current delivered by an SECI anp or an [nA]

Al phaSynapse

An object syntax

obj ref varname
secnanme varnane = new O assnane(Xx)
varnane. attri bute = val ue

is used to manage the creation, insertion, attributes, and destruction of point processes.
Object oriented programming in NEURON is discussed thoroughly in Chapters 13 and
14; to illustrate the pertinent essentials for dealing with point processes, let us consider
the following code, which implements a current clamp attached to the middle of a section

called sonm.

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

objref stim
soma stim = new | C anp(0.5)

stimanp = 0.1
stimdel =1
stimdur = 0.1

Thefirst line declaresthat st i misaspecial kind of variable called an obj r ef (object
reference), which we will use to refer to the current clamp object. The second line creates
anew instance of the I Cl anp object class, located at the middle of soma, and assigns
thisto st i m The next three lines specify that st i mwill deliver a0.1 nA current pulse

that beginsat t = 1 msand lastsfor 0.1 ms.

When a point process is no longer referenced by any object reference, it is removed
from the section and destroyed. Consequently, redeclaring st i mwith the statement
obj ref sti mwould destroy this| Cl anp, since no other object reference would

referenceit.

The x position specified for a point process can have any value in therange [0,1]. If x
is specified to be 0 or 1, the point process will be located at the corresponding end of the
section. For specified locations 0 < x < 1, the actual position used by NEURON will be
the center of the segment that contains x. Thus, if dend has nseg = 5, the segment

centers (interna nodes) are located at x = 0.1, 0.3, 0.5, 0.7 and 0.9, so

objref stiml, stinl
dend stiml new | Cl anp(0. 04)
dend sting new | Cl anp(0. 61)

would actually placest i mL at 0.1 and st i n2 at 0.7. The error introduced by this "shift"
can be avoided by explicitly placing point processes at internal nodes, and restricting
changes of nseg to odd multiples. However, this may not be possible in models that are

based closely on real anatomy, because actual synaptic locations are unlikely to be

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 5 November 27, 2004

situated precisely at segment centers. To completely avoid nseg-dependent shifts of
point process locations, one can choose sections with lengths such that the point

processes are located at O or 1 ends.

The location of a point process can be changed without affecting its other attributes.

Thusdend stin2.1oc(0) would movest i n2 totheO end of dend.

If asection'snseg is changed, the point processes on that section are relocated to the
centers of the new segments that contain the centers of the old segments to which the
point processes had been assigned. When a segment is destroyed, as by re-creating the
section, all of its point processes lose their attributes, including x location and which

section they belong to.

Many distributed mechanisms and point processes can be simultaneoudly present in
each segment. One important difference between distributed mechanisms and point
processes is that any number of the same kind of point process can exist at the same
location, whereas a distributed mechanism is either present or not present in a section.
For example, several Al phaSynapses might be attached to the soma, but the hh

mechanism would either be present or absent.

User-defined mechanisms

User-defined distributed mechanisms and point processes can be added to NEURON
with the model description language NMODL. This lets the user focus on specifying the
eguations for a channel or ionic process without regard to its interactions with other
mechanisms. The NMODL trandator constructs C code which properly and efficiently

computes the total current of each ionic species used, as well as the effect of that current

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

on ionic concentration, reversal potential, and membrane potential. This code is compiled
and linked into NEURON. NMODL is discussed extensively in Chapter 9 and 10, but it

is useful to review some of its advantages here.

1. Details of interfacing new mechanisms to NEURON are handled automatically--and

there are agreat many such details. For instance,

e NEURON needsto know that model states are range variables, and which

model parameters can be assigned values and evaluated from the interpreter.

e Point processes need to be accessible via the interpreter's object syntax, and
density mechanisms need to be added to a section when thei nser t statement

is executed.

e If two or more channels use the same ion at the same place, the individual

current contributions must be added together to calculate atotal ionic current.
2. Consistency of unitsis ensured.

3. Mechanisms described by kinetic schemes are written with a syntax in which the
reactions are clearly apparent. The trandator provides tremendous leverage by generating

alarge block of C code that calculates the analytic Jacobian and the state fluxes.

4. There isoften agreat increase in clarity since statements are at the model level instead
of the C programming level and are independent of the numerical method. For instance,
sets of differential and nonlinear simultaneous equations are written using an expression
syntax such as

x' = f(x, y, t)
~ g(x, y) = h(x, vy)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 5 November 27, 2004

where the prime refers to the derivative with respect to time (multiple primes such asx' '
refer to higher derivatives) and the tilde introduces an algebraic equation. The algebraic
portion of such systems of equations is solved by Newton's method, and a variety of

methods are available for solving the differential equations (see Chapter 9).

5. Function tables can be generated automatically for efficient computation of

complicated expressions.

6. Default initialization behavior of a channel can be specified.

Working with range variables

Iterating over nodes

Aswe mentioned above in How NEURON separates anatomy and biophysics
from purely numerical issues, many anatomical and biophysical properties can vary
along the length of a section, and these are represented in NEURON by range variables.

The syntax
for (var) stnt

isaconvenient idiom for working with range variables. This statement assigns the
location of each node (in arc length, starting at 0 and ending at 1) to var and then

executes st nt . For example,
axon for (x) print x*L, v(x)

will print the membrane potential as afunction of physical distance along axon.

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Linear taper

If arange variableisalinear, or nearly linear, function of distance along a section, it

can be specified with the syntax

rangevar (xm n: xmax) = el:e2
where the four italicized symbols are expressions. The position expressions must satisfy
the constraint 0 < xm n < xmax < 1. The values of the property at xm n and xmax areel
and e2, respectively, and linear interpolation is used to assign the values of the property
at the nodes that lie in the position range [xmi n, xmax]. If the range variableisdi am

neither el nor e2 should be O, or the corresponding axial resistance will beinfinite. As

an example, suppose axon contained the Hodgkin-Huxley spike channels, and we wanted

the density of sodium channels to start at its normal level of 0.12 siemens/cm? at the
end and fall linearly with distance until it becomes O at the other end. This could be done

with the statement
axon. gnabar_hh(0:1) = 0.12:0

The actual conductance densities in the individual segmentswill depend on the value of
nseg, asshown in Table 5.4. This assignment must be executed after the desired value of

nseg has been specified, for reasons that are explained in the next few paragraphs.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 5

November 27, 2004

Table 5.4. Effect of nseg on linear variation of sodium channel density

gnabar _hh with distance.

7

Segment centers Channel density
nseg (inunitsof arclength) [siemens/cm
1 0.5 0.06
2 0.25 0.09
0.75 0.03
3 0.1667 0.1
0.5 0.06
0.8333 0.02
5 0.1 0.108
0.3 0.084
0.5 0.06
0.7 0.036
0.9 0.012

How changing nseg affects range variables

If nseg isincreased after range variables have been specified, all old segments are

relocated to their nearest new locations (no instance variables are modified and no

pointers to datain those segments become invalid), and new segments are allocated and

given mechanisms and values that are identical to the old segment in which the center of

the new segment is located. If range variables are not constant, then the hoc expressions

used to set them should be re-executed. To see why, let us return to our axon with a

linearly tapering gnabar _hh, specified by executing

nseg = 3
axon. gnabar_hh(0:1) = 0.12:0

after which we check by executing

axon for (x) print x, gnabar_hh(x)

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

which returns

0.1

. 16666667 0.1

.5 0.06

. 83333333 0. 02
0. 02

RPOOOO

as we expect from Table 5.4 (the values at the 0 and 1 ends are merely copied from the
nearest nodes, and don't really matter since the areas associated with the 0 and 1 ends

are 0). Now we triple the number of nodes and check gnabar _hh by executing

nseg *= 3
axon for (x) print x, gnabar_hh(x)

and see
00.1
0. 055555556 0.1
0. 16666667 0.1
0.27777778 0.1
0. 38888889 0.1
0.5 0.06
0.61111111 0O.06
0. 72222222 0.06
0. 83333333 0.02
0. 94444444 0.02
1 0.02

Even though we have nine internal nodes, the spatial gradient for gnabar _hh isjust as
crude as before, with only three transitions along the length of our section. To fix this, we

must reassert
axon. gnabar_hh(0:1) = 0.12:0

and when we now test the gradient we find

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 5 November 27, 2004

0 0.11333333

0. 055555556 0. 11333333
0. 16666667 0.1
0.27777778 0.086666667
0. 38888889 0. 073333333
0.5 0.06

0.61111111 0. 046666667
0. 72222222 0. 033333333
0. 83333333 0. 02

0. 94444444 0. 0066666667
1 0. 006666666

i.e. gnabar _hh isprogressively smaller at each internal node of axon, which iswhat we

wanted all along.

What if we decrease nseg? All the new segments will in fact be the old segments
that are nearest to the new segments. Another way to think about thisis to see what old
segments contain the new nodes, and those are the segments that will be preserved. This
iswhat makesit so useful to increase and decrease nseg by the same odd factor, e.g. 3.
So going from nseg = 9 back to nseg = 3 restores our original model withitsorigina

parameter values, even if we don't bother to execute
axon. gnabar_hh(0:1) = 0.12:0

again. If instead we reduced nseg from 9to 5, the spatial profile of gnabar _hh would

be

. 11333333
0. 11333333
0. 086666667
0. 06
0. 033333333
0. 0066666667
. 0066666667

roOOOOOO
QO~NOIWEFRO

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

which clearly differs from the result of executing

nseg = 5
axon. gnabar_hh(0:1) = 0.12:0

(see Table 5.4).

Choosing a spatial grid

Designing the spatial grid for a computational model involves a tradeoff between
improving accuracy, on the one hand, and increasing storage requirements and runtime
on the other. The godl isto achieve sufficient accuracy while keeping the computational

burden as small as possible.

A consideration of intent and judgment

The question of how to achieve sufficient accuracy dependsin part on what one
means by "sufficient." The answer depends both on the anatomical and biophysical
attributes of the conceptual model and the modeler's intent. Most treatments of
discretization tend to ignore intent, and judgment, its close cousin. Intent and judgment
are inherently tied closely to the particular interests of the individual investigator, soit is
difficult to make general pronouncements about them. However, they can be dominant
factors in the discretization of time and space, as the following two examples

demonstrate.

Consider amodel of asmall spherical cell with passive membrane that is subjected to

adepolarizing current pulse (Fig. 5.9). The spatial grid for thisisopotential cell only

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 5 November 27, 2004

needs a single node, i.e. thisis a situation in which the sole consideration to be weighed is

the discretization of time.

The middle and right panelsin Fig. 5.9 show the analytic solution for membrane
potential V_, (dashed orange trace) along with numeric solutions that were computed
using several different values of At (solid black trace). Clearly it is the numeric solution
computed with the smallest At that best reflects the curvature of V_, in time. Solutions

computed with large At lack the high frequency terms needed to follow the initial rapid
change of V, (see Analytic solutions: continuous in time and space in Chapter 4).

However, with the advance of time, even the least accurate numeric solution soon
becomes indistinguishable from the analytic solution. Which of these solutions "best"

suits our needs depends on our intent. If it isessential to usthat the solution faithfully

captures the smooth curve of the analytic solution, we would prefer to use the smallest At,

perhaps even smaller than 10 ms. But if we are only interested in the final steady state

valueof V, then At = 40 msis probably good enough.

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

-60 — 20

40

Injected
current

-68

70 \ ! \
<O/ms 5 10 15

Figure 5.9. A spherical cell (left) with a surface area of 100 pm? (diameter =
5.64 um) is subjected to a 1 pA depolarizing current that starts at t = 0 ms.

Resting potential is-70 mV, specific membrane capacitance and resistance are
- 2 - 2 ; -

C,,=1pf/cm“and R, = 20,000 Q cm?, respectively (t,,, = 20 ms). The dashed

orange trace in the middle and right graphsis the analytic solution for V. The

solid black traces are the numeric solutions computed with time steps At =
40 ms (thick trace, open circles), 20 ms (medium trace, x), and 10 ms (thin
trace, diamond, right figure only). Modified from (Hines and Carnevale 2001).

Spatial discretization becomes important in models that are extensive enough for the
propagation of electrical or chemical signalsto involve significant delay. Weillustrate
thiswith amodel of fast excitatory synaptic input onto a dendritic branch. The synapsein
this model is attached to the middle of an unbranched cylinder (Fig. 5.10). To prevent
possible confounding effects of active current kinetics and complex geometry, we assume
that the cylinder has passive membrane and is five DC length constants long. The
biophysical properties are within the range reported for mammalian central neurons

(Spruston and Johnston 1992). The time course of the synaptic conductance follows an

aphafunction with time constant 7, and reversal potential E; chosen to emulate an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 5 November 27, 2004

Page 46

AMPA synapse (Kleppe and Robinson 1999), and g, selected to produce a peak
depolarization of approximately 10 mV. We will compare the analytic solution for V, in

this model with the numeric solution computed for a very coarse spatial grid (Ax= 1 A).

The numeric solution uses atime step At = 1 ps, which is more than two orders of
magnitude smaller than necessary to follow the EPSP waveform, so that differences from

the analytic solution are almost entirely attributable to the spatial grid.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

presynaptic
terminal

Figure 5.10. Model of synaptic input onto a dendrite The dendrite is represented

by an unbranched cylinder (top) with diameter = 1 um, length = 2500 pm, R =
180Q cm, C, =1 uf/ cm? and R, = 16,000 Q cm? with aresting potential of

-70 mV. The DC length constant A~ of the cylinder is 500 um, o its sealed

end terminations have little effect on the EPSP produced by a synapse located at

its midpoint. The dots are the locations at which the numeric solution would be
computed using agrid with intervals of 1 A, i.e. 250, 750, 1250, 1750, and

2250 pm. The synaptic conductance g, is governed by an alphafunction

(bottom) with T = 1ms, g, = 109 siemens, and reversal potential E;=0mV.

Modified from (Hines and Carnevale 2001).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 5 November 27, 2004

Oms 10 20 30 40 50

Figure 5.11. Time course of V, at the synaptic location. The dashed orange line
is the analytic solution, and the solid black line is the numeric solution

computed with At = 1 ps. Modified from (Hines and Carnevale 2001).

Compared to the anaytic solution for V,_, at the site of synaptic input (dashed orange

tracein Fig. 5.11), the numeric solution (solid black trace) rises and falls more slowly,
and has a peak depolarization that is substantially delayed and smaller. These differences
reflect the fact that solutions based on the coarse grid lack sufficient amplitude in the
high frequency terms that are needed to reproduce rapidly changing signals. Such errors

could lead to serious misinterpretations if our intent were to examine how synaptic input

might affect depolarization-activated currents with fast kineticslikel , , spike sodium

current, and transient | Car

The graphsin Fig. 5.12 present the spatial profile of V, adong the dendrite at two

times selected from the rising and falling phases of the EPSP. These curves, which are

representative of the early and late response to synaptic input, show that the error of the
numeric solution is most pronounced in the part of the cell where V,, changes most

rapidly, i.e. in the near vicinity of the synapse. However, at greater distances the analytic

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

solution itself changes much more slowly because of low pass filtering produced by
cytoplasmic resistance and membrane capacitance. At these distances the error of the
numeric solution is surprisingly small, even though it was computed with avery crude
gpatial grid. Furthermore, error decreases progressively as time advances and high
frequency terms become less important. This suggests that the coarse grid may be quite
sufficient if our real interests are in dow processes that take place at some distance from

the site of synaptic inpuit.

_,2\2/ 7 t=1.1ms _rg\sl M
s L -66 |
_67 -
_66 -
_68 -
_68 -
_69 -
70 /A AN T | | | |
Oum 500 1000 1500 2000 2500 Opm 500 1000 1500 2000 2500

Figure 5.12. V, vs. distance along the dendrite computed during the rising (left) and

falling (right) phases of the EPSP. The analytic and numeric solutions are shown with

dashed orange and solid black lines, respectively. The error of the numeric solution is

greatest in the region where V,,, changes most rapidly, i.e. in the neighborhood of the

synapse.

Discretization guidelines

Various strategies have appeared in the literature as aids to the use of judgment in

choosing a spatia grid. One common practice is to keep the distance between adjacent

grid points smaller than some fraction (e.g. 5 - 10%) of the DC Iength constant A~ of an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 5 November 27, 2004

infinite cylinder with identical anatomical and biophysical properties (Mainen and

Sejnowski 1998; Segev and Burke 1998). This plausible approach has two chief
limitations. Firgt, large changes in membrane resistance and A~ can be produced by
activation of voltage-dependent channels (e.g. I, (Magee 1998; Stuart and Spruston

1998)), Ca?*-gated channels (Wessel et al. 1999), or synaptic inputs (Bernander et al.
1991, Destexhe and Pare 1999; Hausser and Clark 1997; Pare et al. 1998). The second
but more fundamental problem is that the spatial decay of transient signalsis unrelated to
Apc- Cytoplasmic resistivity R, and specific membrane capacitance C_, constitute a

gpatially distributed low pass filter, so transient signals suffer greater distortion and
attenuation with distance than do slowly changing signals or DC. In other words, by
virtue of their high frequency componentsin time, transient signals also have high
frequency components in space. Just as high temporal frequencies demand a short time

step, high spatial frequencies demand afine grid.

The d_lambda rule

Asamore rationa approach, we have suggested what we call the"d _lambdarule"

(Hines and Carnevale 2001), which predicates the spatial grid on the AC length constant

A; computed at a frequency f that is high enough for transmembrane current to be
primarily capacitive, yet still within the range of frequencies relevant to neuronal

function. lonic and capacitive transmembrane currents are equal at the frequency f =

1/2m 7, so specific membrane resistance R, has little effect on the propagation of

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

sgnals= 5f . For instance, a membrane time constant of 30 ms correspondsto f ~
5 Hz, whichimpliesthat R, would beirrelevant to signal spread at frequencies > 25 Hz.
Most cells of current interest have T > 8 ms (f ~ 20 Hz), so we suggest that the distance

between adjacent nodes should be no larger than a user-specified fraction "d_|lambda" of

Moo the length constant at 100 Hz. This frequency is high enough for signal propagation

to be insensitive to shunting by ionic conductances, but it is not unreasonably high

because the rise time 1, of fast EPSPs and spikesis ~ 1 ms, which corresponds to a

bandpass of 1/ V2m ~400 Hz.

At frequencies where R . can be ignored, the attenuation of signal amplitude is

\Y mf R.C
0 NZX\/% Eq. 5.1

V_

X

described by

log

50 the distance over which an e-fold attenuation occursis

fm2\rfRC, g

where fisin Hz. For example, a dendrite with diameter = 1 um, R, =180Q cm, C_ =

1 pf / cm?, and R = 16,000 Q cm? has Ay = 500 pm, but A, is only ~225 pm.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 5

November 27, 2004

In NEURON the d_lambda rule isimplemented in the CellBuilder, which allows the

maximum anatomical distance between grid points

to be specified as afraction of A, using an

adjustable parameter called d_| anbda. The
default value of d_| anbda is 0.1, which ismore

than adequate for most purposes, but a smaller

value can be used if Tm is shorter than 8 ms. For

increased flexibility, the CellBuilder also provides
two aternative strategies for establishing the
gpatial grid: specifying nseg, the actual number of

grid points; specifying d_X, the maximum

Eq. 5.2 shows that the attenuation of
fast signas (e.g. fast PSPs, rapid steps
under voltage clamp, passively
conducted spikes) is governed by
cytoplasmic resistivity, specific
membrane capacitance, and neurite
diameter. Specific membrane resistance
and membrane time constant are
irrelevant. Therefore channd blockers
will not improve the fidelity of
recordings of fast signals, or the ability

to clamp fast active currents.

anatomical distance between grid pointsin um. Thed_lambda and the d_X rules both

deliberately set nseg to an odd number, which guarantees that every branch will have a

node at its midpoint. These strategies can be applied to any section or set of sections,

each having its own rule and compartmentalization parameter. Barring special

circumstances e.g. localized high membrane conductance, it is usually sufficient to use

the d_lambda rule for the entire model. However, regardless of which strategy is selected,

it isaways advisable to try afew exploratory runs with afiner grid to be sure that spatial

error is acceptable.

Of coursethed _lambda rule can also be applied without having to use the GUI. The

following procedure

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

proc geomnseg() {
sonma area(0.5) // make sure diamreflects 3d points
forall {nseg = int((L/(0.1*l anbda_f(100))+0.9)/2)*2 + 1}
}

iterates over all sections to ensure that each section has an odd nseg that is large enough

to satisfy thed lambdarule. This makes use of the function

func lanbda f() { // currently accessed section, $1 == frequency
return 1le5*sqrt (di amt (4*P *$1*Ra*cn))
}

whichisincluded inthefile

nrn-x. x/ share/li b/ hoc/ stdlib. hoc (UNIX/Linux)
or

c:\nrnxx\1ib\hoc\stdlib. hoc (MSWindows)

(x. x and xx are used here to refer to the version number of NEURON). Thisfileis

automatically loaded when

| oad_file("nrngui.hoc")
is executed or the nr ngui script or icon islaunched. Alternatively, st dl i b. hoc can be
loaded alone with the command

load_file("stdlib.hoc")

orelsefunc | anbda_f () can be recreated by itself with hoc.

To see how the d_lambda rule works in practice, consider the model in Fig. 5.13,
which represents a granule cell from the dentate gyrus of the rat hippocampus. This
model is based on quantitative morphometric data provided by Dennis Turner (available

from ht t p: / / wwv. cns. sot on. ac. uk/ ~j chad/ cel | Archi ve/ cel | Archi ve. htni or

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

The NEURON Book: Chapter 5 November 27, 2004

htt p: / / waw. conpneur 0. or g/ CORCM nnor ph/ cel | Ar chi ve. ht m), and the

biophysical parameters are from Spruston and Johnston (Spruston and Johnston 1992):

R,=40k Qcm? C_=1pf/cm? and R, = 200 Q cm. An excitatory synapse attached

to the soma s an excitatory synapse whose conductance is governed by an alphafunction
witht,=1ms, g, =2-10°S, and reversa potential E,=0mV.

Theright side of Fig. 5.13 shows the simulated time course of V, at the somafor
three different methods of specifying the spatial grid: one or three nodes in each branch,

and d_| arbda = 0.3. On the scale of thisfigure, solutionswithd_I anbda < 0.3 are
indistinguishable from each other, so d_| anbda = 0.3 serves as the standard for
accuracy. Plots generated with constant nseg per branch converged toward this trace as

nseg increased. Even the crudest spatial grid (nseg = 1) would suffice if the purpose of
the model were to evaluate effects of synaptic input on V., well after the peak of the

EPSP (t > 7 ms). However afiner grid is clearly necessary if the maximum somatic

depolarization produced by the EPSP is of concern.

Additional refinementsto the grid are needed if we want to know how the EPSP
spreads into other parts of the cell, e.g. along the path marked by orange in Fig. 5.14 left.
To compute the maximum depolarization produced by a somatic EPSP along this path, a
grid that has only 3 nodes per branch is quite sufficient (Fig. 5.14 center). If the timing of
this peak isimportant, e.g. for coincidence detection or activation of voltage-gated

currents, afiner grid must be used (Fig. 5.14 right).

Page 54 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

-60

Figure 5.13. Left: Anatomically complex model of a granule cell from the
dentate gyrus of rat hippocampus. A fast excitatory synapse is attached to the

soma (location indicated by arrow and orange dot). See text for details. Right:
Time course of V.., computed using spatial grids with one or three nodes per
branch (thick blue and thin black traces for nseg = 1 and 3, respectively) or
specified with d_I anbda = 0.3 (dashed orange trace). Modified from (Hines
and Carnevale 2001).

The computational cost of these simulations is approximately proportional to the
number of nodes. Least burdensome, but also least accurate, were the simulations
generated with one node per branch, which involved atotal of 28 nodes in the model.
Increasing the number of nodes per branch to 3 (total nodesin model = 84) improved
accuracy considerably, but obvious errors remained (Fig. 5.14 right) that disappeared
only after an additional tripling of the number of nodes per branch (total nodes = 252;
results not shown). The greatest accuracy with least sacrifice of efficiency was achieved

with the grid specified by d_I| anmbda = 0.3, which contained only 110 nodes.

As these figures suggest, the relative advantage of the d_lambda rule will be most
apparent when signal propagation throughout the entire model must be simulated to a

similar level of accuracy. If the focusison alimited region, then a grid with fewer nodes

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

The NEURON Book: Chapter 5 November 27, 2004

and asmpler representation of electrically remote regions may be acceptable. Special
features of the model may also alow asimpler grid to be used. In principal neurons of
mammalian cortex, for example, proximal dendritic branches tend to have larger
diameters (Rall 1959; Hillman 1979) and shorter lengths (Cannon et a. 1999) than do
distal branches. Therefore models based on quantitative morphometry of such neurons
will have fewer nodes in proximal dendrites than in more distal dendritesif thegridis
specified by thed_lambdaor d_X rule. Indeed, many proximal branches may have only
one or three nodes, regardless of which ruleis applied, and in such a case the differences
between gridding strategies will be manifest only in the thinner and longer distal
branches. Such differences will have little effect on accuracy if signalsin the vicinity of

the soma are the only concern.

Page 56 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

15 —
ms nseg=1

nseg =3

\/ \ | lzgl | \ | \ | L gl | \ |

;A -500um -300 -100 100 300 500 -500um -300 -100 100 300 500

Figure 5.14. The EPSP evoked by activation of a synapse at the soma (arrow in left
panel) spread into the dendrites, producing a transient depolarization which grew smaller
and occurred later as distance from the somaincreased. The center and right panels show
the magnitude and timing of this depolarization along the path marked by the dashed
orange line. Peak amplitude was quite accurate with nseg = 3 (thin black trace, center
panel), but noticeable error persisted in the time of peak depolarization for distances
between -300 and -150 um (right panel, especially between). The dashed orange trace in

the center and right panels was obtained with d_| anbda = 0.3. Time step was 25 ps.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

The NEURON Book: Chapter 5 November 27, 2004

References

Bernander, O., Douglas, R.J., Martin, K.A.C., and Koch, C. Synaptic background activity
influences spatiotemporal integration in single pyramidal cells. Proc. Nat. Acad. ci.

88:11569-11573, 1991.

Cannon, R.C., Wheal, H.V., and Turner, D.A. Dendrites of classes of hippocampal
neurons differ in structural complexity and branching patterns. J. Comp. Neurol.

413:619-633, 1999.
Crank, J. The Mathematics of Diffusion. 2 ed. London: Oxford University Press, 1979.

Destexhe, A. and Pare, D. Impact of network activity on the integrative properties of

neocortical pyramidal neuronsin vivo. J. Neurophysiol. 81:1531-1547, 1999.

Hausser, M. and Clark, B.A. Tonic synaptic inhibition modul ates neuronal output pattern

and spatiotemporal synaptic integration. Neuron 19:665-678, 1997.

Hillman, D.E. Neuronal shape parameters and substructures as a basis of neuronal form.
In: The Neurosciences. Fourth Sudy Program, edited by F.O. Schmitt and F.G. Worden.

Cambridge, MA: MIT Press, 1979, p. 477-498.

Hines, M.L. and Carnevale, N.T. The NEURON simulation environment. Neural

Computation 9:1179-1209, 1997.

Hines, M.L. and Carnevale, N.T. NEURON: atool for neuroscientists. The

Neuroscientist 7:123-135, 2001.

Page 58 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Kleppe, I.C. and Robinson, H.P.C. Determining the activation time course of synaptic
AMPA receptors from openings of colocalized NMDA receptors. Biophys. J. 77:1418-

1427, 1999.

Magee, J.C. Dendritic hyperpolarization-activated currents modify the integrative

properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18:7613-7624, 1998.

Mainen, Z.F. and Sgjnowski, T.J. Modeling active dendritic processes in pyramidal
neurons. In: Methods in Neuronal Modeling, edited by C. Koch and |. Segev. Cambridge,

MA: MIT Press, 1998, p. 171-209.

Pare, D., Shink, E., Gaudreau, H., Destexhe, A., and Lang, E.J. Impact of spontaneous
synaptic activity on the resting properties of cat neocortical pyramidal neuronsin vivo.

J. Neurophysiol. 79:1450-1460, 1998.

Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Experimental

Neurology 1:491-527, 1959.

Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of
Physiology, vol. 1, part 1. The Nervous System, edited by E.R. Kandel. Bethesda, MD:

American Physiological Society, 1977, p. 39-98.

Spruston, N. and Johnston, D. Perforated patch-clamp analysis of the passive membrane

properties of three classes of hippocampal neurons. J. Neurophysiol. 67:508-529, 1992.

Stuart, G. and Spruston, N. Determinants of voltage attenuation in neocortical pyramidal

neuron dendrites. J. Neurosci. 18:3501-3510, 1998.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

The NEURON Book: Chapter 5 November 27, 2004

Wessdl, R., Kristan, W.B., and Kleinfeld, D. Dendritic Ca2+-activated K+ conductances
regulate electrical signal propagation in an invertebrate neuron. J. Neurosci. 19:8319-

8326, 1999.

