

November 29, 2004 Preface to The NEURON Book

Preface to The NEURON Book

N.T. Carnevale1 and M.L. Hines2

Departments of 1Psychology and 2Computer Science

Yale University, New Haven, CT

ted.carnevale@yale.edu

michael.hines@yale.edu

Who should read this book

This book is about how to use the NEURON simulation environment to construct and

apply empirically-based models of neurons and neural networks. It is written primarily

for neuroscience investigators, teachers, and students, but readers with a background in

the physical sciences or mathematics who have some knowledge about brain cells and

circuits and are interested in computational modeling will also find it helpful. The

emphasis is on the most productive use of NEURON as a means for testing hypotheses

that are founded on experimental observations, and for exploring ideas that may lead to

the design of new experiments. Therefore the book uses a problem-solving approach,

with many working examples that readers can try for themselves.

What this book is, and is not, about

Formulating a conceptual model is an attempt to capture the essential features that

underlie some particular function. This necessarily involves simplification and

abstraction of real-world complexities. Even so, one may not necessarily understand all

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Preface to The NEURON Book November 29, 2004

implications of the conceptual model. To evaluate a conceptual model it is often

necessary to devise a hypothesis or test in which the behavior of the model is compared

against a prediction. Computational models are useful for performing such tests. The

conceptual model and the hypothesis should determine what is included in a

computational model and what is left out. This book is not about how to come up with

conceptual models or hypotheses, but instead focuses on how to use NEURON to create

and use computational models as a means for evaluating conceptual models.

What to read, and why

The first chapter conveys a basic idea of NEURON's primary domain of application

by guiding the reader through the construction and use of a model neuron. This exercise

is based entirely on NEURON's GUI, and requires no programming ability or prior

experience with NEURON whatsoever.

The second chapter considers the role of computational modeling in neuroscience

research from a general perspective. Chapters 3 and 4 focus on aspects of applied

mathematics and numerical methods that are particularly relevant to computational

neuroscience. Chapter 5 discusses the concepts and strategies that are used in NEURON

to simplify the task of representing neurons, which (at least at the level of synapses and

cells) are distributed and continuous in space and time, in a digital computer, where

neither time nor numeric values are continuous. Chapter 6 returns to the topic of model

construction, emphasizing the use of programming.

Chapters 7 and 8 provide "inside information" about NEURON's standard run and

initialization systems, so that readers can make best use of their features and customize

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Preface to The NEURON Book

them to meet special modeling needs. Chapter 9 shows how to use the NMODL

programming language to add new biophysical mechanisms to NEURON. This theme

continues in Chapter 10, which starts with mechanisms of communication between cells

(gap junctions, graded and spike-triggered synaptic transmission), and moves on to

models of artificial spiking neurons (e.g. integrate and fire cells). The first half of Chapter

11 is a tutorial on NEURON's GUI tools for creating simple network models, and the

second half shows how to use the strengths of the GUI and hoc programming to create

more complex networks.

Chapter 12 discusses the elementary features of the hoc programming language itself.

Chapter 13 describes the object-oriented extensions that have been added to hoc. These

extensions have greatly facilitated construction of NEURON's GUI tools, and they can

also be very helpful in many other complex programming tasks such as creating and

managing network models. Chapter 14 presents an example of how to use object oriented

programming to increase the functionality of NEURON.

Appendix 1 presents a mathematical analysis of the IntFire4 artificial spiking cell

mechanism, proving a result that is used to achieve computational efficiency when

simulating this model. Appendix 2 summarizes the commands for NEURON's built-in

text editor.

Acknowledgments

First and foremost, we want to thank our mentor and colleague John W. Moore for his

vision, support, encouragement, and active participation in the development of

NEURON, without which neither it nor this book would exist. Through his research and

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Preface to The NEURON Book November 29, 2004

teaching, he was introducing students to "computational neuroscience" long before that

glorious term was invented. NEURON had its beginnings in John's laboratory at Duke

University almost three decades ago, when he and one of the authors (MLH) started their

collaboration to develop simulation software for neuroscience research. Users of

NEURON on the Macintosh owe John a particular debt. He continues to participate in the

development and dissemination of NEURON, concentrating most recently on educational

applications in collaboration with Ann Stuart (Moore and Stuart 2004).

The list of those who have added in one way or another to the development of

NEURON is far too long for this short preface. Zach Mainen, Alain Destexhe, Bill

Lytton, Terry Sejnowski, and Gordon Shepherd deserve special mention