Page 60 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Chapter 5 Index

%DELTA t 3
3-D specification of geometry 22, 24
3-D information 24,30
arc3d() 31
caculation of L, diam, area, andri 25, 29
diam3d() 24
checking 29
diameter 24
problems 29
n3d() 25,31
number of 3-D points
effect on computational efficiency 25
VS. nseg 25

pt3dadd() 24

access 17
accuracy 2

vs. speed 43

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

The NEURON Book: Chapter 5 November 27, 2004

anatomical properties

separating biology from numerical issues 4
approximation

of a continuous system by a discrete system 2
aea) 23

stylized vs. 3-D surface integral 31
attenuation

at high frequencies 51
axial resistance

infinite 28, 39

bandpass 51
biological propertiesvs. purely computational issues 4
biophysical properties
separating biology from numerical issues 4
specifying 32
branch
cdl 5

branched architecture 3, 14

Page 62 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

C
cable
unbranched 5
channel
density 4
cm 7
default value 22
compartment
sze 4
vs. biologically relevant structures
vs. conceptual clarity 10
complexity 2
computational efficiency 3,13,55
conductance
absolute 34
density 33
connect 18

preserving spatial accuracy 19

continuous variable 1,2

The NEURON Book: Chapter 5

5, 10

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Page 63

The NEURON Book: Chapter 5

continuous variable

piecewise linear approximation 9,12
create 18
current

absolute 34

capacitive 50

density 33

cytoplasmic resistivity 6

d_lambda 52
d lambdarule 50
d X 52
d Xrule 52
define_shape()
effect on diam, area, and ri
diam 7
checking 29

default value 22

specifying

30

November 27, 2004

Page 64 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

stylized specification 23

tapering 39

updating from 3-D data 30
diameter 7

abrupt change 31

zero or narrow diameter 28
disconnect() 19
discretization

guidelines 49

intent and judgment 2, 43

gpatia 2, 4

tempord 2,44
distance

physical distance along a section 38
distributed mechanism 33, 34, 36
distributed mechanism

VS. point process 36

electrotonic architecture

The NEURON Book: Chapter 5

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

The NEURON Book: Chapter 5 November 27, 2004

spurious effect of changing nseg 20

eguation
algebraic 38
differential 37
error message
diam=0 28

no message for pt3dadd with zero diameter 29

=
for(x) 38
forall 16
forsec 16
frequency

gpatial 50
temporal 50

functiontable 38

geometry 14

artifacts

stylized specification reinterpreted as 3-D specification 30

Page 66 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

zero diameter 28
good programming style

program organization 14

hoc
idiom
forall nseg*=3 12
hoc syntax
flow control
break 16
continue 16

return 16

IClampclass 35

insert 33

Jacobian

anaytic 37

The NEURON Book: Chapter 5

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 67

The NEURON Book: Chapter 5

L6
default value 22
specifying
stylized specification 23
updating from 3-D data 30

lambda. f() 53

length 6

length constant
AC 50
DC 49

LinearMechanism class 18
load_file() 53
M
mechanisms
user-defined 36
membrane capacitance 3
membrane current

capacitive 50

November 27, 2004

Page 68 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

ionic 50
membrane potential 7

membraneresistance 50

membrane time constant 51

and attenuation of fast signals 52
model

3D 31

compartmental 4,10

computationa
implementation 14
conceptual 43
stylized 23
model properties

specifying 14

neurite 5,25

NMODL 36

nseg 8

effect on spatia accuracy and resolution 9

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 69

The NEURON Book: Chapter 5 November 27, 2004

may reposition internally attached sections and point processes 20
repositionsinternally attached sections and point processes 35
vs. number of 3-D points 25
why triple nseg? 13
why use odd values? 12

numeric integration
stability 2

numerical error
roundoff 12
gpatial 11
tempord

effect of spatial discretization 48
]
object reference 35
object reference

objref 35

point process 34

creating 34

Page 70 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

destroying 34
effect of nsegon location 35
inserting 34
loc() 36
preserving spatial accuracy 12
specifying attributes 34
vs. distributed mechanism 36
psection() 22
push_section() 16
Q

guantitative morphometric data 13, 24, 56

R
Ra 6
default value 22
range 6

rangevariable 6
effect of changing nseg 40-42
estimating by linear interpolation between nodes 12

inhomogeneous

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 71

The NEURON Book: Chapter 5

reassert after changing nseg 40
iterating over nodes 38
linear taper 39
rangevar(x) returns value at nearest internal node

ri

infinite 28, 39
risetime 51
runtime 14
S
secname() 29
section 5
aray 21
child 19
connect 0 end to parent 24
currently accessed
default section 17

dot notation 7,9, 15

section stack 15

default section vs. root section 19

November 27, 2004

Page 72 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

equivalent circuit 27,28

iterating over sections 30, 53

nodes 8

internal vs. terminal 8

locations 8
Zero area 11
parent 19

root section 19
vs. default section 19
section variable 6
SectionRef class 16
segment 8
separating biology from numerical issues
Shape object
creating
effect ondiam, area, andri 30
Shape plot 21
creating

effect ondiam, area, andri 30

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 5

4

Page 73

The NEURON Book: Chapter 5 November 27, 2004

signa
chemical 45
electrical 45
gpatial accuracy 11
checking 12
second order 11
preserving 12,19
gpatial decay of fast signals 50
specific membrane capacitance 4, 7
specific membrane resistance 50
stdlib.hoc 53
stylized specification of geometry 22,23
calculation of areaand ri 23
reinterpretation as 3-D specification 30
syntax error
example 16
system

continuous 10

Page 74 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

topology 14
checking 20,21
loops of sections 18
specifying 18
viewing 21
topology() 20
\Y

v 7

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 75

November 26, 2004 The NEURON Book: Chapter 6

Chapter 6

How to build and use models of individual cells

In Chapter 2 we remarked that a conceptual model is an absolute prerequisite for the
scientific application of computational modeling. But if a computational model isto be a
fair test of our conceptual model, we must take special careto establish a direct
correspondence between concept and implementation. To this end, the research use of

NEURON involves all of these steps:
1. Implement acomputational model of the biological system

2. Instrument the model

w

. Set up controls for running simulations

SN

. Save the moddl with instrumentation and run controls
5. Run simulation experiments
6. Analyzeresults

These steps are often applied iteratively. We first encountered them in Chapter 1, and we

will return to each of them repeatedly in the remainder of this book.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 6 November 26, 2004

GUI vs. hoc code: which to use, and when?

At the core of NEURON is an interpreter which is based on the hoc programming
language (Kernighan and Pike 1984). In NEURON, hoc has been extended by the
addition of many new features, some of which improve its general utility asa
programming language, while others are specific to the construction and use of models of
neurons and neural circuitsin particular. One of these featuresis a graphical user
interface (GUI) which provides graphical tools for performing most common tasks. We
have already seen that many of these tools are especialy useful for model development

and exploratory simulations (Chapter 1).

Prior to the advent of the GUI, the only way to use NEURON was by writing
programsin hoc. For many users, convenience is probably reason enough to use the
GUI. We should also mention that several of the GUI tools are quite powerful in their
own right, with functionality that would require significant effort for users to recreate by
writing their own hoc code. Thisis particularly true of the tools for optimization and

electrotonic analysis.

But sooner or later, even the most inveterate GUI user may encounter situations that
call for augmenting or replacing the default implementations provided by the GUI.
Traditional programming allows maximum control over model specification, ssmulation
control, and display and analysis of results. It is aso appropriate for noninteractive
simulations, such as "production” runs that generate large amounts of datafor later

analysis.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

So the answer to our question is. use the GUI and write hoc code, in whatever
combination gets the job done with the greatest conceptual clarity and the least human
effort. Each has its own advantages, and the most productive strategy for working with
NEURON isto combine them in away that exploits their respective strengths. One

purpose of this book isto help you learn what these strengths are.

Hidden secrets of the GUI

There aren't any, really. All but one of the GUI tools are implemented in hoc, and al

of the hoc code is provided with NEURON (see nr n- x. x/ shar e/ nrn/ | i b/ hoc/ under

UNIX/Linux, c: \ nrnxx\ I i b\ hoc\ in The only GUI tool that is not implemented in hoc

MSWi ndows). Thus the CellBuilder. the isthe Print & File Window Manager, which is

. . L. written in C. The source code for it isincluded
Network Builder, and the Linear Circuit

with the UNIX distribution of NEURON.

Builder are al implemented in hoc, and
each of them works by executing hoc statementsin away that amounts to creating hoc
programs "on the fly." It can be instructive to examine the source code for these and
NEURON's other GUI tools. A recurring theme in many of them is a sequence of hoc
statements that construct a string, followed by ahoc statement that executes this string (if
itisavalid hoc statement) or usesit as an argument to some other hoc function or
procedure. We will return to thisideain Chapter 14: How to modify NEURON itself,

which shows how to create new GUI tools and add new functions to NEURON.

Anything that can be done with a GUI tool can be done directly with hoc. To

underscore this point, we will now use hoc statements to replicate the example that we

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 6 November 26, 2004

built with the GUI in Chapter 1. Our If you want to work along with this example, it

code follows the same broad outline as would be agood idea to create an empty directory

before, specifying the model first, then in which to save the file or files that you will

. L. . . make. These will be plain text files, which are
instrumenting it, and finally setting up
also sometimes known as ASCII files. Begin by
controls for running simulations. For
using atext editor to create afile called

clarity of presentation, we will consider

exanpl e. hoc that will contain the code.

this code in the same sequence: model

implementation, instrumentation, and simulation control.

Implementing a model with hoc

Page 4

The properties of our conceptual model neuron are summarized in Fig. 6.1 and Tables
6.1 and 6.2. For the most part, the steps required to implement a computational model of
this cell with hoc statements parallel what we did to build the model with NEURON's
GUI; differences will be noted and discussed as they arise. In the following program
listings, single line comments begin with a pair of forward dashes// and multiple line
comments begin with / * and are terminated by */ . For a discussion of hoc syntax, see

Chapter 12.

basilar \Sﬁ'nla lsynapse

A
axon apical

Fig. 6.1. The model neuron. The conductance change synapse can be located

anywhere on the cell.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

Table6.1. Model cell parameters

Length Diameter Biophysics

pm pm

soma 30 30 HH o 9k ad g

apical dendrite 600 1 passive with Rm = 5,000 Q cm?, Epasz -65 mV
basilar dendrite 200 2 same as apical dendrite

axon 1000 1 same as soma

Cm=1pf / cm?
cytoplasmic resistivity = 100 Q cm

Temperature = 6.3 °C

Table 6.2. Synaptic mechanism parameters

Omax 0-05 LS
Tg 0.1 ms
E omv

S

Topology

Our first task is to map the branched architecture of this conceptual model onto the
topology of the computational model. We want each unbranched neurite in the
conceptual model to be represented by a corresponding section in the computational
model, and thisis done with acr eat e statement (top of Listing 6.1). The connect
statements attach these sections to each other so that the conceptual and computational
models have the same shape. Aswe noted in Chapter 5, each section has a normalized
position parameter which ranges from 0 at one end to 1 at the other. The basi | ar and

axon sections arise from one end of the cell body while the api cal section arises from

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 6 November 26, 2004

the other, so they are attached by connect statementsto the O and 1 ends of the soma,

respectively.

This model is simple enough that its geometry and biophysical properties can be
specified directly in hoc without having to resort to sophisticated strategies. Therefore

we will not bother with subsets of sections, but proceed immediately to geometry.

LEEEEEEEE i rrrirrrr
/* nmodel specification */
FEEEEEEEErrr i rrrrirrrd

[11111] topology /111111

create somm, apical, basilar, axon
connect apical (0), som(1)

connect basilar(0), soma(0)
connect axon(0), soma(0)

[111111 geonmetry [/111111

soma {
L = 30
diam = 30
nseg =1
api cal {
L = 600
diam=1
nseg = 23
basil ar {
L = 200
diam= 2
nseg = 5
axon {
L = 1000
diam=1
nseg = 37

111111 biophysics /1111

forall {
Ra = 100
cm=1

}

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

soma {
insert hh
api cal {
i nsert pas
g_pas = 0. 0002
e _pas = -65
basi |l ar {
i nsert pas
g_pas = 0.0002
e _pas = -65
axon {
insert hh
}

Listing 6.1. Thefirst part of exanpl e. hoc specifiesthe anatomical and

biophysical attributes of our model.

Geometry

Each section of the model hasits own length L, diameter di am, and discretization
parameter nseg. The statementsinside the block soma { } pertain to the soma section,
etc. (the "stack of sections' syntax--see Which section do we mean? in Chapter 5).
Since the emphasis here is on elementary aspects of model specification with hoc, we
have assigned specific numeric values to nseg according to what we learned from prior
use of the CellBuilder (see Chapter 1). A more genera approach would be to wait until L,
di am and biophysical properties (Ra and cm) have been assigned, and then compute
values for nseg based on afraction of the AC length constant at 100 Hz (see The

d_lambda rule in Chapter 5).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 6 November 26, 2004

Biophysics

The biophysical properties of each section must be set up individually because we
have not defined subsets of sections. Cytoplasmic resistivity Ra and specific membrane
capacitance cmare supposed to be uniform throughout the model, so we use af or al |

statement to assign these values to each section.

The Hodgkin-Huxley mechanism hh and the passive mechanism pas are distributed
mechanisms and are specified with i nsert statements (see Distributed mechanisms in
Chapter 5). No further qualification is necessary for hh because our model cell usesits
default ionic equilibrium potentials and conductance densities. However, the parameters
of the pas mechanismin thebasi | ar and api cal sectionsdiffer from their default

values, and so require explicit assignment statements.

Testing the model implementation

Testing is aways important, especially when project development involves writing
code. If you are working along with this example, this would be an excellent time to save
what you have written to exanpl e. hoc and use NEURON to test it. Then, if you're
using aMac, just drag and drop exanpl e. hoc onto nr ngui . Under MSWindows use
Windows Explorer (the file manager, not Internet Explorer) to go to the directory where
you saved exanpl e. hoc and double click on the name of the file. Under UNIX or
Linux, type the command nr ni v exanpl e. hoc - a the system prompt (we're
deliberately not typing nr ngui exanpl e. hoc, to avoid having NEURON load its GUI

library).

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

Thiswill launch NEURON, and NEURON's interpreter will then process the contents

of exanpl e. hoc and generate a message that |0oks something like this:

NEURON -- Version 5.6 2004-5-19 23:5:24 Main (81)
by John W Moore, M chael Hines, and Ted Carneval e
Duke and Yale University -- Copyright 2001

oc>

The NEURON Main Menu toolbar will not appear under MSWindows, UNIX, or Linux.
This happens because NEURON did not load its GUI library, which contains the code
that implements the NEURON Main Menu. We're roughing it, remember? We trust that
Mac users will pretend they don't see the toolbar, because dropping ahoc file on the

nr ngui icon automatically loads the GUI library.

Since we aren't using the CellBuilder, there isn't see a nice graphical summary of the
model's properties. However a couple of hoc commands will quickly help you verify that

the model has been properly specified.

We can check the branched architecture of our model by typingt opol ogy() at the
oc> prompt (see Checking the tree structure with topology() in Chapter 5). This
confirms that soma is the root section (i.e. the section that has no parent; note that thisis
not the same as the default section). It also shows that api cal isattached to the 1 end of

sonmm, and basi | ar and axon are connected to its O end.

oc>t opol ogy()

B e i | axon(0-1)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 6 November 26, 2004

Thecommand foral | psection() generatesa printout of the geometry and
biophysical properties of each section. The printout isin the form of hoc statements that,

if executed, will recreate the modd!.

oc>forall psection()
soma { nseg=1 L=30 Ra=100
/*l ocation O attached to cell 0*/
/* First segnent only */
i nsert nor phol ogy { di am=30}
i nsert capacitance { cnrl}
insert hh { gnabar_hh=0.12 gkbar _hh=0.036 gl _hh=0. 0003 el _hh=-54. 3}
insert na_ion { ena=50}
insert k_ion { ek=-77}

api cal { nseg=23 L=600 Ra=100
soma connect apical (0), 1
/* First segnent only */
i nsert capacitance { cn¥l}
i nsert norphol ogy { dian¥l}
insert pas { g_pas=0.0002 e_pas=-65}

}
basil ar { nseg=5 L=200 Ra=100
soma connect basilar (0), O
/* First segnent only */
i nsert capacitance { cn¥l}
i nsert norphol ogy { dianr2}
insert pas { g_pas=0.0002 e_pas=-65}
}
axon { nseg=37 L=1000 Ra=100
soma connect axon (0), O
/* First segnent only */
i nsert capacitance { cn¥l}
i nsert norphol ogy { dian¥l}
insert hh { gnabar_hh=0.12 gkbar _hh=0.036 gl _hh=0. 0003 el _hh=-54. 3}
insert na_ion { ena=50}
insert k_ion { ek=-77}

oc>

After verifying that the model specification is correct, exit NEURON by typing

qui t () inthe interpreter window.

An aside: how does our model implementation in hoc
compare with the output of the CellBuilder?

The hoc code we have just written is supposed to set up a model that has the same

anatomical and biophysical properties as the model that we created in Chapter 1 with the

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

CellBuilder. We can confirm that thisisindeed the case by starting a fresh instance of
NEURON, using it to load the session file that we saved in Chapter 1, and then typing
topol ogy() andforal |l psection().ButtheCellBuilder can also create afile
containing hoc statements that, when executed, recreate the model cell. How do the
statements in this computer-generated file compare with the hoc code that we wrote for

the purpose of specifying this model?

To find out, let usretrieve the session file from Chapter 1, and then select the
Management page of the CellBuilder. Next we click on the Export button (Fig. 6.2), and
save al the topology, subsets, geometry, and membrane information to afile called
cel I . hoc. Executing the hoc statementsin thisfile will recreate the model cell that we

specified with the CellBuilder.

It isinstructive to briefly review the contents of cel | . hoc, which are presented in
Listing 6.2. At first glance this looks quite complicated, and its organization may seem a
bit strange--after al, cel | . hoc isacomputer-generated file, and this might account for
its peculiarities. But let him who has never written an idiosyncratic line of code cast the
first stone! Actually, cel | . hoc isfairly easy to understand if, instead of attempting a

line-by-line analysis from top to bottom, we focus on the flow of program execution.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 6 November 26, 2004

* Manage ment EContinuous Creste

Hirts
~ Cell Type 4 Export -, Import

Export to file [or top lewvel with "Continuous")
i.e. does not encapsulate the cell in an object.

Kind of infor mation exported

Topology [Destroys all existing top lewvel sections)
Subsets

Geometry

Mermbrans

Export to file

A

Figure 6.2. The Management page of the CellBuilder. We have clicked on the
Export radio button, and are about to export the model's topology, subsets,
geometry, and membrane information to a hoc file that can be executed to

recreate the model cell.

proc cel I def () {
topol ()
subset s()
B ophys()
geom hseg()

create sona, apical, basilar, axon

proc topol () { local i
connect api cal (0), sona(1)
connect basilar(0), soma(0)
connect axon(0), sona(0)
basi c_shape()

proc basi c_shape()
soma {pt 3dcl ear () pt3dadd(0, O,
api cal {pt3dcl ear () pt3dadd(15,
basi | ar {pt3dcl ear() pt3dadd(O0,
axon {pt3dcl ear() pt3dadd(0O, O,

1) pt3dadd(15, 0, 0, 1)}

0, 1) pt3dadd(75, 0, 0, 1)}
0, 1) pt3dadd(-29, 30, 0, 1)}
1) pt3dadd(-74, 0, 0, 1)}

0o00O

objref all, has_HH no HH

proc subsets() { local i
objref all, has HH no HH
all = new SectionLi st ()

soma al | . append()
api cal all.append()
basil ar all. append()
axon al | . append()

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

has_HH = new Sect i onLi st ()
sorma has_HH append()
axon has_HH append()

no_HH = new Secti onLi st ()
api cal no_HH append()
} basi | ar no_HH append()

proc geonf) {
forsec all {

soma{ L =30 diam= 30
apical { L=600 diam=1 }
basilar { L =200 diam=2 }
} axon { L =1000 diam=1 }

proc geomnseg() {
sona area(.5) // nake sure diamreflects 3d points
forsec all { nseg = int((L/(0.1*l anbda_f(100))+.9)/2)*2 + 1 }

proc biophys() {
forsec all {
Ra = 100
cm=1

forsec has HH {
insert hh
gnabar _hh = 0. 12
gkbar _hh = 0. 036

gl _hh = 0. 0003
el_hh =-54.3
forsec no HH {
insert pas
g_pas = 0. 0002
e pas = -65
}
}
access sonma
cel | def ()

Listing 6.2. The contents of cel | . hoc, afile generated by exporting data from
the CellBuilder that was used in Chapter 1 to implement the model specified in

Table 6.1 and 2 and shown in Fig. 6.1.

So we skip over the definition of pr oc cel | def () to find the first statement that is

executed:

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 6 November 26, 2004

create sona, apical, basilar, axon

Nothing too obscure about this. Next we jump over the definitions of two more pr ocs
(the temptingly smplet opol () and theslightly puzzling basi ¢c_shape()) before
encountering a declaration of three obj r ef s(see Chapter 13: Object oriented

programming)
objref all, has_HH no HH

that are clearly used by the immediately following pr oc subset s() (what doesit do?

patience, all will bereveded. . .).

Finally at the end of the file we find a declaration of the default section, and then the

procedurecel | def () iscalled.

proc cel I def () {

topol ()

subset s()

geont)

bi ophys()

geom hseg()
Thisisthe master procedure of thisfile. It invokes other procedures whose names remind
us of that familiar sequence "topology, subsets, geometry, biophysics' before it ends with
the eponymic geom nseg() . Using cel | def () asour guide, we can skim through the

rest of the procedures.

e topol () first connects the sections to form the branched architecture of our model,
and then it callsbasi c_shape() . Thelatter uses pt 3dadd statements that are based

on the shape of the stick figure that we saw in the CellBuilder itself. This establishes

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

the orientations (angles) of sections, but the lengths and diameters will be superseded

by statementsin geon() , which is executed later.

e subsets() usesSecti onLi st stoimplement the three subsets that we defined in

the CellBuilder (al | , has_HH, no_HH).
e geom() specifiesthe actual physical dimensions of each of the sections.
e bi ophys() establishesthe biophysical properties of the sections.

e geom nseg() appliesthe discretization strategy we specified, which in this caseisto
ensure that no segment is longer than 0.1 times the length constant at 100 Hz (see The
d_lambda rule in Chapter 5). This procedure is last to be executed because it needs

to have the geometry and biophysical properties of the sections.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 6

Instrumenting a model with hoc

The next part of exanpl e. hoc contains

November 26, 2004

statements that set up a synaptic input and
create agraphical display of ssimulation results
(Listing 6.3). The synapse and the graph are
specific instances of the Al phaSynapse and
G aph classes, and are managed with object
syntax (see Chapter 13). The synapseis placed
at the middle of the sonma and is assigned the
desired time constant, peak conductance, and

reversal potential. The graph will be used to

show the time course of sona. v(0. 5) , the

The strategy for dealing with synapses
depends on the nature of the model. They
aretreated as part of the instrumentation in
cellular and subcellular models, and thereis
indeed a sense in which they can be
regarded as "physiological extensions" of
the stimulating apparatus. However,
synapses between cellsin a network model
are clearly intrinsic to the biological
system. Thisdifference is reflected in the
GUI tools for constructing models of

individual cells and networks.

somatic membrane potential.

[0 rrrrrrrd
/* i nstrument ati on */
[H0HErrrrrrr i rrrrrrrl

1111 synaptic input ////

objref syn

soma syn = new Al phaSynapse(0.5)
syn.onset = 0.5

syn.tau = 0.1

syn. gmax = 0. 05

syn.e = 0

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004

/1] graphical display ///

= new G aph()
.si ze(0, 5, -80, 40)
a

The NEURON Book: Chapter 6

ddvar ("soma.v(0.5)", 1, 1, 0.6, 0.9, 2)

Listing 6.3. The second part of exanpl e. hoc specifies the instrumentation

used to stimulate and monitor our mode!.

Setting up simulation control with hoc

The code in the last part of exanpl e. hoc controls
the execution of simulations. This code must
accomplish many tasks. It must define the size of the
time step and the duration of asimulation. It also has
to initialize the smulation, which means setting time
to 0, making membrane potential assume its proper
initial value(s) throughout the model, and ensuring that
all gating variables and ionic currents are consistent
with these conditions. Furthermore, it has to advance
the solution from beginning to end and plot the
simulation results on the graph. Finaly, if interactive
use isimportant, initializing and running simulations

should be as easy as possible.

Setting up simulation control isa
recurring task in developing
computational models, and much
effort can be wasted trying to
reinvent the wheel. For didactic
purposes, in this example we
create our own simulation control
code de novo. However, itis
always far more efficient to use the
powerful, customizable functions
and proceduresthat are built into
NEURON's standard run system

(see Chapter 7).

The code in Listing 6.4 accomplishes these goals for our ssimple example. Smulation

initialization and execution are generally performed by separate procedures, as shown

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 6

November 26, 2004

here; the sole purpose of the final procedure isto provide the minor convenience that

simulations can be initialized and executed by merely typing the command go() at the

oc> prompt.

Thefirst three statementsin Listing 6.4 specify the default values for the time step,

simulation duration, and initial membrane potential. However, initialization doesn't

actually happen until you invokethei ni ti al i ze() procedure, which contains

statements that set time, membrane potential, gating variables and ionic currents to their

proper initial values. The main computational loop that executes the ssimulation (whi | e

(t<tstop) { })isintheintegrate() procedure, with additional statements that

make the plot of somatic membrane potential appear in the graph.

(100 rrrrrrirrrrry
simul ation control */
[Py

proc initialize() {
t =0

finitialize(v_init)
fcurrent ()

proc integrate() {
g. begi n()
while (t<tstop) {
fadvance()

g. plot(t)
g. fl ush()

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

proc go() {
initialize()
i ntegrate()

Listing 6.4. The final part of exanpl e. hoc providesfor initialization and

execution of ssimulations.

Testing simulation control

Use NEURON to execute exanpl e. hoc (agraph should appear) and then type the
command go() (thisshould launch asimulation, and atrace will appear in the graph).
Change thevalue of v_i ni t to-60mV and repeat the smulation (at the oc> prompt type
v_i ni t=-60, then type go()). When you are finished, type qui t () intheinterpreter

window to exit NEURON.

Evaluating and using the model

Now that we have aworking model, we are aimost ready to put it to practical use. We
have already checked that its sections are properly connected, and that we have correctly
specified their biophysical properties. Although we based the number of segments on
nseg generated by the CellBuilder using thed_lambda rule, we have not really tested
discretization in space or time, so some exploratory simulations to evaluate the spatial
and temporal grid are advisable (see Chapter 4 and Choosing a spatial grid in
Chapter 5). Once we are satisfied with its accuracy, we may be interested in improving
simulation speed, saving graphical and numerical results, automating simulations and

datacollection, curve fitting and model optimization. These are somewhat advanced

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 6 November 26, 2004

topicsthat we will examine later in thisbook. The remainder of this chapter is concerned

with practical strategies for working with models and fixing common problems.

Combining hoc and the GUI

The GUI tools are arelatively "recent” addition to NEURON (recent is arelative term
in afast-moving field--would you believe 1995?) so many published models have been
implemented entirely in hoc. Also, many long-time NEURON users continue to work
quite productively by developing their models, instrumentation, and simulation control
exclusively with hoc. Often the resulting software is elegantly designed and implemented
and servesits origina purpose quite well, but applying it to new research questions can

be quite difficult if significant revision is required.

Some of this difficulty can be avoided by generic good programming practices such
as modular design, in particular striving to keep the specifications of the model,
instrumentation, and simulation control separate from each other (see Elementary
project management below). Thereis also alarge class of problemsthat would require
significant programming effort if one starts from scratch, but which can be solved with a
few clicks of the mouse by taking advantage of existing GUI tools. But what if you don't
see the NEURON Main Menu toolbar, or (as often happens when you first start to work

with a"legacy” model) you do see it but many of the GUI tools don't seem to work?

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

No NEURON Main Menu toolbar?

Thisis actually the easiest problem to solve. At the oc> nrngui also loads the

prompt, type the command | oad_fil e("nrngui . hoc") and | standard run library

the toolbar should quickly appear. If you add this statement to the very beginning of the

hoc file, you'll never have to bother with it again.

The toolbar will always appear if you use nr ngui toload ahoc file. Onthe Mac this
iswhat happens when you drag and drop ahoc file onto the nr ngui icon. Under
M SWindows you would have to start NEURON by clicking on its desktop nr ngui icon
(or onthenr ngui itemin the Start menu's NEURON program group), and then use
NEURON Main Menu / File / load hoc to open the the hoc file. UNIX/Linux users can

justtypenr ngui fil ename at the system prompt.

However, even if you see the toolbar, many of the GUI tools will not work if the hoc

code didn't define a default section.

Default section? We ain't got no default section!

No badges, either. But to make full use of the GUI tools, you do need a default
section. To see what happens if there isn't one, let's add a second synapse to the
instrumentation of our example as if we were modeling feedforward inhibition. We could
do this by writing hoc statements that define another point process, but this time let's use
the GUI (see 4. Instrument the model. Signal sources in Chapter 1).

First, change exanpl e. hoc by adding the statement

| oad_file("nrngui.hoc")

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 6 November 26, 2004

at the very beginning of the file. Now when NEURON executes the commands in

. . . UNIX/Li back t
exanpl e. hoc, the first thing that happensis the GUI U sers can go haccfo

typing nr ngui exanpl e. hoc.

library isloaded and the NEURON Main Menu toolbar
appears.
But NEURON Main Menu / Tools / Point Processes / Managers / Point Manager

doesn't work. Instead of a PointProcessManager we get an error message that thereis

"no accessed section” (Fig. 6.2). What went wrong, and how do we fix it?

= MEUROHN M [=] E3

Mo accessed section: Can't start a PointProcessManager

Fig. 6.2. A useful error message.

Many of the GUI tools, such as voltage graphs, shape plots, and point processes, must
refer to aparticular section at the moment they are spawned. This is because sections
share property names, such asL and v. Remember the statement we used to create a point

processin exanpl e. hoc:

soma syn = new Al phaSynapse(0.5)
This placed the newly created synapse at the 0.5 location on a particular section: the
soma. But we're not writing hoc statements now; we're using agraphical tool (the
NEURON Main Menu) to create another graphical tool that we will use to attach a point

process to a section, and the NEURON Main Menu has no way to guess which section

we're thinking about.

The way to fix this problem is to add the statement

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

access sonma

to our model description, right after the cr eat e If there are many sections, which

one should be the default section?

statement. The access statement defines the default
section (see Which section do we mean? in

Chapter 5). If we assign membrane properties or attach

apoint process to amodel, the default section is somais generally agood choice.

A good rule of thumb isto pick a
conceptually privileged section

that will get most of the use. The

affected unless we specify otherwise. And if we use the GUI to create a plot of voltage

vs. time, v at the middle of the default section is automatically included in the list of

things that are plotted.

So click on the "Continue" button to dismiss the error message,
quit NEURON, add the access soma statement to
exanpl e. hoc, and try again. Thistime it works. Configure the
PointProcessManager to be an AlphaSynapse with onset =

0.5 ms, tau = 0.3 ms, gmax = 0.04 uS, and e =-70 mV and type

Scientific question:
can you explain the
effect of the
inhibitory synapse's

tau on cell firing?

go() torunasimulation. Run a couple more smulations with tau = 1 msand 3 ms. Then

exit NEURON.

Strange Shapes?

The barbed wire model

In Chapter 1 we mentioned that the 3-D method for specifying geometry can be used

to control the appearance of a model in a Shape plot. The benefits of the 3-D method for

model s based on detailed morphometric data are readily appreciated: the direct

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Page 23

The NEURON Book: Chapter 6 November 26, 2004

correspondence between the anatomy of the cell as seen under a microscope, and its
representation in a Shape plot, can assist conceptual clarity when specifying model
properties and understanding simulation results. Perhaps less obvious, but no lessredl, is
the utility of the 3-D method for dealing with more abstract models, whose geometry is
easy enough to specify interms of L and di am We hinted at this in the walkthrough of
the hoc code exported by the CellBuilder, but afew examples will prove its value and at

the same time help prevent misapplication and misunderstanding of this approach.

Suppose our conceptual model isacell with an apical dendrite that givesriseto 10
oblique branches along its length. For the sake of visual variety, we will have the lengths
of the obliques increase systematically with distance from the soma. Listing 6.5 presents
an implementation of such amodel using L and di amto specify geometry. The apical
trunk is represented by the proximal section api cal and the sequence of progressively
more distal sections ap[0] - ap[NDEND- 1] . With our mind's eye, aided perhaps by dim
recollection of Ramon y Cgjal's marvel ous drawings, we can visualize the apical trunk
stretching away from the somain amore or less straight line, with the obliques coming

off at an angleto one side.

I111111 topology /1111111
NDEND = 10

create somm, apical, dend[NDEND], oblique[NDEND]
access somm

connect apical (0), som(1)

connect ap0, apical (1)

connect oblique0, apical (1)

for i=1, NDEND- 1 {
connect ap[i](0), ap[i-1](1)
connect obliquel[i]() dend[i-1] (1)

}

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

[T geometry [111111]
soma { L = 30 diam= 30 }
apical { L =3 diam=5}

for i =0, NDEND- 1 {
ap[i] { L = 15 diam= 2 }
oblique[i] { L = 15+5*i diam= 1 }

Listing 6.5. Implementation of an abstract model that has a moderate degree of
dendritic branching using L and di amto specify geometry.
But executing this code and bringing up a Shape plot (e.g. by NEURON Main Menu /
Graph / Shape plot) produces the results shown in Figure 6.3. So much for our mind's

eye. Where did all the curvature of the apica trunk come from?

This violence to our imagination stems from the fact that stylized specification of
model geometry says nothing about the orientation of sections. At every branch point,
NEURON's internal routine for rendering shapes makes its own decision, and in doing so
it follows a ssmple rule: make a fork with one child pointing to the left and the other to
the right by the same amount relative to the orientation of the parent. Models with more
complex branching patterns can look even stranger; if the detailed architecture of ared
neuron istranslated to simple hoc statements that assert nothing more than connectivity,

length, and diameter, the resulting Shape may resemble atangle of barbed wire.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 6 November 26, 2004

Fig. 6.3. Shape plot rendering of the model produced by the codein Listing 6.5.
To help indicate the location of the soma section, Shape Style: Show Diam was

enabled.

To gain control of the graphical appearance of our model, we must specify its
geometry with the 3-D method. Thisisillustrated in Listing 6.6, where we have
meticulously used absolute (x,y,z) coordinates, based on the actual location of each
section, as arguments for the pt3dadd() statements. Now when we bring up a Shape plot,
we get what we wanted: a nice, straight apical trunk with oblique branches coming off to
oneside (Fig. 6.4).

1111111 georetry /1111111

forall pt3dclear()

soma {
pt 3dadd(0, 0, 0, 30)
pt 3dadd(30, O, 0, 30)

api cal
pt 3dadd(30, 0O, 0, 5)
pt 3dadd(60, O, 0, 5)

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

for i=0, NDEND-1 {
ap[i] { |

pt 3dadd(60+i *15, 0, 0, 2)

pt 3dadd(60+(i +1)*15, 0, 0, 2)

L. :
oblique[i]

pt 3dadd(60+i *15, 0, 0, 1)
pt 3dadd(60+i *15, -15-5*i, 0, 1)

Listing 6.6. Specification of model geometry using the 3-D method. This

assumes the same model topology as shown in Listing 6.5.

il

Fig. 6.4. Shape plot rendering of the model when the geometry is specified
using the 3-D method shown in Listing 6.6.

Although we scrupuloudly used absolute (x,y,z) coordinates for each of the sections,
we could have saved some effort by taking advantage of the fact that the root section is
treated as the origin of the cell with respect to 3-D position. When any section's 3-D
shape or length changes, the 3-D information of al child sectionsis translated to
correspond to the new position. Thus, if the somais the root section, we can move an
entire cell to another location just by changing the location of the soma. Another useful
implication of this feature allows us to simplify our model specification: the only
pt 3dadd() statements that must use absolute coordinates are those that belong to the
root section. We can use relative coordinates for all child sections, instead of absolute
(x,y,2) coordinates, as long as they result in proper length and orientation (see

Listing 6.7).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 6

The case of the disappearing section

[geometry /1111111
forall pt3dclear()

soma {
pt 3dadd(0, 0, 0, 30)
pt 3dadd(30, O, 0, 30)

api cal
pt 3dadd(0, 0, 0, 5)
pt 3dadd(30, O, 0, 5)

for i=0,NDEND-1 {
ap[i] {

pt 3dadd(0, 0, 0, 2)

pt 3dadd(15, 0, 0, 2)

}
oblique[i] {
pt 3dadd(0, 0, 0, 1)
pt 3dadd(0, -15-5*i, O,

1)

November 26, 2004

Listing 6.7. A smpler 3-D specification of model geometry that relies on the

absol ute coordinates of the root section and rel ative coordinates of all child

sections. Compare the (x,y,z) coordinatesin the pt 3dadd() statementsfor

api cal , ap, and obl i que withthosein Listing 6.6.

In Chapter 5 we mentioned that it is generally agood idea to attach the O end of a

child section to its parent, in order to avoid confusion. For an example of one particularly

vexing problem that can arise when this recommendation isignored, consider Listing 6.8.

Theaccess dend[0] statement and the argumentsto the pt 3dadd() statements

suggest that the programmer's conceptual model had the sections arranged in the left to

right sequence dend[0] - dend[1] - dend[2] . Notethat the 1 end of dend[0] is

connected to the 0 end of dend[1] , and the 1 end of dend[1] is connected to the O end

of dend[2] . Thismeansthat dend[2] , which is not connected to anything, is the root

Page 28

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

section. From a purely computational standpoint thisis perfectly fine, and if we simulate
the effect of acurrent step applied to the 0 end of dend[0] , there will be an orderly
spread of charge and potential along each section fromits 0 end to its 1 end, with the

largest membrane potentia shift in dend[0] and the smallest indend[2] .

1111111 topology /1111111
NDEND = 3

creat e dend[NDEND]
access dend| 0]

connect dend[O0] (1), dend[1](0)
connect dend[1] (1), dend[2](0)

111117 geometry /1111111
forall pt3dclear()

dend[0] {
pt 3dadd(0, 0, 0, 1)
pt 3dadd(100, 0, 0, 1)

dend[1] {
pt 3dadd(100, O, 0, 1)
pt 3dadd(200, O, 0, 1)

dend[2] {
pt 3dadd(200, 0, 0, 1)
pt 3dadd(300, O, 0, 1)

Listing 6.8. The programmer's intent seems to be for dend[0] , dend[1] , and
dend[2] toline up from left to right. However, the connect statements make
dend[2] theroot section, and thereby hangs atale.
However, we'rein for asurprise when we bring up a PointProcessManager
(NEURON Main Menu / Tools / Point Processes / Managers / Point Manager) and try to

place an | C anp at different locations in this model. No matter where we click, we can

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 6

only put thel C anp ondend[0] or dend[2] (Fig. 6.5). Try aswe might to find it,

there just doesn't seem to be any dend] 1] !

But dend[1] readlly does exist, and we can easily prove this by invoking the

t opol ogy() function, which generates this diagram:

This not only confirms the existence of dend[1] , but also showsthat dend[2] isthe
root section, with the 1 end of dend[1] connected to itsto the O end, and the 1 end of
dend[0] connected to the 0 end of dend[1] . Exactly as we expected, and just as

specified by the code in Listing 6.8.

November 26, 2004

PointProcessManager
SelectPointProcess | .
PointProcessManager

show |
IClamp[0] SelectPointProcess |
at:dend[0](0.5) [show |

IClampl0]

at:dend[2](0.5)

—_——
e

Page 30

Fig. 6.5. The code in Listing 6.8 produces a model that seems not to have a
dend[1] --or at least, we can't find dend[1] when wetry to usea

PointProcessManager to attach an 1 Cl anp toit.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

But isn't something terribly wrong with the appearance of our model in the Shape
plot? Not at all. Although we might not likeit, the model looks exactly asit should, given

the statementsin Listing 6.8.

Here'swhy. Aswe mentioned above in The barbed wire model, the location of the
root section determines the placement of all other sections. Theroot sectionisdend[2] ,
and the pt 3dadd() statementsin Listing 6.8 placeits 0 end at (200, 0, 0) and its 1 end at

(300, 0, 0) (Fig. 6.6).

Sincedend[1] is attached to the O end of dend[2] , the first 3-D data point of dend[1]
is mapped to (200, 0, 0) (see 3-D specification in Chapter 5). According to the
pt 3dadd() statementsfor dend[1], itslast 3-D data point lies 100 pm to the right of its
first 3-D point. This meansthat the 1 end of dend[1] isat (200, 0, 0) and itsOend is at
(300, 0, 0) (Fig. 6.6)--precisely the locations of the left and right ends of dend[2] ! So
dend[1] and dend[2] will appear as the same line in the Shape plot. When we try to
select one of these sections by clicking on this line, the section we get will depend on the
inner workings of NEURON's GUI library. It just happens that, for the particular hoc
statementsin Listing 6.8, we can only select pointson dend[2] . Thisisasif dend[1] is

hidden from view and shielded from our mouse cursor.

Finally we consider dend[0] , whose 1 end is connected to the O end of dend] 1] .
Thusitsfirst 3-D data point is drawn at (300, 0, 0), and, following its pt 3dadd()
statements, its last 3-D data point lies 100 um to the right, i.e. at (400, O, 0). Thus
dend[0] runsfrom (400, O, 0) (its 0 end) to (300, 0, 0) (its 1 end), whichisjust to the

right of dend[2] and the hidden dend[1] (Fig. 6.6).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 6 November 26, 2004

So the mystery is solved. All three sections are present, but two are on top of each

other.

Thefirst lesson to take from this sad tale is the usefulness of t opol ogy() asa
means for diagnosing problems with model architecture. The second lesson isthe
importance of following our recommendation to avoid confusion by connecting the O end
of achild section to its parent. The strange appearance of the model in the Shape plot
happened entirely because this advice was not followed. There are probably occasionsin
which it makes excellent sense to violate this simple rule; please be sureto let us know if

you find one.

dend[2] runs
fromhere | to here
(its 0 end) (its 1 end) dend]0] runs
fromhere to here
der}?c[‘:rl]l rhuenrse to here (its 1 end) (its 0 end)
(its 1 end) (its 0 end)
(200,0,0) (300,0,0) (400,0,0)

Fig. 6.6. Deciphering the pt 3dadd() statementsin Listing 6.8 leads usto
realize that we only see two sections in the Shape plot because two of them
(dend[1] and dend[2]) are drawn in the same place. This figure shows the

(x,y,z) coordinates of the sections and indicates their 0 and 1 ends.

Graphs don't work?

If there is no default section, new graphs created with the GUI won't work properly.
Y ou've already seen how to declare the default section, so everything should be OK,

right? Let's see for ourselves.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

Make sure that exanpl e. hoc startswith | oad_fi | e("nrngui . hoc") and
containsan access soma statement, and then use NEURON to execute it. Then follow
the steps shown in Fig. 1.27 (see Signal monitors in Chapter 1) to create a space plot
that will show membrane potential along the length of the cell. Now type go() . What

happens?

The graph of soma. v(0. 5) shows an action potential, but the trace in the space plot
remains aflat line. |s there something wrong with the space plot, or does the problem lie

elsewhere?

To find out, use NEURON Main Menu / Tools / RunControl to bring up a RunControl
window. Click on the RunControl's Init & Run button. Result: this time it's the space plot
that works, and the graph of soma. v(0. 5) that doesn't (Init & Run should have erased

the trace in the latter and drawn a new one).

So there are actually two problems. The simulation control code in our hoc file can't
update new graphs that we create with the GUI, and the GUI's own simulation control
code can't update the "old" graph that is created by our hoc file. Of the many possible
ways to deal with these problems, oneisridiculoudy easy and another requires alittle

effort (but only avery little).

The ridiculously easy solution isto use the GUI to make a new graph that shows the
same variables, and ignore or throw away the old graph. In this example, resorting to
NEURON Main Menu / Graph / Voltage axis gets us a new graph. Since the sona isthe
default section, thev(. 5) that appears automatically in our new graph isredly

soma. v(0.5).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 6 November 26, 2004

What if alot of programming went into one or more of the old graphs, so the GUI
tools offer nothing equivalent? This calls for the solution that requires a little effort:
specificaly, we add asingle line of hoc code for each old graph that needs to be fixed. In
this example we would revise the code that defines the old graph by adding the line
shown herein bold:

/1] graphical display ///

objref g

g = new G aph()

addpl ot (g, 0)

g.si ze(0, 5, -80, 40)

g. addvar ("soma.v(0.5)", 1, 1, 0.6, 0.9, 2)

Listing 6.9. Fixing an old graph so it works with NEURON's standard run

system.

This takes advantage of NEURON's standard run system, a set of functions and

procedures that orchestrate the execution of The standard run system has many powerful

simulations (see Chapter 7). The statement features and can be used in any simulation,

) with or without the GUI. The statement
addpl ot (g, 0) addsgtoalist of graphs
| oad_file("stdrun. hoc") loadsthe

that the standard run system autometically hoc code that implements the standard run

updates during the course of a simulation. system, without loading the GUI.

Also, the x-axis of our graph will be adjusted

automatically when we changet st op (Tstop in the RunControl panel). NEURON's GUI
relies heavily on the standard run system, and every time we click on the RunControl's
Init & Run button we are actually invoking routines that are built into the standard run

system.

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

Does this mean that we have to abandon the simulation control code in our hoc
program, and does it matter if we do? The control codein exanpl e. hoc performsa
"plain vanilla" initialization and simulation execution, so abandoning it in favor of the
standard run system only makes things better by providing additional functionality. But
what if we want a customized initialization or some unusual flow of simulation
execution? Aswe shall see in Chapter 7, the standard run system was designed and
implemented so that only minor changes are required to accommodate most special

needs.

Conflicts between hoc code and GUI tools

Many of the GUI tools specify properties of the model or the interface, and this leads
to the possibility of conflicts that cause a mismatch between what you think isin the
computer, and what actually isin the computer. For example, suppose you use the
CellBuilder to construct amodel cell with asection called dend that hasdi am= 1 um,

L =300 pm, and passive membrane, and you turn Continuous create ON. Then typing

dend psection() attheoc> prompt will produce something like this

oc>dend psecti on()
dend { nseg=11 L=300 Ra=80

i nsert pas { g_pas=0.001 e pas= 70}

(afew lines were omitted for clarity), which confirms the presence of the pas

mechanism.

A bit later, you decide to make dend active and get rid of its pas mechanism. You

could do this with the CellBuilder, but let's say you find it quicker just to type

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 6 November 26, 2004

oc>dend {uninsert pas insert hh}
and then confirm the result of your action with another psect i on()

oc>dend psecti on()
dend { nseg=11 L=300 Ra=80

insert hh { gnabar_hh=0.12 gkbar hh=0.036 gl _hh=0.0003 el hh=-54. 3}
insert na_ion { ena=50}
insert k ion { ek=77}

}

So far, so good.

But check the Biophysics page of the CellBuilder, and you will see that the change
you accomplished with hoc did not track back into the GUI tool, which still shows dend
as having pas but not hh. Thisis particularly treacherous, because it is al too easy to
become confused about what is the actual specification of the model. If these new
biophysical properties|ead to particularly interesting s mulation results, you might save
"everything" to a session file, thinking that you would be able to reproduce those results
in the future--but the session file would only contain the state of the GUI tools.
Completely absent would be any reflection of the fact that you had executed your own

hoc statement to override the CellBuilder's model specification.

And still more surprises are in store. Using the CellBuilder, with Continuous create
still ON, change dendritic diameter to 2 um. Now use psect i on() to check the

properties of dend

oc>dend psecti on()
dend { nseg=7 L=300 Ra=80

insert hh { gnabar_hh=0.12 gkbar hh=0.036 gl _hh=0.0003 el _hh=-54. 3}
insert na_ion { ena=50}

insert k ion { ek=77}

insert pas { g pas=0.001 e pas= 70}

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

and you see that both pas and hh are present, despite the previous use of uni nsert to

get rid of the pas mechanism.

Similar conflicts can arise between hoc statements and other GUI tools (e.g. the

PointProcessManager) All of these problems have a

Conflicts may also occur between
common source: changes you make at the hoc level

the CellBuilder and older GUI tools
are not propagated to the GUI tools, so if you then

for managing section properties.

make any changes with the GUI tools, it islikely that
all the changes you made with hoc statements will be lost. The lesson hereisto exercise
great caution when combining GUI tools and hoc statements, in order to avoid

introducing potentially confusing conflicts.

Elementary project management

The example used in this chapter issimple so adl of its code fitsin asingle, small file
that can be quickly understood. Nonethel ess, we were careful to organize exanpl e. hoc
in away that separates specification of the model per se from the specification of the
interface, i.e. the instrumentation and control procedures for running simulations. This
separation maximizes clarity and reduces effort, and it should begin while the model is

still in the conceptual stage.

Designing amodel starts by answering the questions: what anatomical features are
necessary, and what biophysical properties should be included? The answers to these
guestions govern key decisions about what what kinds of stimuli to apply, what kinds of

measurements to make, and how to display, record, and analyze these measurements.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 6 November 26, 2004

When it isfinally time to implement the computational model, it isagood ideato try to
keep these questions separate. Thisisthe way NEURON's graphical tools are organized,

and thisis the way models specified with hoc should be organized.

e First you create amodel, specifying its topology, geometry, and biophysics, either
with the CellBuilder or with hoc code. Thisis arepresentation of selected aspects of a

biological system, and you might think of it asavirtua experimental preparation.

e Then you instrument that model. Thisis analogous to applying stimulating and
recording electrodes and other apparatus to areal neuron or neura circuit in the

laboratory.
e Finally, you set up controls for running simulations.

Instrumentation and simulation controls are the user interface for exercising the
model. Metaphorically speaking, they amount to avirtual experimental rig. In awet lab,
noone would ever confuse a brain slice with the microscope or instrumentation rack. The
physical and conceptual distinction between biological preparation and experimental rig
them is an inescapabl e fact and has a strong bearing on the and execution of
experiments. NEURON lets you carry this separation over into modeling. Why confound
the code that defines the properties of amodel cell with the code that generates a stimulus

or governsthe sequence of eventsin asimulation?

One way to help separate model specification from user interface is to put the code
that defines them into separate files. One file, which we might call cel | . hoc, would
contain the statements that specify the properties of the model: its topology, geometry,

and biophysics. The code that defines point processes, graphs, other instrumentation, and

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

simulation controls would go into a second file that we might call ri g. hoc. Finally, we
would use athird file for purely administrative purposes, so that a single command will
make NEURON execute the other filesin proper sequence. Thisfile, which we might call
i ni t. hoc, would contain only the statements shown in Listing 6.10. Executing

i nit. hoc with NEURON will make NEURON load its GUI and standard run libraries,
bring up aNEURON Main Menu toolbar, execute the statementsin cel | . hoc to
reconstitute the model cell, and finally execute the statementsinri g. hoc to reconstitute

our user interface for exercising the model.

| oad_file(" nrngw hoc")
| oad _file("cell hoc")
load _file("rig. hoc")

Listing 6.10. Contents of i ni t . hoc.

For instance, we could recast exanpl e. hoc in this manner by putting its model
specification component into cel | . hoc, while the instrumentation and simulation
control components would becomeri g. hoc. Thiswould allow usto reuse the same
model specification with different instrumentation configurationsri g1. hoc, ri g2. hoc,
etc.. To make it easy to select which rig is used, we could create a corresponding series of
init files(initl. hoc,init2. hoc, etc.) that differ only in the argument to the third
| oad_fil e() statement. Thisstrategy is not limited to hoc files, but can also be used to
retrieve cells and/or interfaces that have been constructed with the GUI and saved to

session (ses) files.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 6 November 26, 2004

Iterative program development

A productive strategy for program development in NEURON isto revise and
reinterpret hoc code and/or GUI tools repeatedly during the same session. Bugs afflict all
nontrivial programs, and the process of making incremental changes, saving them to
intermediate hoc or ses files, and testing at each step, reduces the difficulty of trying to
diagnose and eliminate them. In thisway it is possible begin with a program skeleton that
consists of one or two hoc fileswith ahandful of | oad_fi | e() statementsand function
stubs, and quickly refine it until everything works properly. However, two caveats do
apply.

First, a variable cannot be declared with anew type during the same session. In other

words, "once a scalar, always ascaar" (or double, or string, or object reference).

Attempting to redeclare a variable will produce an error message, e.g.

oc>X = 3

first instance of x

oc>obj ref x

[usr/local /nrn/i 686/ bin/nrniv: x already declared near |ine 2

objref x
N

oc>

Trying to redefine a double, string, or object reference as something else will likewise
fail. Thisis generally of little consequence, sinceit israrely absolutely necessary to
change the type assigned to a particular variable name. When this does happen, you just

have to exit NEURON, make your changes to the hoc code, and restart.

The second caveat is that, once the hoc interpreter has parsed the code in atemplate
(see Chapter 13: Object-oriented programming), the classthat it definesis fixed for

that session. This means that any changes to a template require exiting NEURON and

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

restarting. The result is some inconvenience when devel oping and testing new classes,

but thisis still easier than having to recompile and link a program in C or C++.

References

Kernighan, B.W. and Pike, R. Appendix 2: Hoc manual. In: The UNIX Programming

Environment. Englewood Cliffs, NJ: Prentice-Hall, 1984, p. 329-333.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 6

Chapter 6 Index

3-D specification of geometry 23
coordinates

absolute vs. relative 26, 27

access 23

biophysical properties

specifying 8

CellBuilder
hoc output
exported cell 11
CellBuilder GUI
Continuous create 35, 36
Management page
Export 11
computationa model

implementing with hoc 4

November 26, 2004

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004

conceptual clarity 3,24
connect 5

create 5

diam 7

distributed mechanism 8

error message

no accessed section

good programming style

iterative development 40
modular programming
program organization 37

separate model specification from user interface

GUI

combining withhoc 20

conflicts with hoc or other GUI tools 35

tools

The NEURON Book: Chapter 6

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 6 November 26, 2004

are implemented in hoc 3

work by constructing hoc programs 3

vs. hoc 2
H
hoc 2
can do anything that a GUI tool can 3
combining with GUI 20
conflictswith GUI 35
idiom
forall psection() 10
load_file("nrngui.hoc™) 21
implementing a computational model 4
vs. GUI 2
hoc syntax

comments 4

variables

cannot changetype 40

initialization 17

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004

custom 35
insert 8

instrumentation 37

L7

model
computationa
essential steps 1
correspondence between conceptual and computational
testing 19
model specification 37

asvirtual experimental preparation 38

NEURON

starting with a specific hoc file 8
NEURON Main Menu

creating 21,39

nrngui 8

The NEURON Book: Chapter 6

1,5

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 6

loads GUI and standard run library 21

nrniv 8

nseg 7

plaintext file 4

PointProcessM anager
creating 29

project management 37

Q

guantitative morphometric data 23

RunControl

creating 33
RunControl GUI

Init& Run 34

Tstop 34

section

child

November 26, 2004

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004

connect 0 end to parent 28
currently accessed
default section 23

orientation 15, 25, 27
root section 9

is3-D originof cell 27,31
vs. default. section 9

SectionList class 15

Shape plot
creating 25
Shape plot GUI
Shape Style
Show Diam 26
simulation control 17, 37

standard run system 34
addplot() 34
tstop 34
stylized specification of geometry 7

strange shapes 23

The NEURON Book: Chapter 6

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 6 November 26, 2004

synapse

as instrumentation 16

T
template
cannot be redefined 40
topology
checking 9, 32
specifying 5
topology, subsets, geometry, biophysics 14

topology() 32
troubleshooting
disappearing section 28
Graphsdon'twork 32
legacy code 20
no default section 21

no NEURON Main Menutoolbar 21

uninsert 37

user interface 37

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

asvirtual experimental rig 38

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

November 27, 2004 The NEURON Book: Chapter 7

Chapter 7

How to control simulations

Simulation control with the GUI

The RunControl panel (Fig. 7.1 right) has several buttons and field editors (boxes that
contain numbers) that provide a basic set of controls for initializing, starting, and
stopping simulations. The actions listed in Table 7.1 are "defaults,” i.e. the standard
behavior of the tool. These actions are all customizable, because the RunControl works
by calling procedures that are defined in hoc (see below) so you can always create a new

procedure with the same name that substitutes for the default code.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 7 November 27, 2004

NEURON Main Menu =] RunControl
leonify Close Hide
|Fi|e Edit Build | Tools | Graph Vector Window m init (mv) ¢4 | | [65
[Runcontrol | Init & Run
RunButton
VariableStepControl Stop

Point Processes Continue til (ms) ¢ l:l |5 :l

Distributed Mechanisms

Fitting Continue for (ms) + D O :ll

Impedance

Single Step
Miscellaneous

t (ms) 0

Tstop {ms) :l |5 :l
dtgms) | | [0.025
Points plottedims |40 :l

Guiet
Real Time (s)

(=]

Fig. 7.1. Left: NEURON Main Menu / Tools / RunControl brings up a panel with
controls for running simulations. Right: The RunControl panel allows a great
deal of control over the execution of simulations. See text for details.

In learning to use the RunControl panel it may help to keep in mind that adjacent
controls have related functions. The three buttons at the top (Init, Init & Run, and Stop)
perform the most common operations: initializing, starting, and stopping smulations. The
next three (Continue til (ms), Continue for (ms), and Single Step) are particularly helpful
for exploratory dissection of the time sequence of eventsin dynamically complex

simulations.

Graphs created from the NEURON Main Menu respond appropriately to all of these
controls. Init erases unsaved traces from graphs whose x axis shows time, and makes all
other graphs (e.g. variables vs. anatomical location, phase plane plots) show initial
values, whereas Init & Run, Continue til, Continue for, and Single Step cause graphs to be

updated at intervals governed by Points plotted/ms and Quiet.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

Button

The NEURON Book: Chapter 7

Table 7.1. Functions of the RunControl panel

Action

Init (mV)

Setstime to 0, changes V,, throughout the model to the value displayed in the

adjacent field editor, initializes ionic concentrations, and sets biophysical
mechanisms (e.g. ionic conductances, pumps) to their corresponding steady state

vaues.

Init & Run

Same as the Init button, but then launches a simulation that runs until t equals
Tstop (see below). Graphs constructed from the NEURON Main Menu are updated

at arate specified by Points plotted/ms and Quiet (see below).

Stop

Stops a simulation at the end of a step.

Continue til (ms)

Continues a simulation until t > the value displayed in the adjacent field editor.

Graphs are updated according to Points plotted/ms (see below).

Continue for (ms)

Continues a simulation for the amount of time displayed in the adjacent field

editor. Graphs are updated according to Points plotted/ms (See below).

Single Step Continues a simulation for one step and plots. A stepis 1/ (Points plotted/ms)
milliseconds and consists of 1/ (dt - Points plotted/ms) callsto f advance() .

t (ms) No action. The adjacent numeric field shows model time during the course of a
simulation.

Tstop (ms) No action. Adjacent field is used to specify stop time for Init & Run.

dt (ms) No action. Adjacent field shows the fundamental integration time step used by

fadvance() . Vaues entered into thisfield editor are automatically rounded

down so that an integral multiple of f advances make up a Single Step.

Points plotted/ms

No action. Adjacent field is used to specify the number of times per millisecond at
which graphs are updated. Notice that reducing dt does not by itself increase the
number of points plotted. If 1/ (Points plotted/ms) is not an integral multiple of dt,

then dt is rounded down to the nearest integral fraction of 1/ (Points plotted/ms).

Quiet

When checked, turns off graph updates during a simulation. This can speed things
up considerably, e.g. when using the Multiple Run Fitter in the presence of a shape

movie plot under MSWindows.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 7 November 27, 2004

The

Page 4

Real Time (s) No action. Adjacent field shows a running display of computation time ("run

time"), with aresolution of 1 second.

standard run system

The Init & Run button of the RunControl panel is probably the user's first contact with

the standard run system. The standard run system isimplemented in thefile
nrn-x. x/ share/ i b/ hoc/ st drun. hoc (UNIX/Linux)

or
c:\nrnxx\1ib\hoc\stdrun. hoc (MSWindows)

which isinterpreted with a number of other files when
| oad_file("nrngui.hoc")

is executed or the nr ngui script or icon islaunched. This system is a considerable

elaboration over the minimal "oscilloscope level” simulation

proc run() {
finitialize(-65)
fcurrent ()
while (t < 5)
fadvance()

which integrates a cell specification fromt =0tot =5 ms. The elaborations consist of
various parameters and hooks for starting and stopping the simulation and obtaining
information during the simulation run. Toolsthat involve the analysis of simulation

results, e.g. optimization tools such as the Multiple Run Fitter, assume the existence of a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

run() procedureto carry out their evaluation of the difference between simulation result

and data.

Understanding a few aspects of the standard run system is necessary in order to be
ableto write functions or objects that can work in the presence of this framework, or at
least do not vitiate it. It is generally much easier to work with and reuse components of
this system than attempt to recreate a great deal of existing functionality. Most users have
come to count on existing features that alow plotting of any variable during arun, or

easy switching between integration methods.

NEURON's standard run system was designed with | B8 ure toload replacements of

o . . standard functions after the
the realization that research requirements are quite
standard library. Otherwise the

varied, so no generic implementation will sufficein al _ _ _ _
library version will overwrite your

cases. Therefore an attempt was made to dividetherun | eron instead of the other way

process into as many elements as seemed reasonable in around.

order to make it easy for the user to replace any one of them. In most cases a replacement
procedure requires only one or two specific code statements directed toward maintaining
its standard function. The standard run system has proven to be usable without changesin
awide variety of situations, with the exception of thei ni t () procedure for initialization
(thisis discussed extensively in Chapter 8). Nevertheless, certain problems can only be
overcome by writing hoc code, or even low level C code, so it is helpful to have atour of
the sequence of events that |eads to an actual time step advance. Some details of the
following discussion may change because methods are constantly being revised to
improve performance, but the broad outline of program organization and execution will

remain the same--especially in areas that are most likely to require customization.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 7 November 27, 2004

An outline of the standard run system

The chain of execution follows the outline

run()
stdinit()
init()
finitialize()
conti nuerun() or steprun()

step()
advance()

fadvance()

Each of these routinesis very compact except for cont i nuer un() , which employs
rarely used graphical interface functions to optimize both simulation speed and graph line
drawing so that the lines seem to be drawn in real time as the ssimulation progresses. Let's

start with f advance() and work up from there.

fadvance()

For now it sufficesthat f advance() integrates all equations of the system fromt to
t +dt and then replacesthevalue of t by t +dt ; we will examine the details of this later.
The value of dt iseither set by the user when the default fixed step integration method is

used, or chosen by the integrator if the variable step method is used.

advance()

Theadvance() routine

proc advance() {
fadvance()

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

provides the hook for doing any desired calculations before and/or after each time step.
With the default fixed step method, anything is alowed. That is, we may change any state
or any parameter, including dt . Each advance takes place as though it starts from a new
initial condition without any previous history. Things are not so easy with the variable
time step methods. Although it is safe to evaluate any variable and save it in an array or
writeit to afile, changing a parameter or state is not allowed unless we execute
cvode.re_init () after thechange. Thisis because CVODE saves state and derivative
information from previous steps and assumes that all coefficients and states are
differentiable up to its current order of accuracy. Changing a parameter or state
constitutes a new set of equations, which constitutes a new problem. The only ways that
time-varying parameters may be simulated with variable step methods is in the context of
amodel description or by using the interpolated form of Vect or . pl ay() (see Time-

dependent PARAVETER changes in Chapter 9).

step()
advance() iscaled by the st ep() procedure, which isimplemented as

proc step() {local i
if (using_cvode_) {
advance()
el se for i=1,nstep_steprun {
advance()

}Pl ot ()

The idea behind this function is that numerical accuracy may require asmaller time step
than needed for plotting. That is, the interval between plots (call it Dt) isan integral

multiple of the underlying f advance() timestep dt . Thisintegral multipleis calculated

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 7 November 27, 2004

Page 8

inaset dt () functionwhich reducesdt if necessary Adding an object that can carry out

to ensure that the Dt stepslie on adt boundary. The certain specific methods to one of

RunControl panel has afield editor labeled Points the gr aphLi st scan be an effective

. . . way to perform special tasks durin
plotted/ms which displays the value of the variable yop ® J

asimulation. One advantage over

st eps_per _ms. Thisvalue, along with dt , is used
replacing pr oc st ep() isthat

to calculate nst ep_st epr un and perhaps modify dt objects can automatically add

whenever either changes by calling set dt () . One themselves to, and remove

can see that when CVODE is active, astepisjust a themselves from, these lists.

single advance. At the end of a step, the Pl ot () procedure iterates over al the G aphs
in the various plot lists that need to be updated during a ssimulation run. The purpose of
these listsis detailed later in this chapter (see Incorporating G- aphs and new objects

into the plotting system).

st eprun() and conti nuerun()

The st ep() procedureiscalled by thecont i nuer un() and st epr un()

procedures. st eprun() is

proc steprun() {
step()
flushPl ot ()

which implements the action for the Single Step button of the RunControl. It ensures that

al the plot lists are flushed so that any deferred graph updates are performed.

cont i nuer un() iscalled directly as an action by the Continue til and Continue for

buttons in the RunControl. The actionsare cont i nuer un(runSt opAt) and

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

cont i nuerun(t+runSt opl n) respectively. conti nuerun() isquitecomplex, and it
is doubtful that anyone will want to replace it with something more complicated. It takes

asingle argument which is the time at which the integration should stop.

Before every st ep(), conti nuerun() checksto seeif the st opr un variableis
nonzero; if so it immediately breaks out of itsloop. cont i nuer un() setsst opr un to0O
on entry; st opr un is set nonzero if the user presses the Stop button on the RunControl.
st opr un isaglobal variablein C so it can be checked by any C or C++ class that can
carry out multiple runs and needs to properly clean up and return, e.g. optimization
routines such as the praxis optimizer. In designing any class that manages a family of
runs, one must decide what to do when the user presses Stop. If st opr un becomes
nonzero but the class ignoresit, the current smulation run will end and the next run in the

family will start.

cont i nuer un() usesthe stopwatch to count the secondsin a variable called
real ti me whileit isexecuting, and thisvalueis displayed in the Real Time field editor.
The resolution of the stopwatch is one second, and after each second the plots are flushed
with a special method that avoids redrawing the portions of lines that are already plotted,
al field editors are updated if the values they are watching have changed, and any
outstanding events are handled (otherwise pressing the Stop button would have no
effect). Actually, to give more rapid response to events, the doEvent s() functionis
called at every step for the first two seconds and |less often after that to avoid overhead if

steps are very fast.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

Page 10

The NEURON Book: Chapter 7

When cont i nuer un() hasreached
its stopping time, a full flush of all the
plotsis done. Plots are flushed at
intermediate times only if the variable
st drun_qui et isO; thisvariableis
toggled by the Quiet checkbox in the
RunControl. Drawing plots on the screen
is expensive and considerable speedup
can often be seen if plotting is deferred to
the end of arun. However, it often seems
worth the penalty to view the progress of

asimulation.

run()

Therun() procedure

proc run() {
stdinit()
conti nuerun(tstop)

}

November 27, 2004

"On one side hung a very large oil-painting so
thoroughly besmoked, and every way defaced,
that in the unequal cross-lights by which you
viewed it, it was only by diligent study and a
series of systematic visitsto it, and careful inquiry
of the neighbors, that you could any way arrive at
an understanding of its purpose. Such
unaccountable masses of shades and shadows, that
at first you almost thought some ambitious young
artist, in the time of the New England hags, had
endeavored to delineate chaos bewitched. But by
dint of much and earnest contemplation, and oft
repeated ponderings, and especially by throwing
open the little window towards the back of the
entry, you at last come to the conclusion that such
an idea, however wild, might not be altogether

unwarranted."”

isinvoked as an action by the Init & Run button to initialize the system and integrate up to

t st op, i.e. the value shown in the Tstop field editor of the RunControl. The initialization

process is discussed at length in Chapter 8, but we should note that st di ni t ()

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

real ti me=0
startsw()
setdt ()
init()
initPlot()

}

calsinit()
proc init()

{
finitialize(v_init)
fcurrent ()

The NEURON Book: Chapter 7

which is generally the only function in the system that needs to be replaced in order to

implement complex initialization strategies.

Details of f advance()

Thef advance() functionisimplementedinnrn. ../ src/ nrnoc/fadvance. c.

In one form or another, f advance() has
always been the workhorse of the
NEURON simulator, dating back to before
NEURON's progenitor CABLE and even
prior to the hoc interpreter, when al PDP8
FOCAL (FOrmula CAL culator) functions
had to begin with the letter f . One could
easily dowithoutanfinitialize()
function, since the interpreter overhead for

computing steady statesis small compared

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

"From the chocks it hangsin a dight festoon over
the bows, and is then passed inside the boat
again; and some ten or twenty fathoms (called
box-line) being coiled upon the box in the bows,
it continues its way to the gunwale still alittle
further aft, and is then attached to the short-warp
--the rope which isimmediately connected with
the harpoon; but previousto that connexion, the

short-warp goes through sundry mystifications

too tedious to detail ."

Page 11

The NEURON Book: Chapter 7 November 27, 2004

to the computational effort of taking t st op/dt stepsto do asimulation. But fast
integration is most naturally carried out in compiled code, which is on the order of a

hundred times faster than the interpreter.

Extending NEURON's numerical methods and simulation domain has been an
incremental process carried out over severa years. It may help to understand the current
structure of f advance() if wefirst consider how it evolved. The order of additions was
CVODE (variable order, variable time step integrator), Net Con (event delivery system),
Li near Mechani sm(overlay of algebraic equations onto the Jacobian), and DASPK
(differential algebraic solver). Each major increase in functionality reused as much of the
existing functions and program structure as possible, but a few functions needed small
changes so they could support both the old and new methods. These increasesin
functionality also had to be usable with the least amount of effort on the part of the user.
For example, turning variable time step integration on or off can be done by clicking on a

checkbox in the NEURON Main Menu / Tools / VariableStepControl panel.
Our dissection of f advance() followsitsevolution by

e reviewing the details of what happens during classical fixed time step integration, i.e.
the fully implicit (backward Euler) and Crank-Nicholson methods. Topics examined

include the strategies that account for NEURON's reputation for speed:

1. exploiting the tree topology of the branched nerve equations. Tree topologies
require exactly the same number of add/multiply/divide operations as asingle

unbranched cable.

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

2. using a staggered time step to avoid Newton iterations of HH-like nonlinear
channels. This gives the second order Crank-Nicholson method the same

performance per time step as the first order implicit method.

3. using rate tables involving the value of dt . This optimizes the analytic integration

of channel states by trivial assignment statements like mem+mexp* (m nf - n) .
e discussing the variable time step, variable order ordinary differential equation solvers.

e walking through the operation of the local variable time step method to learn how it

works and how it handles discrete events.

Many of these items are closely related to each other, so we must occasionally mention

later additions to complete the discussion of earlier ones.

The fixed step methods: backward Euler and Crank-Nicholson

It is easiest to understand the reasons for the particular sequence of actionsif we
focus on the second order correct Crank-Nicholson method (CV ODE is inactive and the
global variable secondor der has the value of 2). Assume that, on entry to f advance() ,
thevalueof t ist ent ry, the voltages are second order correct at t ent r y, and the gating
states are second order correct at t ent ry + dt /2. The last assumption may seem odd, but

we will see how it helps accelerate integration.

When the Crank-Nicholson method is chosen, the purpose of f advance() isto

integrate the voltages and states such that, on exit from f advance() ,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 7 November 27, 2004

t =tentry +dt (cal thistexit)
v and concentrations are second order correct at t exi t
gating states are second order correct at t exi t +dt /2
and as a side effect
ionic currents are second order correct at t exi t - dt /2
Notice that these exit conditions satisfy the entry conditions for a subsequent call to

fadvance().

One might object that the entry assertions are not satisfied at t = 0 since the gating
states are second order correct at time O, not time dt /2. We'll discuss thisin detail,
however second order correctness refers to the integrated error over a specific time

interval Dt as more and more dt steps are used. The local error over asingledt step for

second order correctnessis proportional to dt 2 and for first order correctnessit isdt 2. So

aslong as dstate/dt =0 at t = O, asit must be in the steady state, the error associated with

using state(t = 0) as the value of state(t = dt /2) isitself proportional to dt 2 and is aonce-
only error which does not accumulate for each dt time step. If non-steady state
initializations are performed, then the gating states should be adjusted to their values

according to state = state + dstate/dt - dt /2.

For the default backward Euler and Crank-Nicholson methods, the sequence of

operations carried out by f advance() is

1. Check to seeif any voltages or other variables that are sources for Net Con objects

have reached threshold. Deliver any discrete events whose delivery timeisearlier

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

thant ent r y+dt / 2. With fixed step methods, events necessarily lie on time step

boundaries, so this certainly delivers all events outstanding at timet entry.

The function that carriesthis out (Net Cvode: : del i ver _net _event s() in

nrn. ../ src/ nrncvode/ net cvode. cpp) first appendsthe value of st at e at

t ent ry to the corresponding Vect or according to the list defined by
cvode.record(&state, vec, tvec) statements. Thislistismost useful with
the local variable step method; indeed, thisis the only meaningful way at thistime to
retrieve results from a simulation that uses local variable time steps, sincet valueson
return from a sequence of f advance() callsare not monotonic and only a small
fraction of states (thestatesinonly onecdl) isintegrated on asinglef advance() (see
Local time step integration with discrete events below). Of course,

cvode. r ecord() alsoworkswith the fixed step methods.

Asof version 5.4, Vect or sthat are played or recorded at specific times are handled

as a segquence of discrete events.

2. When Vect or. pl ay() istreated as an interpolated (continuous) function, values are
interpolated at time =t ent r y+dt /2. The syntax Vect or . pl ay(&var) , which has no
specific time Vect or or declared play interval, cannot be used by variable step
methods and is therefore deprecated. However, in case you find it in old code, we
mention that Vect or . pl ay(&ar) makesvar receiveitsvalue from the next Vect or
element; thusthefirst f advance() afterfinitialize() will assignVector. x[1]

tovar.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 7 November 27, 2004

3. The matrix equation for voltage is set up with the global variablet =t ent r y+dt /2.
Thisisdone by caling the function set up_tree_matri x() in
nrn.../src/nrnoc/treeset.c.Priortoversion5 NEURON was limited, as the
names of this function and file imply, to coupled voltage equations with the topol ogy
of atree, i.e. each voltage node had at most one parent node. Thisis not only well-
matched to neuronal structure, but also has the attractive property that solution of
linear equations with this structure by Gaussian elimination takes exactly the same
number of arithmetic operations as if the equations had the topology of an
unbranched cable with the same number of nodes. It isthe tree structure which makes
the simulation time proportional to the number of voltage nodes. Speed suffers when
the topology is not equivalent to atree, e.g. when gap junctions, linear circuits, or the
extracellular mechanism is present. Completely general graph structures have a worst
case Gaussian elimination time which is proportional to the cube of the number of

voltage nodes.

The purpose of theset up_t ree_mat ri x() function isto create the algebraic
equation for each node. In abstract termswe are setting the problem up as a matrix

eguation in the form

M V(tgy,+ At) = r.hs. Eq. 7.1a

("r.h.s." =right hand side) for the backward Euler method, or

At Eqg. 7.1b
entry+ 7) = r.h.S. q

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

for the Crank-Nicholson method. Tree structures are very similar to tridiagonal cable
equations. For unbranched cables the most straightforward description of the spatially

discrete cable equation has a row structure

bv, i+ divi+av,, ,=rhs, Eq. 7.2

and each coefficient and variable in the row is kept in a node structure (b, d, and a are
the subdiagonal ("below"), diagonal, and supradiagonal ("above") elements of M).
Generalization to atree preserves the association of b, d, v, and r.h.s. in the node
equation. The only change isthat Node. a (see next paragraph) refers to the matrix

element in the parent node equation.

Setup of the matrix equations begins by first checking aflag to see if any
diameters or section lengths have changed, and if so, recal culating the two connection
coefficients between anode and its parent. These connection coefficients are both
stored in the node. Node[i] . b isthe resistance between nodei and its parent
divided by the area of the node. Node[i] . a isthe same thing but divided by the area
of the parent node. Next, the d and r.h.s. elements of al nodes are set to zero in
preparation for incrementally adding conductance and current contributions to them.
The a and b elements of the matrix generally do not change during a simulation.
Fortunately, they are not destroyed during Gaussian elimination and so only need to

be computed when the morphology changes.

At this point the membrane current and conductance contributions to the node
equations are added to r.h.s. and d respectively. Thisis done by calling thenr n_cur

functions of every mechanism in every node (pointers to these functions are kept in

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 7 November 27, 2004

Page 18

the menb_f unc[type] . current structure). These functions are the model
description translation of the BREAKPOI NT block. The most common usage of the
BREAKPO NT block in amodel description isto calculate channel currents from the
values of STATE variables and membrane potential v (see Chapter 9). Inthe
translation of a BREAKPO NT block, the SOLVE statement information, which tells
how to integrate the STATE variables, is segregated into anr n_st at e function (see
step 6 below), and the remaining statements are used to construct anr n_cur r ent
function which takes voltage as an argument. The nr n_cur r ent functionis called
twice by the nr n_cur function, once with an argument of v + 0.001 and then with an
argument of v, in order to calculate the numerical derivative di/dv aswell asthe
current. Thenr n_cur function then adds the di/dv value to the diagona element
Node. d (i.e. the diagona element of the Jacobian) and the value of - i totheright

hand side element Node. r hs. The form of this expression follows from the current

conservation equation evaluated at t + At

Av, di AV.— AV, V.
C—+—LAav -y —L T j(v(t)+ — Eq. 7.3
At Qv | ; area, ry e ; area, ry
where
. . dii Ea. 7.4
Ii(vi(t+At))=Ii(vi(t))+AViW q. /.
|

All terms that are proportional to Av go into the matrix (left) side of Eq. 7.1, and all

constant terms or product terms of v(t) go into the right hand side. If Avj refersto the

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

parent of node i, the coefficient 1/area, Fij istheith node's b element (see Eq. 7.2); if
Avj refersto achild, the coefficient is the child node's a element.

4. Thenrn_sol ve() functioninnrn.../src/nrnoc/ sol ve. c iscalled to solve the
voltage node equations. Normally these equations are tree-structured, which allows
use of triangularization and back substitution functions that are specifically crafted to
minimize pointer arithmetic overhead by taking advantage of the details of our Node
structureinnrn. . ./ src/ nrnoc/ secti on. h. This step executes approximately
twice asfast as the more general sparse matrix Gaussian elimination package
necessary for non-tree structures. However this has less significance than it appears
since Gaussian elimination of tree structures takes much less than half the time

required to set up equations containing channel currents. On exit fromnr n_sol ve()

ther.h.s. field of the Node structures contains the values of Av.

If secondor der is2thenthe Nowadays, voltage clamp models are best

. implemented as linear mechanisms. VVoltage
currents are updated with acall to

and current states in such a model are
second_or der _current, which uses _ _
computed simultaneously with the membrane
di _i on/ dv aong with Av to compute potential, so the i ssues associated with

the second order correct ionic currentsat | Staggered time steps do not arise.

t ent r y+dt /2. Thereforewhen f advance() returnsandt istentry +dt, the
ionic currents are second order correct at t - dt /2. Note that individual currents
associated with particular channel mechanisms and available to the interpreter as
ASS| GNED variables are not updated to be second order correct. That is, individua

model description current variables are approximated by g(texit - dt/2)*(v

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 7 November 27, 2004

Page 20

(texit-dt) - erev).Without specia attention to this problem, model
descriptions of voltage clamp currents that are appropriate for the internal use made
of them during f advance() would be complete nonsense when plotted, since they
do not take into account the large change between v(texit-dt) andv(texit).
For thisreason, particularly stiff models, such as voltage clamps, are careful to

recal cul ate the current variable within the block called by the BREAKPO NT's SOLVE

statement (see step 6 below), which occurs when the voltage valuesare at t exi t .

For fixed step methods, one should always compare plots of individual model
current and conductance variables with their time courses computed with smaller dt .
In some cases it may be useful for plotting to introduce a FUNCTI ONinto the channel
model which uses the present values of t , v, and STATESto return the consistent first
order values of those currents. Equivalently, one could call f current () on return
fromf advance() (fcurrent () carriesout step 3) to reevaluate the currents and

conductances at the present values of t , v, and STATES.

With the variable step methods (see below), al variables have their appropriate
values at t exi t . One of the most significant benefits of the variable time step
methods is the ease of plotting current and conductance variables at the accuracy of

the underlying computation.

The voltages are updated using the equation v = v + r.h.s. for the backward Euler
method and v = v + 2 r.h.s. for the Crank-Nicholson method. The global variablet is

settotentry +dt.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

6. nonvi nt () iscaled, which integrates all states EXCEPT the voltages. Thisis done
by executing the nr n_st at e function for every mechanism in every segment of
every section (pointersto these functions are kept inthemenb_f unc[t ype] . stat e
structure). These functions are the model description translation of the SOLVE
statement in the BREAKPOI NT block. Sincev isnow at t ent ry + dt , or the midpoint
of theintegration interval fromt ent ry + dt + dt /2, second order correct integration
schemes that treat v as a constant in the integration interval remain second order
correct. Specifically, the analytic integration of Hodgkin-Huxley-like channel gating

states, e.g.

m(t + 2% = m(t — A4
2 2 Eq. 7.5

B At
e At/tau(v(t))) ((t——=))

+(1 My (V(t)) —m >

where v(t) is assumed constant, is second order correct for smooth functions of v. It
should be remembered, however, that the calculation of misonly first order correct
with the fixed step method (i.e. backward Euler) since the value of v itself isonly first

order correct.

When fixed step methods were used exclusively, it was common practice to factor

the integration statement into the form
m=m+ mexp(v)*(mnf(v)-m

where mexp and m nf were calculated with fast interpolated table |lookup. However,
since the nexp table is dependent on the value of dt , this no longer works with

variable step methods. Of course, m nf and nt au could still be stored in tables, but

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 7 November 27, 2004

the speedup is marginal, and in these days of fast floating point processors, m nf and

mt au have to be quite complicated to justify the use of tables.

7. All variables that are recorded dueto Vect or . recor d(&vari abl e) statements
(i.e. without an associated sampling interval or Vect or of recording times) are stored
inthe Vect or elements associated withtimet ent ry + dt . Starting with version 5.4,
sampling times specified by a sampling interval or Vect or of recording times are

handled by the discrete event system.

Adaptive integrators

Our chief aim hereisto see how adaptive integration operates in the context of a
simulation, and in particular how it fitsin with the event delivery system. Mathematical

aspects of adaptive integration are discussed more thoroughly in Chapter 4.

Adaptive integrators adjust the time step and order of integration so that the local
error for each state is less than a user-specified tolerance. For agiven dt they are three
times slower than the fixed step methods, because calculating the local error involves a
lot of overhead and it isno longer is possible to use dt -dependent rate tables or avoid
Newton iterations. However, the time step can be so large during interspike intervals that
total run time is often amost an order of magnitude faster than with fixed step methods
yielding the same accuracy. From the user's perspective, a potentially more important
advantage of adaptive integration isthat it eliminates the need for trial and error
adjustments of dt in order to achieve satisfactory accuracy; instead, one merely specifies

the local step accuracy and the integrator does the rest.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

In models that involve asynchronous events, adaptive integration can improve
simulation accuracy by guaranteeing that all events occur at their specified times (see
below), rather than being forced to adt step boundary as they do with fixed time step
methods. Furthermore, al variables are computed at the same model time, so there is no
need to wonder whether to plot avariableat t , t +dt /2, or t -dt /2 (see step 4 under The

fixed step methods: backward Euler and Crank-Nicholson above).

Adaptive integration was first added to NEURON starting with CVODE (Cohen and
Hindmarsh 1994; 1996) for global time steps in version 4.0, and this was extended to
local time stepsin version 4.1. The original CVODE required modifications in order to
work with modelsthat involved at _t i ne() events, which were used to implement

abrupt changes of a parameter or astate. A strategy for dealing with an event that occurs

at t, o iSto stop integration at t change the parameters or states that are modified by

event’

the event, calculate anew initial condition at t and then resume integration.

event’
However, the CVODE integrator had no provision for stopping at a specified time, so it
needed custom revisions. DASPK (Brown et a. 1994), which was subsequently added to
deal with models in which some states are determined by algebraic equations (e.g.
extracellular fields or linear circuit elements), had a specifiable stop time beyond which
the integrator would not proceed, so it had avery different way of handling at _ti me().
It would have been nice if DASPK could simply have replaced CVODE, but DASPK did
not directly support the interpolation operation needed by the local step method, and it
has even more overhead per step than CVODE. Therefore a significant amount of code

was required to provide the logical machinery that would make all these different pieces

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 7 November 27, 2004

of the NEURON simulation environment work properly with each other, while at the
same time allowing users to easily switch between the various integrators. The later
addition of an delivery system to NEURON greatly increased the complexity of the code

that ties all these pieces together.

This complexity has been much reduced in the most recent releases of NEURON by
replacing CVODE and DASPK with CVODES and IDA of the SUNDIALS package
(available from ht t p: / / ww. | | nl . gov/ CAST sundi al s/). CVODES (Hindmarsh and
Serban 2002) is similar to CVODE but acceptsat st op beyond which the solution will
not proceed, and IDA (Hindmarsh and Taylor 1999) isanew Initial value Differentia
Algebraic solver version of DASPK which now does support the interpolation operation.
However, for historical reasons the class that is used to manage adaptive integration in
NEURON is called Cvode, and in this book we often use the term "CVODE" as ageneric

reference to any of NEURON's adaptive integrators.

The normal CVODE integration step consists of a prediction followed by a
correction. Generating the prediction involves an evauation of f(y, t) (see Eq. 4.28aand
4.29a) which consumes most of the computational effort in an integration step. When
CVODE returns, all STATES have the correct values at the new time, but the ASSI GNED
variables (which include currents) still have their "predicted” values. Correcting the
ASSI GNED variables requires another evaluation of f(y, t), but this nearly doubles the
total computational overhead per integration step. For many purposes the uncorrected
values are sufficiently accurate, and tightening the error tolerance takes care of most

cases when it is not. Future releases of NEURON will apply the correction by default but

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

may offer users the option of disabling the ASSI GNED variable correction with the extra

call tof(y, t) after a CVODE step.

Now we are ready to see how the solution proceeds when adaptive integration is used.
We start with local variable step integration, and then briefly consider global step

integration.

Local time step integration with discrete events

In local time step integration, an independent CVV ODE method is created for each
cell, and the solution for each cell moves forward at its own pace. As with fixed time step
integration, at the hoc level onerepeatedly callsf advance() to makethe smulation
progress in time. However, at any point in the ssimulation the cells are all at different
times, managed by their individual CVODE instances, so f advance() isnot very useful
as ameans for governing the plotting or recording of data; instead, special CVODE-

specific procedures are employed.

It isalso not very useful to think about the process of integration in terms of
f advance() cals. For amuch better understanding of what is going on, we will focus
on the sequence of elementary actions, or "microsteps,” that are applied to individual
cells. There are three kinds of microsteps, and they are called initialize, advance, and

interpolate because of how they affect each cell's time--but more about this shortly.

When local time steps are used, there is a queue of event times and a queue of cell
times. The event times are the times at which events are to be delivered, and the cell
times are the current times of each cell in the model. Executing a simulation consists of

repeatedly checking these queues and dealing with whichever is earliest: the earliest

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 7 November 27, 2004

event or the earliest cell. If thereis atie, the event is handled first. Handling an event

removes the event from the event queue, but when acell is handled the cell isjust put

back into the cell queue with a new time.

Each cell hasthree variables, caledt 0,t _, andt n, that are related to the progress of

the simulation intime. t _ isthe current time of the cell and determinesits position in the

cell queue; the significance of t 0 and t n will become clear in the next few paragraphs.

Handling a cell involves carrying out a microstep, which leaves these variables in one of

the configurations shown in Figure 7.2. For the purpose of illustration, we assume that

before the microstep is taken, the cell startswitht 0,t _, and t n as depicted in the top

row of thisfigure.

1.

2.

Page 26

Initialize: reset the integrator at timet and then return. Before an initialization, the
user may assign any values whatever to the states and parameters. Those values,
along with the equations, define a new initial value problem. After initializationt 0,

t ,andtnareadlequatot.

Advance: perform anormal integration step to some new timet and then return. This
involves computing values for the STATES and ASSI GNED variables at some new time

t,updatingt 0 totheoldt n,and makingt _andt n equal tothenew t .

Inter polate: return just beforethetimet ., Of the next event. On exit from

fadvance(),t_ liesbetweent 0 and t n with avalue equal to t . STATE values

event
att _ are calculated from their valuesat t n, t 0, and prior solution points according to
CVODE's interpolation formulas (this is much less costly than a numeric integration

step). If anintegration step carriest n past the time of an event, or if anew event

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

arriveswitht o <t _, interpolation will be applied sothat t _ retreatstot .,,qp -

However, acell can't retreat to atime earlier thanitst 0. If there are multiple cells,

thelargest t 0 isthe "least event time," i.e. the time before which no cell can retrezat.

Before microstep O o ()

to t_ tn

After microstep

initialize

advance O

-
=3

interpolate O o0

to t_ tn

Fig. 7.2. After amicrostep, the relative positions of t 0 (black open circle), t _
(blue dot), and t n (red filled circle) in time depends on whether the microstep
performed an initialization, a normal integration step, or an interpolation to just
before the next event. The small grey circle after initialize and advance marks
the former location of t 0. Time increases toward the right in each row.
Note that the STATE and ASSI GNEDvaluesatt _ andt n are "tentative" because an
event may arriveinthe[t 0, t n] interval that requires a new initialization and forces the

solution into anew trajectory. Thevaluesat t 0 are "rea" in the sense that a cell cannot

retreat to atime earlier than itsown t 0.

If multiple events occur at the same time, they are all handled. If more than one of
these requires an initialization, the initialization is deferred until after all simultaneous

events are handled. Thusif there are 4 events at the same time and 3 of them require

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 7 November 27, 2004

initialization, each event will be handled but there will be only one initialization, whichis

performed after all four have been handled.

To make this more concrete, let's walk through a hypothetical ssimulation of a small
network model using the local variable time step method. This model has two neurons
called 1 and 2. A Net Con delivers eventsto an excitatory synapseon cell 1, and cell 1
projects via another Net Con to a synapse on cell 2. In the following discussion the "step”
number refers to how many microsteps have been taken, the "action" is what kind of
microstep it was, and the "outcome” is a diagram that shows the relative positionsin time

of eventsand each cell'st 0,t _,and t n.

Step, action, and outcome Comments
0. Initialize the model

L L 5 Thisisdoneby finitialize().Noticethatt0 =
@ I I I t_=tn=t =0ms. Alsothree events are placed in
the event queue, two for cell 1 and onefor cell 2, at
2@
‘ the indicated times.
Therearenoeventsatt =0ms. ..
1. Advancecell 1
L L 5 ... so thefirst microstep advances one of the cells.
| | | : . .
For the sake of illustration, we'll it advances cell
10 e say
1. This makes 2 the earliest cell.
2@

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

2. Advancecell 2

L L) Cdl 2'st _ andt n move past the earliest event, but
I I I that's OK because the event isn't for cell 2. Cell 1is
10)
now earliest.
1@) ()
3. Advancecell 1
L L) Cdl 1'st _ andt n move to anew time. Notice how
| | | : . . . -
t 0 follows behind t n, jumping from its original
L O PS Jjumping g
location (marked by the small "ghost” circle) to the
1@) @ _ _ .
‘ ‘ prior location of t n. But also noticethat t _ has

moved past an event for cell 1.
4. Interpolate cell 1

L L 5 Cdl 1'st _ retreatsto the event time, and its STATES
| | | . .
at_ arecalculated by interpolation. We arer
to handle the event.
Q) ()
Handle the event
L 5 Handling the event removesit from the event queue.
| |
1 O o @ Cell 1lisdtill earliest. Let's say the event we just
handled didn't do anything to cell 1 that forces
20O ® ything
‘ initialization . . .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 7

5. Interpolate cell 1

November 27, 2004

...socell I'strgectory isn't affected. There are no

6. Advancecell 2

7. Advancecell 1

8. Interpolate cell 1

1 2
° : : events between itscurrenttimet _andtn, sot _
can be moved right up to t n, as shown here.
Technically speaking thisis an "interpolation” even
though no real calculations are involved.
The earliest cell is now cell 2.
1 2
I I
e
L
L We have seen this before.
I I
O .
e
L It is now timeto deal with theevent . ..
I I
Qe o

Page 30

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

Handle the event

9. Initialize cell 1

10. Advancecell 1

11. Advancecell 1

The NEURON Book: Chapter 7

... which removesit from the queue.

And it's also time to introduce a little excitement.
Unlike thefirst event, which didn't affect cell 1's
trajectory, we'll stipulate that this one was delivered
to the excitatory synaptic mechanismon cell 1 by a
Net Con with a strong positive weight, causing an
abrupt change in one of the that mechanism's
parameters. This means the next microstep hasto

initialize cell 1.

Noticethat cell 1'st 0,t _ andt n are exactly at the

handled event time.

The strong synaptic input drives cell 1 toward firing
threshold. Since its membrane potential is changing
rapidly, satisfying the error criterion requires short

advances.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 7

Cdl 1 generatesa spike event . . .

2 O)

... which isinserted into the event queue

2 2
| |
1 @)
2 O (3
12. Advancecell 1
2 2
| |
1 O e
2 O (3
13. Interpolate cell 2
2 2
| |
1 O e
2 O ° [

November 27, 2004

That last advance took cell 1 over the threshold of

the Net Con that monitors its membrane potential.

The spike event will be delivered to the synapse on

cell 2 at the new timeindicated in this figure.

Cel 1listheearliest cell now . ..

... and again. But it has moved past the spike event
for cell 2, so that becomes the next thing to deal

with.

Cell 2 retreats to the time of its event.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

Handle the event

The event disappears from the event queue.

14. Initidize cell 2

The event caused an abrupt change in avariablein

cell 2's synapse, requiring initialization.

From the user's standpoint, thisis all easier done than said, thanks to the behind-the-

scenes coordination of adaptive integration and discrete eventsin NEURON.

Sincethe values calculated at t _ and t n are only tentative, the solution trgectory for
any cell isdefined by its sequence of t 0s paired with the variables that were computed at
those times. The CVode classsr ecor d() method captures the stream of t Osinto one
vector and the values of a user-specified range variable into another vector. Currently,
plotting of trajectoriesis controlled at the hoc level inther un() procedure on return
from f advance() . To alow normal plotting of variables with local variable time steps,
in the next version of NEURON each variable that is plotted will be associated with a

specific cell so that it can be plotted when t O for that cell advances.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 7 November 27, 2004

Global time step integration with discrete events

Global time step integration uses only one CVODE method for the entire model, soin
asenseit isjust a degenerate case of what happens with local time steps. More
particularly, in the local variable step method acall to f advance() producesa
microstep, but in the global step method calling f advance() resultsin one or more
microsteps arranged so that time increases monotonically. In fact, the global step method
isanalogous to fixed step integration in that f advance() returns before an initializing
event, after an initialization, and after a regular integration. Furthermore, on return from
f advance() thereisnever an outstanding event earlier thantimet , andt _ isaways
identical to t . Since time increases monotonically, and all cells are at the same time,
recording and plotting variables with the global step method is much more

straightforward than with local time steps.

Incorporating Gr aphs and new objects
into the plotting system

Objects that need to be notified at every step of asimulation are appended to one of
six lists. Thefirst four lists are referenced by gr aphLi st [n_graph_l i st s] and their
normal contents are G- aph objects that plot variables requested by each G- aph's
addexpr or addvar statement. Variables are plotted as line drawings in which the

abscissaisrelated tot and the ordinate is the magnitude of the variable. G- aphsare

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

added to these four lists when one of the buttons of the NEURON Main Menu / Graph

menu titled Voltage axis, Current axis, State axis, and Phase Plane is pressed.

For each variableis plotted vs.

gr aphLi st [0] t

gr aphLi st[1] t-0.5*dt

gr aphLi st[2] t +0. 5*dt

graphLi st [3] an arbitrary function of t called an x-expression

The most useful of these listsisgr aphLi st [0] , which isrecommended for al line

drawings. gr aphLi st[1] and[2] areuseful only to provide second order correct plots
of ionic currents and state variables, respectively, when the Crank-Nicholson method has
been selected through the variable secondor der =2. The offset is meaningless when the
default first order method is used (secondor der =1) because first order accuracy holds
at al ingantsintheinterval [t - 0. 5*dt, t+0. 5*dt].When the variable time step

methods are chosen, all variables are computed at the samet so the offset is 0 and the

[1] and[2] graphLi st listsareidentical to gr aphLi st [0] .

The remaining two lists whose object elements are notified at every step are called
flush_list andfast_flush_list.Thefirstisfor G aphsthat plot Vect or sthat
may change every time step. These do the Vect or movies and Space Plots requested
from a Shape plot. Thef ast _fl ush_I i st isfor Shape Plotsor Hinton plotsin which
it isnot necessary to redraw an entire cell or pattern because only a few rectangles change

color during each step.

Plotsareinitiadlized by acal fromstdi nit () toinitPlot().TheinitPlot()
procedure first removes any objects in the graph or flush lists for which there is no view

on the screen by checking the return value of thevi ew_count () method of the objects,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 7 November 27, 2004

and then callsthe begi n() method for all objectsinthe gr aphLi st s. Finaly, it calls

the Pl ot () andfl ushPl ot () proceduresto plot things properly at t =0.

The Pl ot () procedureis called at the end of each step. Pl ot () calspl ot (t) for
the gr aphLi st objects (actually the previoudy discussed offsets may be used for
graphList[1] and[2]).If stdrun_qui et iSO, Pl ot () alsocalsbegi n() and
f1 ush() methodsforitemsinthefl ush_li st sothat any Vect or plots are updated.
Lastly it callsthef ast _fl ush() method for eachiteminthefast fl ush_list so

that any color changes are seen on the screen.

During cont i nuerun(),thefast fl ushPl ot () procedureis called once at every
second of smulation time and thef | ushPl ot () procedureis called at the end.
fast_flushPl ot () callsthefast fl ush() method for each item in the four
gr aphlLi st s. Thisspecia call isvery efficient for time plots because it erases and
redraws only the portion of the lines that accumulated since thelast f ast _f | ush.
Otherwise, damaging asmall part of aline entails damaging the entire bounding box of
the line, which implies damaging all the lines that intersect the bounding box, which ends
up damaging the entire canvas and consequently requires erasing and redrawing
everything on the canvas. f | ushPl ot () callsthef!| ush() method for each item in all
six lists, which ends up redrawing everything in every canvas. While thisis expensive,

the screen accurately reflects exactly the internal data structures of the lines and shapes.

A G aph object constructed by the user with

objref g
g = new G aph()

can be added to the standard run system with

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

gr aphLi st[0] . append(g)
or perhaps even better with
addpl ot (g, 0)

since the latter will also set the abscissato rangefrom Otot st op (and the vertical axis
from -1to 1). Also, since the methods called on agr aphLi st arebegi n(), pl ot (t),
vi ew_count (),fast_flush(),flush(),andsize(x0, x1, y0, yl),anyobject
that implements these functions, even as stubs, can be appended to gr aphLi st [0] in
order to carry out calculations during arun. The SpikePlot of the NetGUI tool is
implemented in just thisway. Thisis an example of how the hoc interpreter providesa
poor man's version of polymorphism; more information about object-oriented

programming in hoc is presented in Chapter 13.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 7 November 27, 2004

References

Brown, P.N., Hindmarsh, A.C., and Petzold, L.R. Using Krylov methods in the solution
of large-scale differential-algebraic systems. S AM Journal of Scientific Computing

15:1467-1488, 1994.

Cohen, S.D. and Hindmarsh, A.C. CVODE User Guide. Livermore, CA: Lawrence

Livermore National Laboratory, 1994.

Cohen, S.D. and Hindmarsh, A.C. CVODE, astiff/nonstiff ODE solver in C. Computers

in Physics 10:138-143, 1996.

Hindmarsh, A.C. and Serban, R. User documentation for CVODES, an ODE solver with

sensitivity analysis capabilities: Lawrence Livermore National Laboratory, 2002.

Hindmarsh, A.C. and Taylor, A.G. User documentation for IDA, adifferential-algebraic
eguation solver for sequential and parallel computers. Lawrence Livermore National

Laboratory, 1999.

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

Chapter 7 Index

A
ASSIGNED variable

accuracy 19,24

backward Euler method 12, 13
BREAKPOINT block
SOLVE 18, 20, 21

translation of 18, 21

CABLE 11
computational efficiency 9, 36
computational efficiency
tree topology 12, 16, 19
Crank-Nicholson method 12, 13
local error 14
second order correct plots 35
staggered time steps 13, 19

CVODE 23

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 7 November 27, 2004

and model descriptions
at_time() 23
as generic term for adaptive integration 24

CVode class 24

re_init() 7
record() 15, 33
CVODES 24
D
DASPK 23
diameter
changeflag 17
E
eguation
current balance 16, 17, 19

extracellular mechanism

computational efficiency 16

fadvance.c 11

FOCAL 11

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

functiontable 21
G
gap junction
computational efficiency 16
Gaussian elimination 16, 17, 19
Graph class
addexpr() 34
addvar() 34
begin() 36, 37
flush() 36, 37
plot() 36, 37
size() 37

view_count() 35, 37

Hinton plot 35
hoc
idiom

load_file("nrngui.hoc™)

The NEURON Book: Chapter 7

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 7 November 27, 2004

IDA 24
initialization
finitidize() 6, 11, 28
init) 5,6, 11
initPlot() 11,35

non-steady state 14

stdinit() 6, 10, 35
J
Jacobian
computing di/dv elements 18
L
L
changeflag 17
linear circuit
computational efficiency 16
M
membrane current
ionic
accuracy 19

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

NetCon
and standard run system 14
netcvode.cpp 15
NetGUI
SpikePlot
implementation 37
NEURON Main Menu GUI
Graph
Current axis 35
Phase Plane 35
State axis 35
Voltageaxis 35
Tools
VariableStepControl 12
numeric integration
adaptive
advance microstep 26

initialize microstep 26

The NEURON Book: Chapter 7

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 7

interpolate microstep 26
interpolation formulas 26
local time step 15
analytic integration of channel states 13, 21
fixed time step
event aggregation to time step boundaries
numerical error
integrated 14
local 22
]
object-oriented programming

polymorphism 37

PARAMETER variable

time-dependent 7

runtime 4, 22
RunControl

creating 2

15, 23

November 27, 2004

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

RunControl GUI
Continuefor 2,3, 8
Continuetil 2,3,8
dt 3
Init 2,3
Init& Run 2-4,10
Points plotted/ms 2,38
Quiet 2,3,10
Real Time 4,9
SingleStep 2,3,8
Stop 2,39
t 3

Tstop 3,10

secondorder 19, 35
section.h 19

Shape plot 35
Shape Plot 35

solvec 19

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 7

Space Plot 35

standard run system

Page 46

addplot() 37
advance() 6, 7

continuerun() 6, 8, 10, 36

CVODE 12
DASPK 12
doEvents() 9

event delivery system 12
adaptive integration and 22,33
cell time queue 25
event time queue 25
fadvance() 3,6,11
fixed time step 13
global time step integration 34
local time step integration 15, 25
fast_flushPlot() 36
feurrent() 11, 20

flushPlot() 8, 36

November 27, 2004

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004

Plot() 8,36

plotting system
fast_flush_list 35
flush_list 35
graphLists 34

incorporating Graphs and objects

notifying Graphs and objects 34

gpecial uses 8
realtime 911
run() 5,6, 10,33
setdt() 8, 11
stdrun_quiet 10, 36
step 3,8
step() 6-8
step()

under CVODE
steprun() 6, 8
stoprun 9

tstop 10, 37

The NEURON Book: Chapter 7

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 7 November 27, 2004

STATE variable 18
stdrun.hoc 4
SUNDIALS 24
system

siff 20

treeset.c 16

v 18
variable
abrupt change of 7,23
Vector
movie 35
Vector class
play()
at specific times 15
with interpolation 7,15
record() 22

record()

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

at specific times 15
voltage clamp
current

accuracy 20

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

November 28, 2004 The NEURON Book: Chapter 8

Chapter 8

How to initialize simulations

In most cases, initialization basically means the assignment of values at timet =0 for
membrane potential, gating states, and ionic concentrations at every spatial position in the
model. A model is properly initialized when clicking on the Init & Run button produces
exactly the same resullts, regardless of previous simulation history. Of course we assume
that model parameters have not changed between runs, and that any random number
generator has been re-initialized with the same seed so that it produces the same sequence
of "random" numbers. Models described by kinetic schemes require that each of the
reactant states be initialized to some concentration. If linear circuits are involved, initia
values must be assigned to voltages across capacitors and the internal states of
operational amplifiers. For networks and other models that use the event delivery system,

initialization aso includes specifying which events are in transit to their destinations at

time O (i.e. events generated, at least conceptually, at t < 0 for delivery at t = 0). Complex
models often have complex recording and analysis methods, perhapsinvolving counters

and vectors, and these may also need to be initialized.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 8 November 28, 2004

State variables and STATE variables

In rough mathematical terms, if a system consists of n first order differential
equations, then initialization consists in specifying the starting values of n variables. For

the Hodgkin-Huxley membrane patch (only one compartment), these equations have the

form
%z f,(m,h,n,v) Eq. 8.1ad
%-T: f,(m,v)
%: f4(h,v)
%: f,(n,v)

so that, knowing the value of each variable at time t, we can specify the dope of each
variable at time t. We have already seen (Chapter 7) that integration of these equationsis

an iterative process in which the purpose of an individual integration step (f advance())

isto carry the system from time t to time t + At using more or less sophisticated equations

of theform
V(t+AL) = v(t) + At % Eq. 8.2
dm(t*)
m(t+At) = m(t) + At .

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

where the sophistication isin the choice of a value of t* somewhere betweent and t + At.
However, regardless of the integration method, the iterative process cannot begin without

choosing starting values for v, m, h, and n. This choice is arbitrary over the domain of the

variables (-0 <v<o ,0<m<1,...), but oncetheinitial v, m, h, and n are chosen, all
auxiliary variables (e.g. conductances, currents, d/dt terms) at that instant of time are
determined, and the equations determine the trgjectories of each variable forever after.
The actual evaluation of these auxiliary variables is normally done with assignment

statements, such as

gna
i na

gnhabar *ntntnth
gha*(v - ena)

Thisiswhy the model description language NMODL designatesgna andi na as
ASS| GNED variables, as opposed to the gating variables m h, and n, which are the

dependent variablesin differential equations and are therefore termed STATE variables.

Unfortunately, over time an abuse of notation has evolved so that STATE refers to any
variable that is an unknown quantity in a set of equations, and ASSI GNED refers to any
variable that is not a STATE or a PARAMETER (PARAMETERs can be meaningfully set by
the user as constants throughout the simulation, e.g. gnabar). Currently, within asingle
model description, STATE just specifies which variables are the dependent variables of
KI NETI C schemes, algebraic equationsin LI NEAR and NONLI NEAR blocks, or
differential equationsin DERI VATI VE blocks. Generally the number of STATESin a
model description isequal to the number of equations. Thus, locally in a model
description, the membrane potential v is never a dependent variable (the model

description contains no equation that solves for its value) and it cannot be regarded as a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 8 November 28, 2004

Page 4

user-specified value. Instead, it is declared in model descriptions as an ASSI GNED
variable, even though it is obviously a state variable at the level of the entire ssmulation.
This abuse of terminology also occurs in linear circuits, where the potential at every node
is an unknown to be solved and therefore a STATE. However, aresistive network does
not add any differential equation to the system (although it adds algebraic equations), so

those additional dependent variables do not strictly need to be initialized.

While STATE variables may be assigned any values whatever during initialization, in
practice only afew general categories of custom initialization are used. Some of these are
analogous to experimental methods for preparing a system for stimulation, e.g. letting the
system rest without experimental perturbation, or using a voltage clamp or constant
injected current to hold the system at a defined membrane potential--the ideais that the
system should reach an unchanging steady state independent of previous history. Itis
from this steady state that the simulation begins at timet = 0. When there is no steady
state, as for oscillating or chaotic systems, whatever initialization is ultimately chosen
will need to be saved in order to be able to reproduce the smulation. More complicated
initializations involve finding parameters that meet certain conditions, such as what value
of some parameter or set of parameters yields a steady state with a desired potential.
Some initial conditions may not be physically realizable by any possible manipulations of
membrane potential. For example, with the hh model the h gating state has a steady state
of 1 at large hyperpolarized potentials and the n gating state has a steady state of 1 at
large depolarized potentials. It would therefore be impossible to reach acondition of h =

1 and n =1 by controlling only voltage.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Basic initialization in NEURON: finitialize()

Basic initialization in NEURON is accomplished withthefi ni tiali ze() function,
whichisdefined in nr n- x. x/ sr ¢/ nrnoc/ f advance. ¢ (UNIX/Linux). Thiscarries

out several actions.

1. t issetto 0 and the event queueis cleared (undelivered events from the previous run

are thrown away).

2. Variablesthat receive arandom stream (the list defined by Random pl ay()

statements) are set to values picked from the appropriate random distributions.

3. All internal structures that depend on topology and geometry are updated, and chosen

solvers are made ready.

4. The controller for Vect or . pl ay() variablesisinitialized. The controller makes use
of the event delivery system for Vect or . pl ay() specificationsthat define transfer

times for a step function in terms of dt or atime Vect or .
Eventsat timet =0 (e.g. appropriate Vect or . pl ay() events) are delivered.

5. Iffinitialize() wascalledwith anargument v_i ni t , the membrane potential v

in every compartment is set to the value v_i ni t with a statement equivalent to
forall for (x) v(x) = v_init

6. Thel NI TI AL block of every inserted mechanism in every segment of every section is
called. Thisincludes point processes as well as distributed mechanisms (see | NI Tl AL

blocks in NMODL later in this chapter). The order in which mechanisms are

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 8 November 28, 2004

Page 6

initialized depends on whether any mechanism has a USEI ON statement or WRI TES an

ion concentration.

lon initidlization is performed first, including calculation of equilibrium potentials.
Then mechanismsthat WRI TE an ion concentration are initialized; this necessitates
recal culation of the equilibrium potentials for any affected ions. Finally, al other

mechanism | NI TI AL blocks are called.

Apart from these constraints, the call order of user-defined mechanismsis currently
defined by the alphabetic list of nod file names or the order of the nod file arguments
to nrni vodl (or mknr ndl I). However one should avoid sequence-dependent

I NI TI AL blocks. Thusif thel NI TI AL block of one mechanism needs the values of
variables another mechanism, the latter should be assigned beforefini tiali ze() is

executed.

If extracellular mechanisms exist, their vext states are initialized to O before any other
mechanism isinitialized. Therefore, for every mechanism that computes an
ELECTRODE_CURRENT, v_i ni t refersto both the internal potential and the

membrane potential.

I NI TI AL blocks are discussed in further detail below.

. Li near Mechani smstates, if any, areinitialized.

. Network connections areinitialized. This meansthat the | NI TI AL block inside any

NET_RECEI VE block that is atarget of aNet Con object is called to initialize the states

of the Net Con object.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

9. Thel NI TI AL blocks may have initiated net _send events whose delay is 0. These

events are delivered to the corresponding NET_RECE! VE blocks.

10. If fixed step integration is being used, all mechanism BREAKPOINT blocks are
called (essentially equivalent to acall tof cur rent ()) inorder toinitialize all
assigned variables (conductances and currents) based on the initial STATE and

membrane voltage.

If any variable time step method is active, then those integrators are initialized. In this
case, if you desire to change any state variable (here "state variable" means variables
associated with differential equations, such as gating states, membrane potential,
chemical kinetic states, or ion concentrations in accumulation models) after
finitialize() iscalled, youmust thencall cvode. re_i nit () tonotify the
variable step methods that their copy of the initial states needs to be updated. Note that

initialization of the differential algebraic solver IDA consists of two very short (dt =
10°% ms) backward Euler time steps in order to ensure the validity of f (y',y)=0.

11. Vect or recording of variables using the list defined by cvode. r ecor d(&st at e,
vector) statementsisinitialized. Asdiscussed in Chapter 7 under The fixed step
methods: backward Euler and Crank-Nicholson, cvode. recor d() istheonly

good way of keeping the proper association between local step state value and local t .

12. Vect or sthat record avariable, and are in the list defined by Vect or. recor d()
statements, record the valuein Vect or . x[0] , if t = Oisarequested timefor

recording.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 8 November 28, 2004

Default initialization in the standard run system:

Page 8

stdinit() andinit()

The standard run system's default initialization takes effect when you enter anew
valuefor v_i ni t into the field editor next to the RunControl panel's Init button, or when
you press either RunControl panel's Init or Init & Run button. These buttonsdo not cal the
i nit() proceduredirectly but instead execute a procedure called st di ni t () which has

the implementation

proc stdinit() {
realtime=0 // "run time" in seconds
startsw() [l initialize run time stopwatch
set dt (
init()
[Pl

)
t
initPlot()
}

set dt () ensures (by reducing dt , if necessary) that the points plotted fall on time step
boundaries, i.e. that 1/ (st eps_per _ns*dt) isaninteger. Thei ni t Pl ot () procedure

begins each plotted lineat t = 0 with the proper y value.

Thedefaulti ni t () procedureitselfis

proc init() {
finitialize(v_init)
/1 User-specified custom zati ons go here.
[/ If this invalidates the initialization of
/1 variable time step integration and vector recording,
;/ uncomment the follow ng code.
*
i f

(cvode. active()) {
cvode.re_init()
} else {
fcurrent ()

frecord_init()
*/

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Custom initialization is generally accomplished by inserting additional statements after
thecall tofinitiali ze(). These statements often have the effect of changing one or
more state variables, i.e. variables associated with differential equations, such as gating
states, membrane potential, chemical kinetic states, or ion concentrations in accumulation
models. Thisinvalidates the initialization of the variable time step integrator, making it
necessary to call cvode. re_i ni t () tonotify the variable step integrator that its copy of
theinitia states needsto be updated. If instead fixed step integration is being used,
fcurrent () should be called to make the values of conductances and currents
consistent with the new states. Changing state variables after callingfini tiali ze()
can also cause incorrect values to be stored as the first element of recorded vectors.

Addingfrecord_init() totheendofinit () preventsthis.

| NI TI AL blocks in NMODL

I NI TI AL blocks for channel models generally set the gating states to their steady
state values with respect to the present value of v. Hodgkin-Huxley style models do this
easly and explicitly by calculating the voltage sensitive a pha and betarates for each

gating state and using the two state formulafor the steady state, e.g.

PROCEDURE rates(v(m)
/ (al

m nf = al pha(v)/(a %hg(v) + beta(v))

}
and then
I NITIAL {
rates(v)
m = m nf
} .o

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 8 November 28, 2004

When channel models are described by kinetic schemes, it is common to calculate the

steady states with the idiom

INITIAL {
SCLVE schene STEADYSTATE sparse
}

where schene isthe name of aKl NETI C block. To place thisin an amost complete
setting, consider thisimplementation of a three state potassium channel with two closed

states and an open state:

NEURON {
USEI ON k READ ek WRI TE ik
}
STATE { c1 c2 o}
INITIAL {
SCLVE schene STEADYSTATE sparse
}
BREAKPO NT {
SCLVE schene METHCD sparse
ik = gbar*o*(v - ek)
}

KI NETI C schene {
rates(v) : calculate the 4 k rates.
~cl <->c2 (k12, k21)
~ c2 <-> o0 (k20, ko2)

}

(ther at es() procedure and some minor variable declarations are omitted for clarity).
As mentioned earlier in Default initialization in the standard run system: st di ni t ()
and i ni t (), wheninitialization has been customized so that states are changed after
finitialize() hasbeencaled,itisgeneraly useful to call thef current () function
to make the values of al conductances and currents consistent with the newly initialized
states. In particular thiswill call the BREAKPO NT block (twice, in order to compute the

Jacobian (di/dv) elements for the voltage matrix equation) for all mechanismsin all

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

segments, and on return the ionic currents such asi na, i k, andi ca will equal the

corresponding net ionic currents through each segment.

Default vs. explicit initialization of STATEsS

In model descriptions, a default initialization of the STATES of the model occurs just
prior to the execution of the | NI TI AL block. However, this default initialization israrely
useful, and one should always explicitly implement an | NI TI AL block. If the name of a
STATE variableis st at e, then there is also an implicitly declared parameter called

st at 0. The default value of st at e0 is specified either in the PARAMETER block

PARAVETER {
state0 = 1

}
or implicitly in the STATE declaration with the syntax

STATE {
state START 1

}

If aspecific value for st at e0 isnot declared by the user, st at e0 will be assigned a
default value of 0. st at e0 isnot accessible from the interpreter unlessit is explicitly

mentioned in the GLOBAL or RANGE list of the NEURON block. For example,

NEURON {
GLOBAL 1D
RANGE hO

}

specifiesthat every mwill be set to the single globa nD value during initialization, while
h will be set to the possibly spatially-varying hO values. Clarity will be served if, in using

the st at e0 idiom, you explicitly usean | NI TI AL block of the form

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 8 November 28, 2004

I NITIAL {
m= nmD
h = hO
n = no

}

lon concentrations and equilibrium potentials

Each ion type is managed by its own separate ion mechanism, which keeps track of
the total membrane current carried by the ion, itsinternal and external concentrations,
and its equilibrium potential. The name of this mechanism isformed by appending the
suffix _i on to the name of the ion specified in the USElI ON statement. Thusif cai and

cao are integrated by amodel that declares

USEl ON ca READ ica WRI TE cai, cao

there would also be an automatically created Since calcium currents, concentrations, and

. . . equilibrium potentials are managed by the
mechanism called ca_i on, with associated

ca_i on mechanism, one might reasonably ask

variablesi ca, cai , cao, and eca. The
why we can refer to the short namesi ca, cai ,

initial values of cai and cao are set cao and eca, rather than the longer forms that

globally tothevauesof cai 0_ca_i onand | includethe suffix _i on,i.e.ica_ca_i on &c..

cao0_ca_i on, respectively (see The answer isthat there is unlikely to be any

e e . . mistake about the meaning of i ca, cai ,...s0
I nitializing concentrationsin hoc below).

we might as well take advantage of the

could not initialize concentrations, or at
least it was very cumbersome to do so. Instead, the automatically created ion mechanism
would initialize the ionic concentration adjacent to the membrane according to global

variables. The reason that model mechanisms were not allowed to specify ion variables

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

(or other potentially shared variables such as cel si us) was that confusion could result if
more that one mechanism at the same location tried to assign different values to the same
variable. The unintended consequence of this policy is confusion of adifferent kind,
which happens when amodel declares an ion variable, such as ena, to be a PARAMETER
and attempts to assign avalueto it. The attempted assignment has no effect, other than to

generate a warning message. Consider the mechanism

NEURON {
SUFFI X t est
USEl ON na READ ena

}

PARAMETER {
ena = 25 (nV)

When this model istranslated by nr ni vnod| (or nknr ndl |) we see

$ nrnivrodl test.nod
Transl ating test.nod into test.c
Warni ng: Default 25 of PARAMETER ena will be ignored and set by NEURON.

and use of the model in NEURON shows that the value of ena isthat defined by the

na_i on mechanism itself, instead of what was asserted inthet est model.

$ nrngui

Addftional mechani sns fromfil es
t est. nod

oc>create soma
oc>access soma
oc>i nsert test
oc>ena

50

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 8 November 28, 2004

If we add the initialization

INITIAL {
printf("ena was %@\ n", ena)
ena = 30
printf("we think we changed it to %g\n", ena)

tot est . nod, we quickly discover that ena remains unchanged.

oc>finitialize(-65)

ena was 50

we think we changed it to 30
1

oc>ena
50

It is perhaps not a good ideato invite diners into the kitchen, but the reason for this
can be seen from the careful hiding of the ion variables by making local copies of them in
the C code generated by the nocnod| trandator. Translation of the | NI TI AL block into a
model-specifici ni t nodel function isan almost verbatim copy, except for some trivia
boiler plate. However, fi ni ti al i ze() calsthisindirectly viathe model-generic
nrn_i ni t function, which can be seenin al its gory detail in the C file output from
nocnodl test.nod:

/***************************/
static nrn_init(_count, _nodes, _data, _pdata, _type_ignore)
int _count, _type_ignore; Node** _nodes; doubl e** _data; Datumt* _pdat a;
{ int _ix; double _v;
_p = _data; _ppvar = _pdat a;

#Hf _CORAY
#pragma _CR ivdep
#endi f
for (_Lix =0; _ix < _count; ++.ix) {
_v = _nodes[_i x]->_v;
vV = _v;
ena = _ion_ena;
} i ni tmodel (_ix);

/***************************/

It suffices merely to call attention to the statement

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

ena = _ion_ena;

which shows the difference between the local copy of ena and the pointer to theion
variable itself. The model description can touch only the local copy and is unable to
change the value referenced by _i on_ena. Some old model descriptions circumvented
this hiding by using the actual reference to the ion mechanism variablesin the | NI TI AL
block (from a knowledge of the trandation implementation), but that was always

considered an absolutely last resort.

This hands-off policy for ion variables has recently been relaxed for the case of
modelsthat WRI TE ion concentrations, but only if the concentration is declared to be a
STATE and the concentration isinitialized explicitly inan I NI TI AL block. Itis
meaningless for more than one model at the same location to specify the same
concentrations, and an error is generated if multiple models WRI TE the same

concentration variable at the same location.

If we try this mechanism

NEURON {
SUFFI X test?2
USEI ON na WRI TE nai
RANGE nai O

}
PARAMETER {
nai0 = 20 (mlli/liter)

STATE {
nai (mlli/liter)

INITIAL {

nai = nai 0

we get this result

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 8 November 28, 2004

oc>create soma
oc>access soma
oc>i nsert test2
oc>nai

10
oc>finitialize(-65)
1

oc>nai
20
oc>nai 0 test2 = 30
oc>finitialize(-65)
1

oc>nai
30

If thel NI TI AL block isnot present, the nai 0_t est 2 starting value will have no effect.

I nitializing concentrationsin hoc

The best way to initialize concentrations depends on the design and intended use of
the model. One must ask whether the concentration is supposed to start at the same value
in al sections where the mechanism has been inserted, or should it be nonuniform from

the outset?

Take the case of a mechanism that WRI TES an ion concentration. Such a mechanism
has an associated global variable that can be used to initialize the concentration to the
same vaue in each section where the mechanism exists. These global variables have
default values for [Na], [K] and [Ca] that are broadly "reasonable” but probably incorrect
for any particular case. The default concentrations for ion names created by the user are
1 mM; these should be assigned correct valuesin hoc. A subsequent call to

finitialize() will usethisto initializeionic concentrations.

The name of the global variable is formed from the name of the ion that the
mechanism uses and the concentration that it WRI TES. For example, suppose we have a

mechanism kext that implements extracellular potassium accumulation as described by

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Frankenhaeuser and Hodgkin (Frankenhaeuser and Hodgkin 1956). The kext
mechanism WRI TES ko, so the corresponding global variableisko0_k_i on. The

sequence of instructions

koO_k_ion = 10 Il seawater, 4 x default value (2.5)
kio k ion = 4*54.4] 4 default value, preserves ek
finitialize(v_init) // v_init is the starting Vm

will set ko to 10 mM and ki to 217.6 mM in every segment that has the kext

mechanism.

What if one or more sections of the model are supposed to have different initial
concentrations? For these particular sections we can use thei on_styl e() functionto
assert that the global variable is not to be used to initialize the concentration for this
particular ion. A complete discussion of i on_st yl e(), itsarguments, and its actionsis
contained in NEURON's help system, but we will consider one specific example here.
Let's say we have inserted kext into section dend. Then the numeric argumentsin the

Statement
dend ion_style("k_ion",3,2,1,1,0)

would have the following effects on the kext mechanism in the dend section (in
sequence): treat ko asa STATE variable; treat ek asan ASSI GNED variable; on call to
finitialize() usetheNernst equationto compute ek from the concentrations;
compute ek from the concentrations on every call to f advance() ; do not use
koO_k_i onorki 0_k_i on toset theinitial values of ko and ki . The proper

initialization isto set ko and ki explicitly for this section, e.g.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 8

November 28, 2004

koO_k ion = 10 // all sections start with ko = 10 nmV

dend {ko = 5 ki = 2*54.4} [/
finitialize(v_init)

Examples of custom initializations

Initializing to a particular resting potential

except dend

Perhaps the most trivial custom initialization isto force the initialized voltage to be

the resting potential. Returning our consideration to initialization of the HH membrane

compartment,

finitialize(-65)

will indeed set the voltage to -65 mV, and m h, and n will be in steady state relative to

that voltage. However, this must be considered analogous to a voltage clamp initialization

since the sum of all the currents may not be O at this potential, i.e. -65 mV may not be the

resting potential. For this reason it is common to adjust the equilibrium potential of the

leak current so that the resting potentia is precisely -65 mV.

This can be done with a user-defined i ni t ()
procedure based on the idea that total membrane
current at steady state must be 0. For our single
compartment HH model, this means that

0 =ina+ik + gl _hh*(v - el _hh)

So our customi ni t () is

Remember to load user-defined
versions of functions or
procedures that are part of the
standard system, such asini t (),
after loading stdrun.hoc.

Otherwise, the user-defined

version will be overwritten.

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

proc init(
finitiallze(-65)
el _hh = (ina + 1k + gl _hh*v)/gl _hh
if (cvode.active()) {
cvode.re_init()
} else {
fcurrent ()

{
ze
in

frecord_init()

Thecvode. re_init () cal isnot essential here since states have not been changed, but
itis still good practice since it will update the calculation of all the dstate/dt (note that
now dv/dt should be 0 as a consequence of the changeinel _hh) aswell asinternally
makeacal tof current () (necessary because changing el _hh requires recalculation

of i | _hh).

Calculating the value of leak equilibrium potential in order to realize a specific
resting potential isnot fail-safe in the sense that the resultant value of el _hh may be very
large and out of its physiological range--after all, gl _hh may be avery small quantity. It
may sometimes be better to introduce a constant current mechanism and set its value so

that
O =ina+ ik +ica + i_constant
holds at the desired resting potential. An example of such amechanismis

constant current for custominitialization

NEURON {
SUFFI X const ant
NONSPECI FI C_CURRENT i
} RANGE i, ic

UNI TS {
} (md) = (millianp)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 8 November 28, 2004
PARAVETER {
ic =0 (mVcnR)

ASSI GNED {
i (MY cnR)

BREAKPOI NT {
I =1C

}

and the corresponding custom i ni t () would be

proc init()
finitiallze(-65)
ic_constant = -(ina + ik + il _hh)
if (cvode.activ%)) {

cvode.re_init
el se {
fcurrent ()

frecord_init()

Before moving on to the next example, we should mention that testing is required to
verify that the system is stable at the desired v_i ni t , i.e. that the system returns to

v_i ni t after small perturbations.

Initializing to steady state

In Chapter 4 we mentioned that NEURON's default integrator uses the backward
Euler method, which can find the steady state of alinear system in asingle step if the
integration step size is large compared to the longest system time constant. Backward
Euler can aso find the steady state of many nonlinear systems, but it may be necessary to

perform severa iterationswith largedt . Ani ni t () that takes advantage of thisfactis

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

proc init() { |ocal dtsav, tenp
finitialize(v_init)

t = -1el0
dt sav = dt
dt = 1e9

/1 if cvode is on, turn it off to do large fixed step
tenp = cvode. active()

if (tenp!=0) { cvode.active(0) }

wh g(t<-1e9) {

il
fadvance()

}
/] restore cvode if necessary

if (tenp!'=0) { cvode.active(l) }
dt = dtsav

t =0

if (cvode.active()) {
cvode.re_init()

} else {
fcurrent ()

frecord_init()

Thisfirst performs a preliminary "voltage clamp" initializationtov_i ni t . Then it sets
timeto avery large negative value (to prevent triggering point processes and other
events) and integrates over severa steps with alarge fixed dt so that the system can
reach steady state. The procedure wraps up by returning dt to itsoriginal value, setting t
back to O, and, if necessary, reactivating the variable step integrator. The last few
statements are the familiar re-initialization of cvode or invocation of f cur rent (),

followed by initialization of vector recording.

Thisinitialization strategy generaly works well, but there are circumstances in which
it may fail. Active transport mechanisms can be troublesome with fixed time step
integration if dt islarge, because even asmall pump rate may produce a negative
concentration. To see a more mundane example of instability with large dt , construct a
single compartment model that has the hh mechanism. With the default hh parameters,

and in the absence of any injected current, thisis quite stable even for huge values of dt

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 8 November 28, 2004

(e.g. 10° ms). Now reduce gnabar _hh to 0, increase dt to 100 ms, and watch what
happens over the course of 5000 ms. The result is an oscillation whose peak-to-peak
amplitude gradually increasesto ~ 10 mV. It would be al to easy to miss such
oscillations when using steady state initialization with large steps. This underscores the
need for careful testing of any initialization strategy, since in asense all of them work

"behind the scenes."

Initializing to a desired state

Suppose the end of some run isto serve as theinitia condition for subsequent runs;
thisisa particularly useful strategy for dealing with models that oscillate or otherwise

lack a"resting" state. We can save al the states with

objref svstate, f
svstate = new SaveState()
svst at e. save()

The binary state information can be saved for use in later neuron sessions with

f = new File("states.dat")
svstate.fwite(f)

and future sessions can read the file into the Save St at e object with

objref svstate, f

svstate = new SaveSt at e()
f = new File("states.dat")
svstate. fread(f)

Whether or not the state information comes from asvst at e. save() inthissession
or was read from afile, we only have to make aminor changetoi ni t () inorder to use

that information to initialize the system.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

proc init() {
finitialize(v |n|t)
svstate.resto
t =0// t |s one of the "states"”
if (cvode.aptive()) {
} g}lgge{ re_init() This might be called a"groundhog

fcurrent
0 day initiaization," after the moviein

frecord_init() _ _
} which the protagonist awakened to

the same day over and over again.

Now every smulation will start from the state that

we saved earlier.

Initializing by changing model parameters

Occasionally the aimisto bring amodel to an initial condition that it would never
reach on its own. This can be a particular challenge if the model involves severd
interacting nonlinear processes, making it difficult or impossible to know in advance
what values the states should have. Such problems can sometimes be circumvented by
changing the parameters of the model so that initialization reaches the desired state, and

then restoring the original parameters of the model.

As aspecific example, consider aconceptual model of the regulation of the calcium

concentration in athin intracellular compartment ("shell™) adjacent to the cell membrane

(Fig. 8.1). Calcium (Ca*?) can enter or leave the shell in one of three ways: by diffusion

between the shell and the core of the cell, by active transport via a membrane-bound

pump, or as aresult of non-pump calcium current | -, (i.e. transmembrane calcium flux

not produced by the pump). For the sake of simplicity, we will assume that Ca,, and

Ca, ([Ca*? in the core and extracellular solution) are constant. However, the problems

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 8 November 28, 2004

that we encounter, and the manner in which we solve them, would be the same even if

Ca.,e and Ca, were alowed to vary.

Fig. 8.1. Schematic diagram of amodel of regulation of [Ca*?] in athin shell

just inside the cell membrane.

Our goas areto:
1. initialize the internal calcium concentration next to the membrane [Ca*?] el

(hereafter called Cay) to adesired vaue and then plot Cay ,, and the pump

current ICa as functions of time
pump

2. plot thestarting value of I, asafunction of theinitial Cay
pump

To achieve these goal's, we must be able to set the initial value of Cay | to whatever level

we want and ensure that the pump reaches its corresponding steady state.

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Details of the mechanism

The kinetic scheme that describes this mechanism of calcium regulation is

1/t
diffusion Ca,. ~ Ca Sl Eg. 8.3a
(_
1/t
kl
active transport Cay, + Pump ~ CaPump Eg.8.3bandc
(_
k2
k3
CaPump ~ Ca_+ Pump
(_
k4
1/2Fvol
calcium current Cagy < Il Eq. 8.3d

where T is the time constant for equilibration of Ca*2 between the shell and the core, Fis

Faraday's constant, and vol is the volume of the shell.

The NMODL code that implements this mechanismis

NEURON {

SUFFI X capnp

USEl ON ca READ cao, ica, cai WRITE cai, ica
} RANGE tau, width, cacore, ica, punpO
UNI TS {

(um = (mcron)

(molar) = (2/liter

(mv) = (mllinolar)

(uM = (mcronolar)

(mA) = (mllianp)

(ol) = (1)
} FARADAY = (faraday) (coul onmb)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 8 November 28, 2004

PARAMETER {
wdth = 0.1 (um
tau = 1 (ms) : corresponds to D = 2e-7 cnR/s
: Dfor Cain water is 6e-6 cn2/s, i.e. 30x faster
kl = 5e8 (/ mts)
k2 = 0. 25e6 (/s)
k3 = 0.5e3 (/s)
k4 = 5e0 (/ mvts)
cacore = 0.1 (uM
} punpO = 3e-14 (nol/cnR)
ASSI GNED {
cao (mV : on the order of 10 nmM
cai mv) on the order of 0.001 niM
ica my cnR)
ica_pnp (m¥ cnR)
i ca_pnp_|l ast (M cnR)
STATE {
cashell (uM <le- 6>
punp (nmol/cn2) <le-16>
capunp (nmol/cn2) <le-16>
INITIAL {
ica =0
ica_pmp =0
ica_pnp_last =0
SOLVE pnp STEADYSTATE sparse
BREAKPO NT {

SOLVE pnp METHCD sparse

ica_pnp_last = ica_pnp
ica = 1ca_pnp

KI NETI C pnp {
: volunme/unit surface area has dinensions of um
: areal/unit surface area is dinensionless
COMPARTMENT wi dth {cashel |}
COVMPARTMENT (1e13) {punp capunp}
COMPARTMENT 1(un) {cacore}
COVPARTMENT (1e3)*1(um {cao}
CONSERVE punp + capunp = (1el3)*punpO
~ cacore <-> cashell (wdth/tau, w dth/tau)
~ cashell + punp <-> capunp ((le7)*kl, (1lel0)*k2)
~ capunp <-> cao + punp ((1el0)*k3, (1el0)*k4)
ica_pnmp = (1le-7)*2* FARADAY* (f _flux - b_flux)

ica_pnmp is the "new' value, but cashell nust be
: conputed using the "old" value, i.e. ica_pnp_|ast
~ cashell << (-(ica - ica_pnp_last)/(2*FARADAY)*(1e7))

cai = (0.001)*cashel |

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Initializing the mechanism

For the sake of convenience we will assume that our model cell has only one section

called soma, and that sonma isthe default section. Also suppose that we have already
assigned the desired value of Cag, , to aparameter wewill call ca_i ni t, eg. witha

statement of theformca_i nit = soneval ue. Our problem is how to ensure that

initialization makes cashel | _capnp takeonthevaueof ca_i nit.

Asanaivefirst stab at this problem, we might try changing thei ni t () procedure

like this
proc init() {
cashell _capnp = ca_init
} finitialize(v_init)

i.e. inserting aline that sets the desired value of Cag,, beforecallingfinitialize().

To see whether this has the desired effect, we need only to run a smulation and examine

the time course of Cag,, and the pump current I -, . This quickly shows that, no
pump

matter what value we first assign to cashel | _capnp, fini tialize() drivesCayg,

and | Caymo to the same steady state levels (Fig. 8.2). We might have anticipated this

result, because it is what steady state initidization is supposed to do. If Cay,y, istoo high,
the excess calcium will diffuse into the core or be pumped out of the cell until Cag

returnsto the steady state value. On the other hand, if Cay, istoo low, calcium will

diffuse into the shell from the core, and the pump will slow or may even reverse, until

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 8 November 28, 2004

Cay,q) comes back to the steady state value. Thus, regardless of how we perturb Cay

steady state initialization always brings the model back to the same condition.

0.1 _ cashell_capmp 0.0002 _ ica
HM mA/cm?
0.08 0.00015 | _
0.06 |
le-04_
0.04
5e-05[_
0.02 |
0 | | l J 0 | | l J
0 5 10 15 20 0 5 10 15 20
ms ms

Fig. 8.2. Default initialization after setting cashel | _capnp to 0.1 pM leaves

Cayg (Ieftyand I, (right) at their steady state levels of ~ 0.034 uM and
pump
~ 1.3 x 104 mA/cm?, respectively.
For our second attempt wetry callingfi ni tial i ze() first, and then setting the

desired value of Cayq-

proc init()
finitialize(v_init)
cashell _capnp = ca_init
/] we've changed a state, so the foll ow ng are needed
if (cvode.active()) {
cvode.re_init()
el se {
fcurrent ()

frecord_init()

Thisis partly successful, in that it does affect Cay,, and I, , but plots of these
pu

mp
variables seem to start from the wrong initial conditions. For example, if we try

ca_init =0.1uM, the plot of cashel | _capnp appearsto start with avalue of

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

~ 0.044 pM instead. Using the Graph menu's Color/Brush to change the color and

thickness of the plots of cashel | _capnp andi ca, we discover the presence of early,
fast transients that overliethey axis (Fig. 8.3 top). Thuscashel | _capnp really does
start at theright initial value, but in less than 5 microsecondsit drops by ~ 56%. So we

have solved one mystery only to uncover another: what causes these fast transients?

Some reflection brings the realization that, although we changed the concentration in

the shell, we did not properly initialize the pump. Consequently, as soon as we launch a
simulation, Ca*? starts binding to the pump, and this is responsible for the precipitous

drop of Cay,,- At the same time, the rate of active transport beginsto rise, whichis

reflected intheincrease of I -, . These changes produce the "pump transients” in
pump

Cay g andl-, ,whichcanbequitelarge asFig. 8.3 shows.
pump

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 8

0.1

uM

0.08

0.06

0.04

0.02

0.1
uM
0.08
0.06
0.04

0.02

_ cashell_capmp

cashell_capmp

10

15 20
ms

0

0.0025 0.005

0.0075 0.01

ms

0.0002
mA/cm2
0.00015

le-04 |

5e-05[_

0.0002
mA/cm 2

0.00015

le-04

5e-05

0

November 28, 2004

10 15 20
ms

J
0.005 0.0075 0.01
ms

Fig. 8.3. Time course of Cay,, (I€ft) and I, (right) following an
pump

initialization that increased Cay,, abruptly after calingini t () . Thetracesin

the top figures were thickened to make the early fast transients easier to see.

The time scal e of the bottom figures has been expanded to reveal the details of

these fast trangents. The final steady state levels of Cayy, and I,
pump

sameasin Fig. 8.2.

arethe

A strategy that does what we want is to change the value of cacor e_capnp to

ca_i nit and make T very fast beforecallingfinitialize(),thenwrap up by

restoring the values of cacor e_capnp and T. This amounts to changing the model in

order to achieve the desired initialization. One example of such acustomi ni t () is

Page 30

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

proc init() { |ocal savcore, savtau
/1l make cacore equal to ca_init
savcore = cacor e_capnp
cacore_capnmp = ca_init
/1 initialize cashell to cacore
savtau = tau_capnp
tau_capnp = le-6 // so cashell tracks cacore closely
finitialize(v_init)
/'l restore cacore and tau
cacore_capnp = savcore
tau_capnp = savtau
if (cvode.active()) {
cvode.re_init()
el se {
fcurrent ()

frecord_init()

This code ensures that the difference between Cag , and Ca_, . becomes vanishingly

small, and at the same time allows the pump to initialize properly (Fig. 8.4).

0.1 _ cashell_capmp 0.00052 _ica
UM mA/cm
0.08 0.0004
0.06 |- 0.0003 |
0.04 0.0002 |-
0.02 0.0001 |-
0 l | | J 0 L l | J
0 5 10 15 20 0 5 10 15 20
ms ms

Fig. 8.4. Following proper initialization, plots of Cay,y, (Ieft)and 1, (right)
pump

begin at the correct values and do not display the early fast transient that

appeared in Fig. 8.3.

Now we can plot the starting value of |, asafunction of theinitial Cay,.
pump

Figure 8.5 shows a Grapher configured to do this. To make this a semilog plot, we used

an independent variable x to sweep ca_i ni t from 10 to 102 pM in 30 logarithmically

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 8 November 28, 2004

equally spaced intervals. For each value of x the Grapher calculated the corresponding
vaueof ca_i nit as10%, caled our customi ni t (), and plotted theresulting i ca_capnp

vs.1 0g10(cashel | _capnp) ,i.e l0g,,(Cay4)- Notethat | og10(cashel | _capnp)

ranges from -4 to 2, which means that Cay, ranges from 10 t0 102 UM, i.e. exactly the

same range of concentrationsasca_i ni t . Thisconfirmsthe ability of our cugsominit () to

set cashel | _capnp to the desired values.

Grapher

Plot | Erase AIII
Indep Begini-4

Indep End |2
Steps l30
X-expr Iloglo(cashell_capmp)
Generatorl ca_init=107x init()

0,003 c3-capmp

mA/cm2 /
0.002

Fig. 8.5. A Grapher usedto plot of I, vs.initid Cay,y,- The Graph menu's
pump

Change Text was used to add the m&/ cn? label.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

References

Frankenhaeuser, B. and Hodgkin, A.L. The after-effects of impulsesin the giant nerve

fibers of Loligo. J. Physiol. 131:341-376, 1956.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 8

Chapter 8 Index

A
activetransport 23
initialization 29-31
initialization
pump transient 29
kinetic scheme 25
ASSIGNED variable 3,17
ASSIGNED variable

initialization 7

calcium
current 23
effect on concentration 25
pump 23

constant current mechanism 19

CVode class
re_init() 7,9, 19
record() 7

November 28, 2004

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

DERIVATIVE block
dependent variable
isaSTATE variable 3
diffusion 23

kinetic scheme 25

ELECTRODE _CURRENT 6
equilibrium potential
computation 6, 17
event
net_send 7

extracellular mechanism

vext 6
F
fadvance.c 5
I
IDA
initialization 7

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 8

INITIAL block 5,9, 11
INITIAL block
sequence-dependent 6
SOLVE
STEADYSTATE sparse 10
initialization
anaysis 1
basc 5
categories
overview of custominitialization 4,9

to adesired state 22

to a particular resting potential 18
to steady state 20
channel model 9
Hodgkin-Huxley style 9
kinetic scheme 10

criterion for proper initialization 1
default 8

extracellular mechanism 6

November 28, 2004

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

finitiaize() 57

frecord init() 9

init) 8
custom 18, 20, 22, 30
initPlot() 8
internal data structures dependent on topology and geometry 5

ion 6,12, 14-17

kinetic scheme 1

linear circuit 1,6

network 1,6

random number generator 1
Random.play() 5

recording 1

startsw() 8
stdinit() 8
strategies

changing a state variable 7,9
changing an equilibrium potential 18

changing model parameters 23

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 8

groundhog day 23
injecting a constant current 19
jumping back to move forward 21
t 5
v_init 5,6,8
Vector.play() 5
ion accumulation 23
initialization 24
kinetic scheme 25
ion mechanism
_ionsuffix 12
automatically created 12
default concentration
for user-created ion names 16
name 16
specificationinhoc 16, 17
initialization 16

ion_style() 17

November 28, 2004

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004

Jacobian

computing di/dv elements

KINETIC block

dependent variable

isaSTATE variable 3

LINEAR block

dependent variable

isaSTATE variable 3

M
mechanisms
initialization sequence
user-defined
initialization sequence
membrane potential

initialization 5, 6,9

NET_RECEIVE block

The NEURON Book: Chapter 8

10

6

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Page 39

The NEURON Book: Chapter 8 November 28, 2004

INITIAL block 6

NEURON block

GLOBAL 11
RANGE 11
USEION

effect on initialization sequence 6
WRITE xi (writing an intracellular concentration) 15

WRITE xo (writing an extracellular concentration) 15

NMODL
translator
mknrndl| 6, 13
nocmodl 14

nrnivmodl 6, 13
NONLINEAR block
dependent variable
iIsaSTATE variable 3
numeric integration
adaptive

initialization 7

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004

fixed time step

initialization 7

PARAMETER 3
PARAMETER block

default value of state0 11

SaveState class
fread() 22
fwrite() 22
restore() 23
save() 22
standard run system
event delivery system
initialization 1,5,7
fadvance() 2
10.fcurrent() 7
ininitialization 9,10, 19

realtime 8

The NEURON Book: Chapter 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 8 November 28, 2004

setdt() 8
STATE block
START 11
state variable
asan ASSIGNED variable 4
STATE variable 3
initialization
default vs. explicit 11
state0 11

vs. state variable 3

Vector class

12record() 7

initialization 7

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Chapter 9

How to expand NEURON's library of mechanisms

Neuronal function involves the interaction of electrical and chemical signals that are
distributed in time and space. The mechanisms that generate these signals and regulate
their interactions are marked by awide diversity of properties, differing across neuronal
cell class, developmental stage, and species (e.g. chapter 7 in (Johnston and Wu 1995);
also see (McCormick 1998)). To be useful in research, a simulation environment must
provide aflexible and powerful means for incorporating new biophysical mechanismsin

models. It must also help the user remain focused on the model instead of programming.

Such ameansis provided to NEURON by NMODL, ahigh level language that was
originally implemented for NEURON by Michael Hines and later extended by him and
Upinder Bhalla to generate code suitable for linking with GENESIS (Wilson and Bower
1989). This chapter shows how to use NMODL to represent biophysical mechanisms by

presenting a sequence of increasingly complex examples.

Overview of NMODL

A brief overview of how NMODL isused will clarify itsrationale. First one writes a

text file (a"nod file") that describes a mechanism as a set of nonlinear algebraic

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 9 November 28, 2004

Page 2

equations, differential equations, or kinetic reaction schemes. The description employs a
syntax that closely resembles familiar mathematical and chemical notation. Thistext is
passed to atranslator that converts each statement into many statementsin C,
automatically generating code that handles details such as mass balance for each ionic
species and producing code suitable for each of NEURON's integration methods. The
output of the translator is then compiled for computational efficiency. This achieves
tremendous conceptual leverage and savings of effort, not only because the high level
mechanism specification is much easier to understand and far more compact than the
equivalent C code, but also because it spares the user from having to bother with low
level programming issues like how to "interface” the code with other mechanisms and

with NEURON itself.

NMODL is a descendant of the MOdel Description Language (MODL (Kohn et al.
1994)), which was developed at Duke University by the National Biomedical Simulation
Resource project for the purpose of building models that would be exercised by the
Simulation Control Program (SCoP (Kootsey et al. 1986)). NMODL has the same basic
syntax and style of organizing model source code into named blocks as MODL. Variable
declaration blocks, such as PARAMETER, STATE, and ASSI GNED, specify names and
attributes of variables that are used in the model. Other blocks are directly involved in
setting initial conditions or generating solutions at each time step (the equation definition
blocks, e.g. I NI TI AL, BREAKPQO NT, DERI VATI VE, KI NETI C, FUNCTI ON,
PROCEDURE). Furthermore, C code can be inserted inside the model source code to

accomplish implementation-specific goals.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

NMODL recognizes al the keywords of MODL, but we will address only those that
are relevant to NEURON simulations. We will aso examine the changes and extensions
that were necessary to endow NMODL with NEURON-specific features. To give these
ideas real meaning, we will consider them in the context of models of the following kinds

of mechanisms:

e apassive "leak" current and alocalized transmembrane shunt (distributed mechanisms

VS. point processes)

e an eectrode stimulus (discontinuous parameter changes with variable time step

methods)
e voltage-gated channels (differential equations vs. kinetic schemes)
e ion accumulation in arestricted space (extracellular K*)
e buffering, diffusion, and active transport (Ca* pump)

Features of NMODL that are used in models of synaptic transmission and networks are

examined in Chapter 10.

Example 9.1: a passive "leak" current

A passive "leak" current is one of the smplest biophysical mechanisms. Becauseit is
distributed over the surface of acell, it is described in terms of conductance per unit area
and current per unit area, and therefore belongs to the class of "density” or "distributed

mechanisms’ (see Distributed mechanisms in Chapter 5).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 9 November 28, 2004

Vm
S A R AN lieak
IIeak gleak
ITTITII Eeax

Figure9.1

Figure 9.1 illustrates a branch of a neuron with adistributed leak current (Ieft) and the

equivalent circuit of amodel of this passive current mechanism (right): a distributed,
voltage-independent conductance g, in series with a voltage source E, that
represents the equilibrium potentia for the ionic current. The leak current density is given

BY i eak = Gieak (Vim - Ejeai): Where V. is membrane potential. Since thisisamodel of a
physical system that is distributed in space, the variablesi, and V, and the parameters

ik AN E, oy are dl functions of position.

Listing 9.1 presents an implementation of this mechanism with NMODL. Single line
comments start with a: (colon) and terminate at the end of the line. NMODL aso alows
multiple line comments, which are demarcated by the keywords COMVENT and

ENDCOMVENT.

COMVENT

This is a
multiple line
comrent
ENDCOMVENT

A similar syntax can be used to embed C code in anod file, e.g.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004

VERBATI M
/* C statenents */
ENDVERBATI M

The NEURON Book: Chapter 9

The statements between VERBATI Mand ENDVERBATI Mwill appear without change in the

output file written by the NMODL translator. Although this should be done only with

great care, VERBATI Mcan be a convenient and effective way

to employ NEURON as a"poor man's C compiler.”

A passive | eak current

NEURON {

SUFFI X | eak

NONSPECI FI C_CURRENT i
} RANGE i, e, ¢

PARAVETER
g 0. 00
e - 65

{ .
1 Si

nmens/ cn)
m

livol t)

< 0, 1e9 >

e
I

(
(

Listing 9.1. 1 eak. nod

to add new features or even

Named blocks have the general form KEYWORD { st at enents }, where KEYWORD

isall upper case. User-defined variable namesin NMODL can be up to 20 characters

long. Each variable must be defined before it is used. The variable names chosen for this

examplewerei , g, and e for the leak current, its specific conductance, and its

equilibrium potential, respectively. Some variables are not "owned" by any mechanism

but are available to all mechanisms; theseincludev, cel si us,t, di am and ar ea.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Page 5

The NEURON Book: Chapter 9 November 28, 2004

Another variable that is available to all mechanismsisdt . However, using dt in
NMODL is neither necessary nor good practice. Before variable time step methods were
added to NEURON, analytic expressions involving dt were often used for efficient
modeling of voltage sensitive channel states. Thisidiom is now built-in and employed

automatically when such models are described in their underlying derivative form.

The NEURON block

The principal extension that differentiates NMODL from its MODL originsisthat
there are separate instances of mechanism data, with different values of states and
parameters, in each segment (compartment) of amodel cell. The NEURON block was
introduced to make this possible by defining what the model of the mechanism looks like
from the "outside" when many instances of it are sprinkled at different locations on the
cell. The specifications entered in this block are independent of any particular simulator,
but the detailed "interface code" requirements of a particular smulator determine whether
the output C fileis suitable for NEURON (NMODL) or GENESIS (GMODL). For this
paper, we assume the translator is NMODL and that it produces code accepted by

NEURON.

The actual name of the current NMODL trandator isnocnodl (nocnodl . exe under
MSWindows). Thistranslator is consistent with the object oriented extensions that were
introduced with version 3 of NEURON. However, the older trandator, which predated
these extensions, was called nnodl , and we will use the generic name NMODL to refer

to NEURON compatible tranglators.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

The SUFFI X keyword has two consequences. First, it identifies this to be a distributed
mechanism, which can be incorporated into a NEURON cable section by ani nsert
statement (see Usage below). Second, it tellsthe NEURON interpreter that the names for
variables and parameters that belong to this mechanism will include the suffix _| eak, so

there will be no conflict with similar names in other mechanisms.

The dtipulation that i isaNONSPECI FI C_CURRENT also has two consequences. First,
the value of i will be reckoned in charge balance equations. Second, this current will
make no direct contribution to mass balance equations (it will have no direct effect on
ionic concentrations). In later examples, we will see how to implement mechanisms with

specific ionic currents that can change concentrations.

The RANGE statement assertsthat i , e, and g are range variables, and can be accessed
by the hoc interpreter using range variable syntax (see Range and range variables in
Chapter 5). That is, each of these variablesis afunction of position, and can have a
different value in each of the segments that make up a section. Each variable mentioned
in & RANGE statement should also be declared in a PARAMETER or ASSI GNED block. The

aternative to RANGE is GLOBAL, which is discussed below in The PARAMETER block.

Membrane potential v is not mentioned in the NEURON block becauseit is one of the
variables that are available to all mechanisms, and because it is a RANGE variable by
default. However, for model completenessin non-NEURON contexts, and to enable units

checking, v should be declared in the ASSI GNED block (see below).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 9 November 28, 2004

Variable declaration blocks

As noted above, each user-defined variable must be declared beforeit is used. Even if

it isnamed in the NEURON block, it still has to appear in a variable declaration block.

Mechanisms frequently involve expressions that mix constants and variables whose
units belong to different scales of investigation and which may themselves be defined in
terms of other, more "fundamental” units. This can easily produce arithmetic errors that
are difficult to isolate and rectify. Therefore NMODL has special provisions for
establishing and maintaining consistency of units. To facilitate units checking, each
variable declaration includes a specification of its units in parentheses. The names used
for these specifications are defined in afile called nr nuni t s. I'i b, which isbased on the
UNIX units database (/ usr/ shar e/ uni t s. dat inLinux).nrnunits.libislocated
innrn-x.x/share/lib/ under UNIX/Linux, and c: \ nr nxx\ | i b\ under

MSWindows). A variable whose units are not specified is taken to be dimensionless.

The user may specify whatever units are appropriate except for variables that are

defined by NEURON itself. Theseinclude v (millivolts), t (milliseconds), cel si us

(°C), di am(pm), and ar ea (um?). Currents, concentrations, and equilibrium potentials
created by the USEI ON statement also have their own particular units (see The NEURON
block in Example 9.6: extracellular potassium accumulation below). Inthis

particular distributed mechanism, i and g are given units of current per unit area

(milliamperes/cm?) and conductance per unit area (siemens/cm?), respectively.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

The PARAMETER block

Variables whose values are normally specified by the user are parameters, and are
declared in a PARAMETER block. PARAMVETERS generally remain constant during a
simulation, but they can be changed in mid-run if necessary to emulate some external
influence on the characteristic properties of amodel (see Models with discontinuities

and Time-dependent PARAMETER changes near the end of this chapter)

The PARAVETER block in this example assigns default values of 0.001 siemens/cm?
and -65 mV to g and e, respectively. The pair of numbersin angle brackets specifies the
minimum and maximum limits for g that can be entered into the field editor of the GUI.
In this case, we are trying to keep conductance g from assuming a negative value. This
protection, however, only holds for field editors and does not prevent ahoc statement

from giving g a negative value.

Because g and e are PARAMETERS, their values are visible at the hoc level and can be
overridden by hoc commands or altered through the GUI. If a PARAMETER does not
appear in a NEURON block's RANGE statement, it will have GLOBAL scope, which means
that changing its value will affect every instance of that mechanism throughout an entire
model. However, the RANGE statement in the NEURON block of this particular mechanism
assertsthat g and e are range variables, so they can be given different valuesin every

segment that has this leak current.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 9 November 28, 2004

The ASSI GNED block

The ASSI GNED block is used to declare two kinds of variables. those that are given
values outside the nod file, and those that appear on the left hand side of assignment
statements within the nod file. The first group includes variables that are potentially
available to every mechanism, such asv, cel si us, t, and ionic variables (ionic
variables are discussed in connection with The NEURON block in Example 9.6:
extracellular potassium accumulation below). The second group specifically omits
variables that are unknowns in a set of smultaneous linear or nonlinear algebraic
eguations, or that are dependent variables in differential equations or kinetic reaction
schemes, which are handled differently (see Example 9.4: a voltage-gated current

below for adiscussion of the STATE block).

By default, a mechanism-specific ASSI GNED variable isarange variable, in that it
can have a different value for each instance of the mechanism. However, it will not be
visible at the hoc level unlessit is declared in a RANGE or GLOBAL statement in the
NEURON block. This contrasts with ASSI GNED variables that are not "owned" by any
mechanism (v, cel si us, t, dt, di am and ar ea) which arevisible at the hoc level but

are not mentioned in the NEURON block.

The current i isnot a state variable because the model of the leak current mechanism
does not define it in terms of adifferential equation or kinetic reaction scheme; that isto
say, i hasno dynamics of its own. Furthermore it is not an unknown in a set of equations,
but is merely calculated by direct assgnment. Thereforeit is declared in the ASSI GNED

block.

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

For similar reasons membrane potential v is also declared in the ASSI GNED block.
Although membrane potential is unquestionably a state variablein amodel of acell, to
the leak current mechanism it isadriving force rather than a state variable (or even a

STATE variable).

Equation definition blocks

One equation suffices to describe this simple leak current model. This equationis
defined in the BREAKPO NT block. Aswe shall see later, more complicated models may
require invoking NMODL's built-in routines to solve families of simultaneous algebraic

eguations or perform numeric integration.

The BREAKPO NT block

The BREAKPO NT block isthe main computation block in NMODL. Its name derives
from SCoP, which executes simulations by incrementing an independent variable over a
sequence of steps or "breakpoints” at which the dependent variables of the model are
computed and displayed (Kohn et a. 1994). At exit from the BREAKPO NT block, all
variables should be consistent with the independent variable. The independent variable in
NEURON isawaystimet , and neither t nor the time step dt should be changed in

NMODL.

Usage

The following hoc code illustrates how this mechanism might be used. Note the use

of RANGE syntax to examinethe value of i _| eak near one end of cabl e.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 9 November 28, 2004

cabl e {
nseg = 5
i nsert |eak
// override defaults
g_leak = 0.002 // S/cn®
} e leak = -70 I mv

/1 show | eak current density near O end of cable
print cable.i_|eak(0.1)

The | eak mechanism automatically appears with the other distributed mechanismsin
GUI tools such as the Distributed Mechanism Inserter (Fig. 9.2). Thisis a consequence of
interface code that is generated by the NMODL compiler when it parses the definitionsin

the NEURON bl ock.

| Ins E i‘l‘.-"F: emove kMechanisms
Close Hide
cahle

pas
hh
leak.

Figure 9.2. Compiling the leak mechanism automatically makes it available

through NEURON's graphical user interface, asin this Distributed Mechanism
Inserter (brought up by NEURON Main Menu / Tools / Distributed Mechanisms /
Managers / Inserter). The check mark signifiesthat the | eak mechanism has

been inserted into the section named cabl e.

Example 9.2: alocalized shunt

At the opposite end of the spatial scale from a distributed passive currentisa

localized shunt induced by microelectrode impalement (Durand 1984; Staley et al.

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

1992). A shunt isrestricted to a small enough region that it can be described in terms of a
net conductance (or resistance) and total current, i.e. it isa point process (see Point

processes in Chapter 5). Most synapses are al so best represented by point processes.

Vm
¢ Ishunt
Ishun'(r'shunt
I Eshunt

Figure 9.3

The localized nature of the shunt is emphasized in a cartoon of the neurite (Fig. 9.3
left). The equivaent circuit of the shunt (right) is similar to the equivalent circuit of the
distributed leak current (Fig. 9.1 right), but here the resistance and current are understood
to be concentrated in asingle, circumscribed part of the cell. We will focus on how the
NMODL codefor thislocalized shunt (Listing 9.2) differs from the leak distributed

mechanism of Example 9.1.

The NEURON block

The PO NT_PROCESS statement in the NEURON block identifies this mechanism as a
point process, so it will be managed in hoc using an object oriented syntax (see Usage
below). Declaringi , e, and r to be RANGE means that each instance of this point process
can have separate values for these variables. If avariableis declared in a GLOBAL

statement, then its value is shared among all instances of the mechanism (however, see

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 9 November 28, 2004

Equation definition blocks: The DERIVATIVE block in Example 9.5: a calcium-

activated, voltage-dependent current).

Variable declaration blocks

These are nearly identical to the PARAMETER and ASSI GNED blocks of the | eak
mechanism. However, Shunt isapoint process so al of its current flows at one site

instead of being distributed over an area. Thereforeitsi and r arein units of

nanoamperes (total current) and gigaohms (0.001 / total conductance in microsiemens),

respectively.
This code specifies default values for the PARAMETERSr and e. Allowing a minimum

vaueof 10 for r prevents an inadvertent divide by O error (infinite conductance) by
ensuring that auser cannot setr to 0 inits GUI field editor. However, as we noted in the
| eak model, the<m nval , maxval > syntax does not prevent ahoc statement from

assigning r avalue outside of the desired range.

A shunt current

NEURON {
PO NT_PROCESS Shunt
NONSPECI FI C_CURRENT i
RANGE i, e, r

i gaohm < le-9, 1e9 >
[1i

ASSI GNED {
i (nanoanp)
v (mllivolt)

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

BREAKPO NT { i = (0.001)*(v - e)/r }

Listing 9.2. shunt . nod

Equation definition blocks

Like the leak current mechanism, the shunt mechanism is extremely smple and

involves no state variables. Its single equation is defined in the BREAKPO NT block.

The BREAKPO NT block

The sole "complication” is that computation of i includes afactor of 0.001 to
reconcile the units on the left and right hand sides of this assignment (nanoamperes vs.
millivolts divided by gigaohms). The parentheses surrounding this conversion factor are a
convention for units checking: they disambiguate it from mere multiplication by a
number. When the NMODL code in Listing 9.2 is checked with NEURON's nmod| uni t

utility, no inconsistencies will be found.

[ted@antom dshunt]$ nodl unit shunt. nod
nodel 1.1.1.1 1994/10/ 12 17:22:51
Checking units of shunt. nod

[ted@ ant om dshunt] $

However if the conversion factor were not enclosed by parentheses, there would be an

error message that reports inconsistent units.

[ted@antom dshunt]$ nodl unit shunt. nod
nodel 1.1.1.1 1994/ 10/ 12 17:22:51
Checking units of shunt. nod
The previous primary expression with units: 1-12 coul / sec
is mssing a conversion factor and shoul d read:
(0.001) *()
at line 20 in file shunt. nod
i = 0.001*(v - e)/r<<ERROR>>
[ted@ ant om dshunt] $

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 9 November 28, 2004

An error message would also result if parentheses surrounded a number which the user

intended to be a quantity, since the units would be inconsi stent.

The ssimple convention of enclosing single numbers in parentheses to signify units
conversion factors minimizes the possibility of mistakes, either by the user or by the
software. It isimportant to note that expressions that involve more than one number, such

as"(1+ 1)", will not be interpreted as units conversion factors.

Usage

Thishoc codeillustrates how the shunt mechanism might be applied to a section
called cabl e; note the object syntax for specifying the shunt resistance and current (see

Point processes in Chapter 5).

objref s

cable s = new Shunt(0.1) // put near O end of cable
s.r = 0.2 // pretty good for a sharp el ectrode
print s.i // show shunt current

The definitions in the NEURON block of this particular model enable NEURON's
graphical toolsto include the Shunt object in the menus of its PointProcessManager and
Viewer windows (Fig. 9.4). The check mark on the button adjacent to the numeric field
for r indicates that the shunt resistance has been changed from its default value (0.2
gigaohm when the shunt was created by the hoc code immediately above) to 0.1

gigaohm.

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Close Hide

shunt[0] at cakle(0.1)
r (gigachm) 0.1

e (millivolt) |_] [0 3
0

i (nanoamp)

Figure 9.4. The properties of a specific instance of the Shunt mechanism are
displayed in this Point Process Viewer (brought up by NEURON Main Menu /
Tools / Point Processes / Viewers / PointProcesses / Shunt and then selecting

Shunt [0] from the displayed list).

Example 9.3: an intracellular stimulating electrode

Anintracellular stimulating electrode is similar to a shunt in the sense that both are
localized sources of current that are modeled as point processes. However, the current
from a stimulating electrode is not generated by an opening in the cell membrane, but
instead isinjected directly into the cell. This particular model of a stimulating el ectrode
(Listing 9.3) has the additional difference that the current changes discontinuoudly, i.e. it

is apulse with distinct start and stop times.

The NEURON block

This mechanismisidentical to NEURON's built-in | O anp. Calingit | C anpl
allows the reader to test and modify it without conflicting with the existing | Cl anp point

process.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 9 November 28, 2004

This model of acurrent clamp generates a rectangular current pulse whose amplitude
anp in nanoamperes, start timedel in milliseconds, and duration dur in milliseconds are
al adjustable by the user. Furthermore, these parameters need to be individually
adjustable for each separate instance of this mechanism, so they appear in a RANGE

Statement.

Thecurrenti delivered by | G anpl is declared in the NEURON block to make it
available for examination. The ELECTRODE_CURRENT statement has two important
consequences. positive values of i will depolarize the cell (in contrast to the
hyperpolarizing effect of positive transmembrane currents), and when the
extracel | ul ar mechanism is present there will be a change in the extracellular

potential vext .

Equation definition blocks

The BREAKPO NT block

Thelogic for deciding whether i =0or i =anp is straightforward, but theat _ti me()
calls need explanation. From the start we wish to emphasize that at _t i ne() hasbecome
a"deprecated” function, i.e. it still works but it should not be used in future model
development. We bring it up here because you may encounter it in legacy code.

However, NEURON's event delivery system (see Chapter 10) provides afar better way

to implement discontinuities.

To work properly with variable time step methods, e.g. CVODE, models that change

parameters discontinuousy during asimulation must notify NEURON when such events

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

take place. With fixed time step methods, users implicitly assume that events occur on
time step boundaries (integer multiples of dt), and they would never consider defining a
pulse duration narrower than dt . Neither eventuality can be left to chance with variable

time step methods.

When this mechanism is used in a variable time step smulation, thefirst at _ti me()
call guarantees there will be a time step boundary just before del , and that integration
will restart from a new initial condition just after del (see Models with discontinuities

near the end of this chapter for more details).

Current cl anp

NEURON {
PO NT_PROCESS | d anpl
RANGE del , dur, anp, i
ELECTRODE _CURRENT |

}
UNITS { (nA) = (nanoanp) }
PARAMETER {
del (ns)
dur (ns) < 0, 1le9 >
anp (nA)

ASSIGNED { i (nA) }
INNTIAL { i =0}

BREAKPO NT {

at _tine(del)

at _tinme(del +dur)

if (t <del + dur &t > del) {
i = anp

} else {
i =0

}

}

Listing 9.3.i cl anpl. nod

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 9 November 28, 2004

The | NI TI AL block

The codeinthel NI TI AL block is executed when the standard run system's
finitialize() iscaled. Theinitialization here consists of making sure that
| anmpl.i isOwhent = 0. Initialization of more complex mechanismsis discussed
below in Example 9.4: a voltage-gated current and Example 9.6: extracellular
potassium accumulation, and Chapter 8 considers the topic of initialization from a

broader perspective.

Usage

Regardless of whether afixed or variable time step integrator is chosen, | Cl anpl
looks the same to the user. In either case, a current stimulus of 0.01 nA amplitude that

startsatt = 1 msand lastsfor 2 mswould be created by thishoc code

objref ccl

/] put at mddl e of sonma

soma ccl = new I Cl anpl(0.5)
1

ccl.del =
ccl.dur = 2
ccl.anp = 0.01

or through the PointProcessManager GUI tool (Fig. 9.5).

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

| PointProcesshanager

Close Hide

SefectPointProcess I
Show \
IClamp1[0]
at soma(0.5)

IClamp1[0]

del (ms) ﬂ'|1 #-I

dur (ms) Z ¥

amp (nA) EIEI.EH :I
i(n&) ID

Figure 9.5. A PointProcessManager configured asan | cl anpl object.

Example 9.4: a voltage-gated current

One of the particular strengths of NMODL isits flexibility in dealing with ion
channels whose conductances are not constant but instead are regulated by factors such as
membrane potential and/or ligand concentrations on one or both sides of the membrane.
Here we use the well known Hodgkin-Huxley (HH) delayed rectifier to show how a
voltage-gated current can be implemented; in this example, membrane potential isin
absolute millivolts, i.e. reversed in polarity from the original Hodgkin-Huxley convention
and shifted to reflect aresting potentia of -65 mV. In Example 9.5 we will examine a
potassium current model that depends on both voltage and intracellular calcium

concentration.

The delayed rectifier and all other ion channels that are distributed over the cell

surface are distributed mechanisms. Therefore their NMODL representations and hoc

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 9 November 28, 2004

usage be similar to those of Example 9.1: a passive "leak" current. The following
discussion focuses on the significant differences between the implementations of the

delayed rectifier and passive leak current models.

HH vol t age- gat ed pot assi um current

NEURON {
SUFFI X kd
USEl ON k READ ek WRI TE i k
RANGE gbar, g, i

2
I
330

PARAVETER { gbar = 0.036 (S/cn2) }
ASS| GNED {

v () |
ek (mv) : typically ~ -77.5
ik (mAVcn
[my cn®
g (S/cnk)

STATE { n }

BREAKPO NT {
SOLVE states METHCOD cnexp
g = gbar * n™
i =g * (v - ek)
ik =i
}

I NITIAL {
: Assune v has been constant for a long tine
n = al pha(v)/(al pha(v) + beta(v))

DERI VATI VE states {
: Conputes state variable n at present v &t
n' = (1-n)*al pha(v) - n*beta(v)

}

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

FUNCTI ON al pha(Vm (mV)) (/ms) {
LOCAL x
UNI TSOFF
X = (Vmt55)/10
if (fabs(x) > 1le-6) {
alpha = 0. 1*x/ (1 - exp(-x))

} else {
al pha = 0.1/ (1 - 0.5*x)
}
UNI TSON
}
FUNCTI ON beta(Vm (mV)) (/) {
UNI TSOFF
beta = 0. 125*exp(-(Vm+65)/80)
UNI TSON
}

Listing 9.4. kd. nod

The NEURON block

Aswith the passive leak model, SUFFI X marks this as a distributed mechanism,
whose variables and parameters are identified in hoc by aparticular suffix. Three RANGE
variables are declared in this block: the peak conductance density gbar (the product of
channel density and "open"” conductance per channel), the macroscopic conductance g
(the product of gbar and the fraction of channels that are open at any moment), and the
current i that passesthrough g. At the level of hoc, these will be available asgbar _kd,

g_kd,andi _kd.

This model also has afourth range variable: the gating variable n, which is declared
in the STATE block (see The STATE block below). STATE variables are automatically

RANGE variables and do not need to be declared in the NEURON block.

A mechanism needs a separate USEI ON statement for each of theions that it affects or

that affect it. This example has one USEI ON statement, which includes READ ek because

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 9 November 28, 2004

the potential gradient that drivesi _kd depends on the equilibrium potential for K*

(potassium). Since the resulting ionic flux may change local [K*], this example also
includesWRI TE i k. TheWRI TE i x syntax enables NEURON to keep track of the total
outward current that is carried by an ionic species, itsinterna and external

concentrations, and its equilibrium potential. We will return to this point in the context of

amodel with extracellular K* accumulation.

The UNI TS block

The statementsin the UNI TS block define new names for unitsin terms of existing
names in the UNIX units database. This can increase legibility and convenience, and is
helpful both as areminder to the user and as ameans for automating the process of

checking for consistency of units.

Variable declaration blocks

The ASSI GNED block

Thisis analogous to the ASSI GNED block of the | eak mechanism. For the sake of
clarity, variables whose values are computed outside this nod file are listed first. Note
that ek islisted as an ASSI GNED variable, unlike the leak mechanism's e which was a

PARAMETER. The reason for this difference is that mechanisms that produce fluxes of

specific ions, such as K*, may cause theionic equilibrium potential to change in the

course of asimulation. However, the NONSPECI FI C_CURRENT generated by the leak

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

mechanism was not linked to any particular ionic species, so e_| eak remains fixed

unless explicitly altered by hoc statements or the GUI.

The STATE block

If amodel involves differential equations, families of algebraic equations, or kinetic
reaction schemes, their dependent variables or unknowns are to be listed in the STATE

block. Therefore gating variables such as the delayed rectifier's n are declared here.

In NMODL, variables that are declared in the STATE block are called STATE
variables, or simply STATES. This NMODL -specific terminology should not be confused
with the physics or engineering concept of a'"state variable" as a variable that describes
the state of a system. While membrane potential is a"state variable" in the engineering
sense, it would never be a STATE because its valueis calculated only by NEURON and
never by NMODL code. Likewise, the unknowns in a set of simultaneous equations (e.g.
gpecified in aLl NEAR or NONLI NEAR block) would not be state variablesin an
engineering sense, yet they would al be STATES (see State variables and STATE

variables in Chapter 8).

All STATEs are automatically RANGE variables. Thisis appropriate, since channel

gating can vary with position along a neurite.

Equation definition blocks

In addition to the BREAKPO NT block, this model also has| NI TI AL, DERI VATI VE,

and FUNCTI ON blocks.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 9 November 28, 2004

The BREAKPO NT block

This is the main computation block of the mechanism. By the end of the
BREAKPO NT block, all variables are consistent with the new time. If a mechanism has
STATES, this block must contain one SOLVE statement that tell how the values of the
STATEswill be computed over each time step. The SOLVE statement specifies a block of
code that defines the simultaneous equations that govern the STATES. Currents are set

with assignment statements at the end of the BREAKPO NT block.

There are two major reasons why variables that depend on the number of executions,
such as counts or flags or random numbers, should generally not be calculated in a
BREAKPO NT block. First, the assignment statements in a BREAKPO NT block are usually
called twice per time step. Second, with variable time step methods the value of t may
not even be monotonically increasing. The proper way to think about thisis to remember
that the BREAKPO NT block isresponsible for making all variables consistent at timet .
Thus assignment statements in this block are responsible for trivially specifying the
values of variables that depend only on the values of STATES, t , and v, while the SOLVE
statements perform the magic required to make the STATEs consistent at time't . It is not
belaboring the point to reiterate that the assignment statements should produce the same
result regardless of how many times BREAKPO NT is called with the same STATEs, t , and
v. All too often, errors have resulted from an attempt to explicitly compute what is
conceptually a STATE in a BREAKPO NT block. Computations that must be performed
only once per time step should be placed in a PROCEDURE, which in turn would be

invoked by a SOLVE statement in a BREAKPO NT block.

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

We must also emphasize that the SOLVE statement is not afunction call, and that the
body of the DERI VATI VE block (or any other block specified in a SOLVE statement) will
be executed asynchronoudly with respect to BREAKPO NT assignment statements.
Therefore it isincorrect to invoke rate functions from the BREAKPO NT block; instead
these must be called from the block that is specified by the SOLVE statement (in this

example, from within the DERI VATI VE block).

Models of active currents such asi _kd are generally formulated in terms of ionic
conductances governed by gating variables that depend on voltage and time. The SOLVE
statements at the beginning of the BREAKPO NT block specify the differential equations
or kinetic schemes that govern the kinetics of the gating variables. The algebraic

eguations that compute the ionic conductances and currents follow the SOLVE statements.

The | NI TI AL block

Though often overlooked, proper initialization of all STATESis asimportant as
correctly computing their temporal evolution. Thisis accomplished for the common case
by the standard run system'sfi ni ti al i ze() , which executes the initialization strategy
defined inthe I NI TI AL block of each mechanism (seeaso | NI TI AL blocks in NMODL
in Chapter 8). Thel NI TI AL block may contain any instructions that should be executed

when the hoc functionfi ni tialize() iscaled.

Prior to executing the | NI TI AL block, STATE variables are set to the values asserted
in the STATE block (or to O if no specific value was given in the STATE block). A
NET_RECEI VE block, if present, may also haveitsown | NI TI AL block for nonzero

initialization of Net Con "states" (the NET_RECEI VE block and itsinitialization are

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 9 November 28, 2004

discussion further in Chapter 10 and under Basic initialization in NEURON:

finitialize() inChapter 8).

Thel NI TI AL block should be used to initialize STATES with respect to the initial
values of membrane potential and ionic concentrations. There are several other waysto
prepare STATEs for a simulation run, the most direct of which is ssimply to assign values
explicitly with hoc statements such asaxon. n_kd(0. 3) = 0. 9. However, this
particular strategy can create arbitrary initial conditions that would be quite unnatural. A
more "physiological" approach, which may be appropriate for models of oscillating or
chaotic systems or whose mechanisms show other complex interactions, isto perform an
initialization run during which the model converges toward its limit cycle or attractor.
One practical alternative for systems that settle to a stable equilibrium point when left
undisturbed isto assignt alarge negative value and then advance the simulation over
several large time steps (keeping t < O prevents the initialization steps from triggering
scheduled events such as stimulus currents or synaptic inputs); this takes advantage of the
strong stability properties of NEURON's implicit integration methods (see Chapter 4).
For amore extensive discussion of initialization, see Chapter 8, especially Examples of

custom initializations).

This delayed rectifier mechanism sets n to its steady state value for the local
membrane potential wherever the mechanism has been inserted. This potential itself can
be "left over" from a previous smulation run, or it can be specified by the user, e.g.
uniformly over the entire cell with a statement likefi ni tiali ze(-55),0rona

compartment by compartment basis by asserting statements such asdend. v(0. 2) =

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

- 48 beforecallingfi ni tialize() (seeDefault initialization in the standard run

system: stdinit() andinit() inChapter 8).

The DERI VATI VE block

Thisis used to assign values to the derivatives of those STATESs that are described by
differential equations. The statementsin this block are of theformy' = expr, wherea

series of apostrophes can be used to signify higher order derivatives.

In fixed time step ssimulations, these equations are integrated using the numerical
method specified by the SOLVE statement in the BREAKPO NT block. The SOLVE
statement should explicitly invoke one of the integration methods that is appropriate for
systems in which state variables can vary widely during atime step (stiff systems). The
cnexp method, which combines second order accuracy with computational efficiency, is
agood choice for this example. It is appropriate when the right hand side of y* = f(v)y) is
linear in'y and involves no other states, so it iswell suited to models with HH-styleionic
currents. This method calcul ates the STATEs analytically under the assumption that all
other variables are constant throughout the time step. If the variables change but are
second order correct at the midpoint of the time step, then the calculation of STATESIis

also second order correct.

. . . Other integrators, such asrunge and eul er,
If f(v,y) is not linear iny, then the SOLVE

are defined but are not useful in the

statement in the BREAKPOI NT block should
NEURON context. Neither is guaranteed to

specify the implicit integration method be numerically stable, and r unge's high

order accuracy iswasted since voltage does

not have an equivalent order of accuracy.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 9 November 28, 2004

deri vinplicit. Thisprovidesfirst order accuracy and is usable with general ODES

regardless of stiffness or nonlinearity.

With variable time step methods, no variable is assumed to be constant. These

methods not only change the time step, but adaptively choose a numerical integration

formulawith accuracy that ranges from first order up to O(At%). The present
implementation of NMODL creates a diagona Jacobian approximation for the block of
STATESs. Thisisdone analytically if y;” = f.(v,y) is polynomial in'y;; otherwise, the
Jacobian is approximated by numerical differencing. In the rare case where thisis
inadequate, the user may supply an explicit Jacobian. Future versions of NMODL may
attempt to deal with Jacobian evaluation in a more sophisticated manner. Thisillustrates a

particularly important benefit of the NMODL approach: improvements in methods do not

affect the high level description of the membrane mechanism.

The FUNCTI ON block

The functions defined by FUNCTI ON blocks are available at the hoc level and in other
mechanisms by adding the suffix of the mechanism in which they are defined, e.g.
al pha_kd() and bet a_kd() . Functions or procedures can be smply called from hoc if
they do not reference range variables (references to GLOBAL variables are allowed). If a
function or procedure does reference a range variable, then prior to calling the function
from hoc it is necessary to specify the proper instance of the mechanism (its location on

the cell). Thisisdone by aset dat a_ function that has the syntax

section_nane setdata_suffix(x)

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

where sect i on_nane isthe name of the section that contains the mechanism in
guestion, suf f i x isthe mechanism suffix, and x is the normalized distance along the
section where the particular instance of the mechanism exists. The functionsin our kd

example do not use range variables, so a specific instance is not needed.

The differential equation that describes the kinetics of n involves two voltage-
dependent rate constants whose values are computed by the functions al pha() and

bet a() . Theoriginal algebraic form of the equations that define theseratesis

0.1 v1—055) _ v+65)
_ 80
x = v+55 and B= 0125e Eq 9.1
1— |10)

The denominator for o« goesto 0 when v =-55 mV, which could cause numeric
overflow. The code used in al pha() avoidsthis by switching, when visvery closeto

-55, to an alternative expression that is based on the first three terms of the infinite series
expansion of €.
As noted elsewhere in this paper, NMODL has features that facilitate establishing and

maintaining consistency of units. Therefore the rate functions al pha() and bet a() are

introduced with the syntax
FUNCTION f_name(argl (unitsl), arg2 (units2), . ..)(returned units)

to declare that their arguments are in units of millivolts and that their returned values are
in units of inverse milliseconds ("/ms"). This allows automatic units checking on entry to
and return from these functions. For the sake of legibility the UNI TSOFF . . . UNI TSON

directives disable units checking just within the body of these functions. Thisis

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 9 November 28, 2004

acceptable because the terms in the affected statements are mutually consistent.
Otherwise the statements would have to be rewritten in away that makes unit consistency

explicit at the cost of legibility, e.g.
X = (Vm+ 55 (nmillivolt))/(10 (nmillivolt))

Certain variables exist solely for the sake of computational convenience. These
typically serve as scale factors, flags, or temporary storage for intermediate results, and
are not of primary importance to the mechanism. Such variables are often declared as
LOCAL variables declared within an equation block, e.g. x in this mechanism. LOCAL
variables that are declared in an equation block are not "visible" outside the block and
they do not retain their values between invocations of the block. LOCAL variables that are
declared outside an equation block have very different properties and are discussed under

Variable declaration blocks in Example 9.8: calcium diffusion with buffering.

Usage

The hoc code and graphical interface for using this distributed mechanism are similar
to those for the | eak mechanism (Fig. 9.2). However, the kd mechanism involves more
range variables, and thisis reflected in the choices available in the range variable menu of

variable browsers, such as the Plot what? tool (brought up from the primary menu of a

Graph). Since kd uses potassium, the variables ek and i k (total K™ current) appear in

thislist along with the variables that are explicitly declared in RANGE statements or the

STATE block of kd. nod (see Fig. 9.6). Thetotal K* current i k will differ fromi _kd

only if another mechanism that WRI TESi k is present in this section.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

| spec ial

“Yariable to graph
Enter Symbol name:

|cable.n_kd{ 0.5)
| Show

cable. Aflcm(0.5) A

ghbar_kd{ 0.5)
i cap{05)
i kd(05)
ik{ 0.5)
n_kd(0.5)
vl (05) v

Accept+! Cancel

Figure 9.6. A Plot what? tool from a Graph created after the kd mechanism was
inserted into a section called cabl e. Note the hoc names of variables

associated with the kd mechanism.

Example 9.5: a calcium-activated,
voltage-gated current

This model of apotassium current that depends on both voltage and intracellular

calcium concentration [Ca?"] ;- is based on the work of Moczydlowski and Latorre

(Moczydlowski and Latorre 1983). It is basically an elaboration of the HH mechanism in

which the forward and backward rates depend jointly on membrane potential and [Ca2+]i.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 9 November 28, 2004

Here we point out the salient implementational differences between this and the previous

model.
Cal cium acti vated K channel
NEURON {
SUFFI X cagk
USElI ON ca READ cai
USEI ON k READ ek WRI TE ik
RANGE gkbar
G.OBAL oi nf, tau
}
UNI TS {
(V) = (mllivolt)
(M) = (m1lianp)
(S) = (sienens)
(rmolar) = (1/liter)
(mv) = (mllinolar)
FARADAY = (faraday) (kil ocoul onbs)
} R = (k-nole) (joul e/degC
PARAMETER {
gkbar = 0.01 (S/cnR)
dl = 0.84
d2 =1.0
k1l =0.18 (mV
k2 = 0.011 (MM
bbar = 0.28 (/ns)
abar = 0.48 (/ms)
}
ASSI GNED {
cai (nmV) : typically 0.001
celsius (degC) : typically 20
Y (V)
ek (V)
i k (mA/ cnR)
oi nf
tau (ns)
}
STATE { o } : fraction of channels that are open
BREAKPO NT {

SOLVE state METHOD cnexp
i k = gkbar*o*(v - ek)

DERI VATI VE state {
rate(v, cai)
o' = (oinf - o)/tau

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

I NI TIAL {
rate(v, cai)
o0 = oinf

}

the followng are all callable from hoc

FUNCTION al p(v (mV), ca (mM) (/nms) {
} alp = abar/ (1 + expl(kl,dl,v)/ca)

FUNCTI ON bet (v (mV), ca (mM) (/nms) {
} bet = bbar/(1 + cal/expl(k2,d2,v))

FUNCTI ON expl(k (MM, d, v (nV)) (mV
> nuneric constants in an addition or subtraction
expression automatically take on the unit val ues
. of the other term
expl = k*exp(-2*d*FARADAY*v/ R/ (273. 15 + cel sius))

PROCEDURE rate(v (mVv), ca (mMM) {
LOCAL a
: LOCAL vari able takes on units of right hand side
a = al p(v, ca)
tau = 1/(a + bet(v, ca))
oinf = a*tau

Listing 9.5. cagk. nod

The NEURON block

This potassium conductance depends on [Ca?*] i, SO two USE!l ON statements are

required. Since this potassium channel depends on intracellular calcium concentration, it
must READ cai . The RANGE statement declares the peak conductance density gkbar .
However, thereisno g, so this mechanism's ionic conductance will not be visible from
hoc (infact, thismodel doesn't even cal cul ate the activated ionic conductance density).

Likewise, thereisnoi _cagk to report this particular current component separately, even

though it will be added to the total K* current i k because of WRI TE i k.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 9 November 28, 2004

Thevariablesoi nf and t au, which govern the gating variable o, should be

accessible in hoc for the purpose of seeing how they vary with membrane potential and

[Ca?'] .- At the same time, the storage and syntax overhead required for a RANGE variable

does not seem warranted because it appears unlikely to be necessary or useful to plot
either oi nf or t au asafunction of space. Therefore they have been declared in a

GLOBAL statement. On first examination, this might seem to pose a problem. The gating

of thisK™* current depends on membrane potential and [Ca2'] i» both of which may vary

with location, so how can it be correct for oi nf and t au to be G_.OBALS? And if some
reason did arise to examine the values of these variables at a particular location, how
could this be done? The answers to these questions lie in the DERI VATI VE and

PROCEDURE blocks, as we shall see below.

The UNI TS block

The last two statements in this block require some explanation. The first
parenthesized item on the right hand side of the equal sign isthe numeric value of a
standard entry innr nuni t s. | i b, which may be expressed on a scale appropriate for
physics rather than membrane biophysics. The second parenthesized item rescales this to
the biophysically appropriate units chosen for this model. Thus (f ar aday) appearsin
the units database in terms of coulombs/mole and has a numeric value of 96,485.309, but
for this particular mechanism we prefer to use a constant whose units are

kilocoulombs/mole. The statement

FARADAY = (faraday) (kil ocoul onbs)

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

results in FARADAY having units of kilocoulombs and a numeric value of 96.485309. The

item (k- nol e) inthe statement
R = (k-nole) (joul e/degC

is not kilomoles but instead is a specific entry in the units database equal to the product of
Boltzmann's constant and Avogadro's number. The end result of this statement isthat R
has units of joules/°C and a numeric value of 8.313424. These specia definitions of
FARADAY and R pertain to this mechanism only; a different mechanism could assign

different units and numeric values to these |abels.
Another possible source of confusion is the interpretation of the symbol e. Inside a

UNITS block thisis always the electronic charge (~ 1.6 - 1019 coulombs), but elsewhere

asingle number in parentheses is treated as a units conversion factor, e.g. the expression

(2e4) isaconversion factor of 2 - 10%. Errorsinvolving e in a units expression are easy

to make, but they are always caught by nodl| uni t.

Variable declaration blocks

The ASSI GNED block

Comments in this block can be helpful to the user as reminders of "typica" values or

usual conditions under which a mechanism operates. For example, the cagk mechanism

isintended for use in the context of [Ca\2+]i on the order of 0.001 mM. Similarly, the

temperature sensitivity of this mechanism is accommodated by including the global

variable cel si us, which is used to calculate the rate constants (see The FUNCTI ONand

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 9 November 28, 2004

PROCEDURE blocks below). NEURON's default value for cel si us is6.3°C, but asthe
comment in this nod file points out, the parameter values for this particular mechanism
were intended for an "operating temperature” of 20°C. Therefore the user may need to

change cel si us through hoc or the GUI.

Thevariablesoi nf and t au, which were made accessible to NEURON by the
GLOBAL statement in the NEURON block, are given values by the procedurer at e and are

declared as ASSI GNED.

The STATE block

This mechanism needs a STATE block because o, the fraction of channels that are

open, is described by a differential equation.

Equation definition blocks

The BREAKPO NT block

This mechanism does not make its ionic conductance available to hoc, so the
BREAKPO NT block just calculates the ionic current passing through these channels and

doesn't bother with separate computation of a conductance.

The DERI VATI VE block

The gating variable o is governed by afirst order differential equation. The procedure
rat e() assignsvalues to the voltage sensitive parameters of this equation: the steady
state value oi nf , and the time constant t au. This answersthe first question that was

raised above in the discussion of the NEURON block. The procedurer at e() will be

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

executed individually for each segment in the model that has the cagk mechanism. Each

timerat e() iscaled, itsarguments will equal the membrane potential and [Ca2+]i of

the segment that is being processed, sincev and cai are both RANGE variables. Therefore
oi nf andt au can be GLOBAL without destroying the spatial variation of the gating

variable o.

The FUNCTI ON and PROCEDURE blocks

Thefunctionsal p(), bet (), expl(), andthe procedurer at e() implement the
mathematical expressions that describe oi nf and t au. To facilitate units checking, their
arguments are tagged with the units that they use. For efficiency, rat e() calsal p()
once and uses the returned value twice; calculating oi nf and t au separately would have

required two callsto al p() .

Now we can answer the second question that was raised in the discussion of the
NEURON block: how to examine the variation of oi nf and t au over space. Thisiseasily

donein hoc with nested loops, e.g.

forall { // iterate over all sections
for (x) { // iterate over each segnent
rate_cagk(v(x), cai(x))
/1 here put statenents to plot
I or save oinf and tau

}
}

Usage

This mechanism involves both K* and Ca?*, so the list of RANGE variables displayed

by Plot what? has more entries than it did for the kd mechanism (Fig. 9.7; compare this

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 9 November 28, 2004

with Fig. 9.6). However, cai , cao, and eca will remain constant unless the section in
which this mechanism has been inserted also includes something that can affect calcium

concentration (e.g. a pump or buffer).

| spec ial

‘Wariable to graph
Enter Symbol name:

|cable.o_cagk(0.5)
| Show

cable. 4l cai{ 0.5) A
cao(0.5)
cm(0.5
diam(0.5)
ecal 0.5)
ek(0.5)
gkbar_cagk{ 0.5)
i_cap(0.5)
ica(0.5)
ik{ 0.5
[o_cagk{ 0.5)
vfv(05) v

Accept+! Cancel

Figure 9.7. A Plot what? tool from a Graph created after the cagk mechanism
was inserted into a section called cabl e. Note the hoc names of variables

associated with the cagk mechanism.

Example 9.6: extracellular potassium accumulation

Because mechanisms can generate transmembrane fluxes that are attributed to
gpecific ionic species by the USEI ONx WRI TE i x syntax, modeling the effects of
restricted diffusion is straightforward. The kext mechanism described here emulates

potassium accumulation in the extracellular space adjacent to squid axon (Fig. 9.8). The

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

experiments of Frankenhaeuser and Hodgkin (Frankenhaeuser and Hodgkin 1956)
indicated that satellite cells and other extracellular structures act as a diffusion barrier that

prevents free communication between this space and the bath. When thereis alarge
efflux of K* ions from the axon, e.g. during the repolarizing phase of an action potential

or in response to injected depolarizing current, K* builds up in this " Frankenhaguser-
Hodgkin space" (F-H space). This elevation of [KJ']O shifts E, in adepolarized direction,
which has two important consequences. First, it reduces the driving force for K* efflux
and causes a decline of the outward I .. Second, when the action potential terminates or

the injected depolarizing current is stopped, the residual el evation of [K™] o Causes an

inward current that decays gradually as[K™] equilibrates with [K™] .

Frankenhaeuser- N

Hodgkin space \

o Diffusion

Figure 9.8. Restricted diffusion may cause extracellular potassium
accumul ation adjacent to the cell membrane. From Fig. 1 in (Hines and

Carneval e 2000).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 9 November 28, 2004

: Extracel | ular potassiumion accunul ation

NELRON {
SUFH X kext
UWSE Nk READ ik VR TE ko
A.BAL kbat h
RANCE f hspace, txfer

LN TS {
(M) = (mllivolt)
(my = (mllianp)
FARADAY = (faraday) (coul onbs)
(molar) = (1liter)
}(rrM = (mllinolar)
PARAMETER {
kbath = 10 (nV : seawater (squid axon!)
fhspace = 300 (angstron) : effective thickness of FH space
} txfer = 50 (ns) : tau for FH space <-> bath exchange = 30-100

ASSAQED{ ik (nmNcn) }
STATE { ko (NN }
BREAKPA NT { SQLVE state METHD cnexp }

CER VATI VE state {
ko' = (1e8)*i k/ (f hspace* FARADAY) + (kbath - ko)/txfer

Listing 9.6. kext . nod

The NEURON block

A compartment may contain several mechanisms that have direct interactions with
ionic concentrations (e.g. diffusion, buffers, pumps). Therefore NEURON must be able to
compute the total currents and concentrations consistently. The USEI ON statement sets up
the necessary "bookkeeping" by automatically creating a separate mechanism that keeps
track of four essential variables: the total outward current carried by anion, the interna
and externa concentrations of theion, and its equilibrium potential (also see lon

concentrations and equilibrium potential in Chapter 8). In this case the name of the

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

ionis"k" and the automatically created mechanismiscaled "k_i on" inthe hoc

interpreter. The k_i on mechanism has variablesi k, ki , ko, and ek, which represent |,

[K™]i, [K™],,, and Ey, respectively. These do not have suffixes; furthermore, they are
RANGE variables so they can have different values in every segment of each sectionin
which they exist. In other words, the K* current through Hodgkin-Huxley potassium

channels near one end of the section cabl e iscabl e. i k_hh(0. 1), but the total K*
current generated by all sources, including other ionic conductances and pumps, would be

cable.ik(0.1).

This mechanism computes [K™] o from the outward potassium current, so it READs i k

and WRI TEsko. When a mechanism WRI TES a particular ionic concentration, it sets the
value for that concentration at al locations in every section into which it has been
inserted. This has an important consequence: in any given section, no ionic concentration

should be "written" by more than one mechanism.

The bath is assumed to be alarge, well stirred compartment that envelops the entire

"experimental preparation.” Therefore kbat h isa GLOBAL variable so that all sections

that contain the kext mechanism will have the same numeric value for [K*] bath- SINCE

this would be one of the controlled variablesin an experiment, the value of kbat h is
specified by the user and remains constant during a simulation. The thickness of the F-H
gpaceisf hspace, the time constant for equilibration with the bath ist xf er , and both

are RANGE variables so they can vary aong the length of each section.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 9 November 28, 2004

Variable declaration blocks

The PARAMETER block

The default value of kbat h is set to 10 mM, consistent with the composition of
seawater (Frankenhaeuser and Hodgkin 1956). Since kbat h is G_OBAL, asingle hoc
statement can change thisto a new value that will affect all occurrences of the kext

mechanism, e.g. kbat h_kext = 8 would changeit to 8 mM everywhere.

The STATE block

lonic concentration is a STATE of a mechanism only if that mechanism calculates the
concentration in aDERI VATI VE or KI NETI Cblock. This model computes ko, the
potassium concentration in the F-H space, according to the dynamics specified by an

ordinary differential equation.

Equation definition blocks

The BREAKPO NT block

This mechanism involves a single differential equation that tellsthe rate of change of
ko, the K* concentration in the F-H space. The choice of integration method in NMODL
is based on the fact that the equation islinear in ko. The total K* current i k might also

vary during atime step (see the DERI VATI VE block) if membrane potential, some K*

conductance, or ko itself is changing rapidly. In a ssmulation where such rapid changes

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

are likely to occur, proper modeling practice would lead one either to use NEURON with

CVODE, or to use afixed time step that is short compared to the rate of change of i k.

The | NI TI AL block

How to provide for initialization of variablesisarecurring question in model
implementation, and here it comes again. The answer isimportant because it bears
directly on how the model will be used. The only STATE in this mechanism istheionic
concentration ko, which we could initialize in several different ways. The simplest might

bewith thel NI TI AL block

INITIAL {
ko = kbat h

}

but this seems too limiting. One alternative is to declare anew RANGE variable ko0 in the
NEURON block, specify its value in the PARAMETER block

PARAMETER {

}koO = 10(m) = 10 (M

and usethis | NI Tl AL block

INITIAL {
ko = koO

}

Thiswould be a very flexible implementation, allowing ko0 to vary with location
wherever kext hasbeeni nsert ed. But some careis needed in its use, because ion

concentration assignment inan | NI Tl AL block can result in an inconsistent initialization

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 9 November 28, 2004

onreturnfromfinitialize() (seelon concentrations and equilibrium potentials

in Chapter 8).

So for this example we have decided to let theinitial value of ko be controlled by the
built-in hoc variable ko0_k_i on (see Initializing concentrationsin hoc in Chapter 8).
To make our mechanism rely on koO_k_i on for theinitial value of ko, we merely omit
any ko =. . . assgnment statement fromthe | NI TI AL block. Since ko iskext 'sonly
STATE, wedon't need an | NI TI AL block at all. This might seem aless flexible approach
than using our own koO RANGE variable, because koO_k_i on isaglobal variable (has
the same value wherever ko is defined), but I nitializing concentrationsin hoc in

Chapter 8 shows how to work around this apparent limitation.
The DERI VATI VE block

At the core of this mechanism is asingle differential equation that relates d[K] Jdtto
the sum of two terms. The first term describes the contribution of i k to [K*] o Subject to
the assumption that the thickness F-H space is much smaller than the diameter of the

section. The units conversion factor of 108 is required because f hspace isgivenin

Angstroms. The second term describes the exchange of K* between the bath and the F-H

space.

Usage
If this mechanism is present in a section, the following RANGE variables will be

accessible through hoc: [K*] inside the cell and within the F-H space (ki and ko);

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

equilibrium potential and total current for K (ek and i k); thickness of the F-H space and

the rate of equilibration between it and the bath (f hspace_kext andt xf er _kext). The

bath [K*] will also be available asthe global variable kbat h_kext .

General comments about kinetic schemes

Kinetic schemes provide a high level framework that is perfectly suited for compact
and intuitively clear specification of models that involve discrete states in which material
is conserved. The basic notion is that flow out of one state equals flow into another (also
see Chemical reactions in Chapter 3). Almost all models of membrane channels,
chemical reactions, macroscopic Markov processes, and diffusion can be elegantly
expressed through kinetic schemes. It will be helpful to review some fundamentals before

proceeding to specific examples of mechanisms implemented with kinetic schemes.

The unknowns in a kinetic scheme, which are usually concentrations of individual
reactants, are declared in the STATE block. The user expresses the kinetic scheme with a
notation that is very similar to alist of smultaneous chemical reactions. The NMODL
translator converts the kinetic schemeinto afamily of ODEs whose unknowns are the

STATES. Hence

STATE{ nt m}
KI NETI C schenel {
~n <> m(a(v), b(v))

}

is equivalent to

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 9 November 28, 2004

DERI VATI VE schemel {

RI
nc' = -a(v)*nc + b(v)*m
m = a(v)*nc - b(v)*m

}

Thefirst character of areaction statement isthe tilde "~", which isused to
immediately distinguish this kind of statement from other sequences of tokens that could
be interpreted as an expression. The expressions on the left and right of the three
character reaction indicator "<- >" specify the reactants. The two expressionsin
parentheses are the forward and reverse reaction rates (here the rate functionsa(v) and b
(v)). Immediately after each reaction, the variablesf _f | ux andb_f | ux are assigned
the values of the forward and reverse fluxes respectively. These can be used in

assignment statements such as

~ cai + pump <-> capunp (k1,k2)
~ capu <-> pu + cao (k3,k4)
ica = (f_flux - b_flux)*2*Faraday/ area

In this case, the forward flux isk3* capunp, the reverse flux is k4* punp* cao, and the
"positive outward" current convention is consistent with the sign of the expression for
i ca (in the second reaction, forward flux means positive ions move from the inside to the

outside).
More complicated reaction sequences such as the wholly imaginary

KI NETI C schene2 {
~2A + B <-> k1, k2
(

C()
~ C+ D<->A+ 2B (k3,k4)

begin to show the clarity of expression and suggest the comparative ease of modification

of the kinetic representation over the equivaent but stoichiometrically confusing

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

DERI VATI VE scheme2 {

A = -2*kK1*A2*B + 2*k2*C + k3*C*D - k4*A*B"2
B = -k1*AM2*B + k2*C + 2*k3*C*D - 2*k4* A*B"2
C = ki*Ar2*B - k2*C - k3*C*D + k4*A*B"2
D = - k3*CGD + k4*A*Br2

Clearly a statement such as
~ calnodulin + 3Ca <-> active (k1, k2)

would be easier to modify (e.g. so it requires combination with 4 calcium ions) than the
relevant term in the three differential equationsfor the STATESs that this reaction affects.
The kinetic representation is easy to debug because it closely resembles familiar notations
and is much closer to the conceptualization of what is happening than the differential

eguations would be.

Another benefit of kinetic schemesis the simple polynomial nature of the flux terms,

which allows the translator to easily perform a great deal of preprocessing that makes

implicit numerical integration more efficient. Specifically, the nonzero 0 y', /o Y

elements (partial derivatives of dy;/dt with respectto Y;) of the sparse matrix are

calculated analytically in NMODL and collected into a C function that is called by
solvers to calculate the Jacobian. Furthermore, the form of the reaction statements
determinesif the scheme s linear, obviating an iterative computation of the solution.
Voltage-sensitive rates are allowed, but to guarantee numerical stability, reaction rates

should not be functions of STATES. Thus writing the calmodulin example as

~ calnodulin <-> active (k3*Can3, k2)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 9 November 28, 2004

will work but is potentially unstable if Ca isa STATE in other simultaneous reactionsin
the same nod file. Variable time step methods such as CVODE will compensate by

reducing dt , but this will make the simulation run more slowly.

Kinetic scheme representations provide a great deal of leverage because asingle
compact expression is equivaent to alarge amount of C code. One special advantage
from the programmer’'s point of view is the fact that these expressions are independent of
the solution method. Different solution methods require different code, but the NMODL
translator generates this code automatically. This saves the user's time and effort and
ensures that all code expresses the same mechanism. Another advantage is that the
NMODL translator handles the task of interfacing the mechanism to the remainder of the
program. Thisis atedious exercise that would require the user to have specia knowledge

that is not relevant to neurophysiology and which may change from version to version.

Special issues are raised by mechanisms that involve fluxes between compartments of
different size, or whose reactants have different units. The first of the following examples
has none of these complications, which are addressed later in models of diffusion and

active transport.

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Example 9.7: kinetic scheme for a
voltage-gated current

Thisillustration of NMODL's facility for handling kinetic schemes implements a
simple three state model for the conductance state transitions of a voltage gated

potassium current

PN
[

PN
N

Eqg. 9.2

T
NO
T

@)

&
&

The closed states are C, and C,, the open state is O, and the rates of the forward and

backward state transitions are calculated in terms of the equilibrium constants and time

constants of the isolated reactions through the familiar expressions K, (v) = kf, / kb,

and 7,(v) = 1/(kf, +kb,) . The equilibrium constants K;(V) are the Boltzmann factors

[k, (d,— v) — k. (d,— V)] —k,(d,— V)
2 e and K,=e 22 7 \wherethe energies of states C,

C,, and O are0, k;(d;— V), and Kk,(d,— V) respectively.

The typical sequence of analysisis to determine the constants k;, d,, k,, and d,, by

fitting the steady state voltage clamp data, and then to find the voltage sensitive transition

time constants t,(v) and T,(v) from the temporal properties of the clamp current at

each voltage pulse level. In this example the steady state information has been

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 9

that are created within the interpreter.

Page 52

November 28, 2004

incorporated in the NMODL code, and the time constants are conveyed by tables (arrays)

Three state kinetic schenme for HH1ike potassium channe
St eady state v-dependent state transitions have been fit

Needs v-dependent tine constants
fromtabl es created under hoc

NEURON {
SUFFI X k3st
USEI ON k READ ek WRI TE ik
RANGE g, gbar

}
UNITS { (nV) = (mllivolt) }
PARAMETER {
gbhar = 33 (ml1inmho/cnR)
dl = -38 (mv)
Iél = 0.151 (/nV)
2 = -25
} k2 = 0.044 5??1/)1\/)
ASSI GNED {
v (M)
ek (mV)
g (ml1imo/cn?
Ik (ml1lianmp/cnR)
kf1 (/nms)
kb1 (/ms)
kf2 (/nms)
kb2 (/ms)
}
STATE { c1 c2 o}
BREAKPO NT {
SCLVE ki n METHOD sparse
g = gbar*o

ik = g*(v - ek)*(1le-3)

INITIAL { SOLVE kin STEADYSTATE sparse }

KI NETI C kin {
rates(v)
~cl <->¢c2 (kf1, kbl)
~Cc2 <->0 (kf2, kb2)
CONSERVE c1 + c2 + 0 =1

FUNCTI ON_TABLE taul(v(mV)) (ms)
FUNCTI ON_TABLE tau2(v(mV/)) (ns)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

PROCEDURE rates(v(mllivolt)) {
LOCAL K1, K2
KL = exp(k2*(d2 - v) - k1*(dl - v))
kf1 K1/ (taul(v) *(1+K1))
kb1 1/ (taul(v)*(1+K1))
K2 = exp(-k2*(d2 - v))
kf 2 K2/ (tau2(v) *(1+K2))
kb2 1/ (tau2(v)*(1+K2))

Listing 9.7. k3st . nod

The NEURON block

With one exception, the NEURON block of this model is essentially the same as for the

delayed rectifier presented in Example 9.4: a voltage-gated current. The differenceis

that, even though this model contributes to the total K™ current i k, its own current is not
available separately (i.e. therewill benoi k_k3st at thehoc level) becausei k is not

declared as a RANGE variable.

Variable declaration blocks

The STATE block

The STATES in this mechanism are the fractions of channelsthat are in closed states 1
or 2 or in the open state. Since the total number of channelsin all statesis conserved, the
sum of the STATES must be unity, i.e. c1 + c2 + o = 1. This conservation rule means that
the k3st mechanism really has only two independent STATE variables, afact that
underscores the difference between a STATE in NMODL and the general concept of a
state variable. It also affects how NMODL sets up the equations that are to be solved, as

we will seein the discussion of the KI NETI C block below.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

The NEURON Book: Chapter 9 November 28, 2004

Not al reactants have to be STATES. If the reactant is an ASSI GNED or PARAMETER
variable, then a differential equation is not generated for it, and it is treated as constant

for the purposes of calculating the declared STATEs. Statements such as

PARAMETER { kbat h (nm\)}
STATE {ko (m\V)}

KI NETI C schene3 {

} ~ ko <-> kbath (r, r)

are trandated to the single ODE equivalent
ko' = r*(kbath - ko)

i.e. ko tends exponentially to the steady state value of kbat h.

Equation definition blocks

The BREAKPO NT block

The recommended idiom for integrating akinetic schemeis

BREAKPO NT {
SCLVE schene METHCD sparse

}
which integrates the STATEs in the scheme one dt step per call to f advance() . The
spar se method is generally faster than computing the full Jacobian matrix, though both
use Newton iterations to advance the STATEs with afully implicit method (first order
correct). Additionaly, the spar se method separates the Jacobian evaluation from the
calculation of the STATE derivatives, thus allowing adaptive integration methods, such as
CVODE, to efficiently compute only what is needed to advance the STATEs. Nonimplicit

methods, such as Runge-Kutta or forward Euler, should be avoided since kinetic schemes

Page 54 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

commonly have very wide ranging rate constants that make these methods numerically
unstable with reasonable dt steps. In fact, it is not unusual to specify equilibrium

reactions such as
~ A <-> B (leb*sqrt(K), 1le6/sqrt(K))

which can only be solved by implicit methods.

The | NI TI AL block

Initialization of akinetic scheme to its steady state is accomplished with

INITIAL {
SCLVE schene STEADYSTATE sparse

}

Appropriate CONSERVE statements should be part of the scheme (see the following
discussion of the KI NETI C block) so that the equivalent system of ODEs s linearly
independent. It should be kept in mind that source fluxes (constant for infinite time) have
astrong effect on the steady state. Findly, it iscrucia to test the scheme in NEURON

under conditions in which the correct behavior is known.

The KI NETI Cblock

The voltage-dependent rate constants are computed in procedurer at es() . That
procedure computes the equilibrium constants K1 and K2 from the constants k1, d1, k2,
and d2, whose empirically determined default values are given in the PARAMETER block,
and membrane potential v. Thetime constantst aul and t au2, however, are found from

tables created under hoc (see The FUNCTI ON_TABLEs below).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

The NEURON Book: Chapter 9 November 28, 2004

The other noteworthy item in this block is the CONSERVE statement. As mentioned
abovein General comments about kinetic schemes, the basic ideaisto systematically
account for conservation of material. If thereis neither a source nor asink reaction for a
STATE, the differential equations are not linearly independent when steady states are
calculated (dt approachesinfinity). For example, in schenel above the steady state
conditionm =nt' =0yieldstwo identical equations. Steady states can be approximated
by integrating for several steps from any initial condition with large dt , but roundoff
error can be aproblem if the Jacobian matrix isnearly singular. To help solve the
equations while maintaining strict numerical conservation throughout the simulation (no
accumulation of roundoff error), the user is allowed to explicitly specify conservation
equations with the CONSERVE statement. The conservation law for schenel is specified

in NMODL by
CONSERVE m + nt = 1

The CONSERVE statement does not add to the information content of a kinetic scheme
and should be considered only as a hint to the translator. The NMODL translator uses this
algebraic equation to replace the ODE for the last STATE on the left side of the equal
sign. If one of the STATE names is an array, the conservation equation will contain an
implicit sum over the array. If the last STATE is an array, then the ODE for the last
STATE array element will be replaced by the algebraic equation. The choice of which
STATE ODE is replaced by the algebraic equation depends on the implementation, and
does not affect the solution (to within roundoff error). If a CONSERVEd STATE isrelative
to a compartment size, then compartment size isimplicitly taken into account for the

STATEs on the left hand side of the CONSERVE equation (see Example 9.8: calcium

Page 56 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

diffusion with buffering for discussion of the COMPARTMENT statement). The right hand
side is merely an expression, in which any necessary compartment sizes must be included

explicitly.

Thus in a calcium pump model

k k
1 3
Ca + Pump — Ca:-Pump ~ Ca,,+ Pump Eq. 9.3
— —
Kk, K,

the pump is conserved and one could write

CONSERVE punp + punpca = total _punp * punparea

The FUNCTI ON_TABLEs

As noted above, the steady state clamp data define the voltage dependence of K, and

K., but a complete description of the K™ current requires analysis of the temporal

properties of the clamp current to determine the rate factors at each of the command
potentials. The result would be alist or table of membrane potentials with associated time
constants. One way to handle these numeric values would be to fit them with a pair of
approximating functions, but the tactic used in this example is to leave them in tabular

form for NMODL's FUNCTI ON_TABLE to dea with.

Thisis done by placing the numeric valuesin three Vect or s, say v_vec, taul_vec,
andt au2_vec, where thefirst isthelist of voltages and the other two are the
corresponding time constants. These Vect or swould be attached to the

FUNCTI ON_TABLEs of this model with the hoc commands

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

The NEURON Book: Chapter 9 November 28, 2004

tabl e_taul k3st(taul vec, v_vec)
tabl e_tau2_k3st(tau2_vec, v_vec)

Then whenever t aul(x) iscalled inthe NMODL file, or t aul_k3st (x) iscaled from

hoc, the returned value is interpolated from the array.

A useful feature of FUNCTI ON_TABLEs s that, prior to developing the Vect or

database, they can be attached to a scalar value, asin

tabl e_taul k3st (100)

effectively becoming constant functions. Also FUNCTI ON_TABLES can be declared with
two arguments and attached to doubly dimensioned hoc arrays. In this case the table is
linearly interpolated in both dimensions. Thisis useful with rates that depend on both

voltage and calcium.

Usage

Inserting this mechanism into a section makes the STATESc1_k3st,c2_k3st, and

o_k3st available at the hoc level, aswell asthe conductances gbar _k3st and g_k3st .

Example 9.8: calcium diffusion with buffering

This mechanism illustrates how to use kinetic schemes to model intracellular Ca2*

diffusion and buffering. It differs from the prior examplein several important aspects:
Ca?* is not conserved but instead enters as a consequence of the transmembrane Ca2*
current; diffusion involves the exchange of Ca?* between compartments of unequal size;

CaZt is buffered.

Page 58 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Only free Ca2* is assumed to be mobile, whereas bound Ca2* and free buffer are
stationary. Buffer concentration and rate constants are based on the bullfrog sympathetic
ganglion cell model described by Yamadaet al. (Yamadaet a. 1998). For athorough
treatment of numeric solution of the diffusion equations the reader is referred to Oran and

Boris (Oran and Boris 1987).

Modeling diffusion with kinetic schemes

Diffusion is modeled as the exchange of Ca2* between adjacent compartments. We
begin by examining radial diffusion, and defer consideration of longidudinal diffusion to

Equation definition blocks: The KI NETI Chlock later in this example.

For radial diffusion, the compartments are a series of concentric shells around a
cylindrical core, as shownin Fig. 9.9 for Nannul i =4. The index of the outermost shell

is 0 and the index of the coreisNannul i - 1. The outermost shell is half asthick asthe

others so that [Ca2*] will be second order correct with respect to space at the surface of
the segment. Concentration is also second order correct midway through the thickness of
the other shells and at the center of the core. These depths are indicated by "x" in Fig. 9.9.
The radius of the cylindrical core equals the thickness of the outermost shell, and the
intervening Nannul i - 2 shells each have thickness Ar = di am/ 2 (Nannul i - 1), where

di amisthe diameter of the segment.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

The NEURON Book: Chapter 9 November 28, 2004

Nannuli = 4

Ar = r/ (Nannuli - I)
=r/3

Figure 9.9. Diagram of the concentric shells used to model radia diffusion. The
x mark the radial distances at which concentration will be second order correct

in space.

Because segment diameter and the number of shells affect the dimensions of the

shells, they also affect the time course of diffusion. The flux between adjacent shellsis

A[Ca?*] D, A | Ar, where A[C&?*] is the concentration difference between the shell

centers, D, isthe diffusion coefficient for Ca?*, A isthe area of the boundary between

shells, and Ar is the distance between their centers. This suggests that diffusion can be

described by the basic kinetic scheme

FROMi = 0 TO Nannuli-2 {
~ca[i] <-> cal[i+1] (f[i+1], f[i+1])

where Nannul i isthe number of shells, ca[i] isthe concentration midway through the

thickness of shell i (except for ca[0] which isthe concentration at the outer surface of

shell 0), and therate constantsf [i +1] equa D, A,,, / Ar. For each adjacent pair of
shells, both A, ,; and Ar are directly proportional to segment diameter. Therefore the

ratios A, , / Ar depend only on shell index, i.e. once they have been computed for one

Page 60 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

segment, they can be used for all segments that have the same number of radial

compartments regardless of segment diameter.

Asit stands, this kinetic scheme is dimensionally incorrect. Dimensional consistency
requires that the product of STATES and rates be in units of STATE per time (also see
Compartment size in the section on Chemical reactions in Chapter 3). In the present
examplethe STATEsca[] areintensive variables (concentration, or mass'volume), so the
product of f[] and ca[] must be in units of concentration/time. However, the ratesf []

have units of volume/time, so this product is actually in units of mass/time, i.e. it isaflux

that signifies the rate at which Ca2* is entering or leaving a compartment. Thisis thetime

derivative of an extensive variable (i.e. of avariable that describes amount of material).

This disparity is corrected by specifying STATE volumes with the COMPARTMVENT

statement, asin
COMPARTMENT vol unme {statel state2 . .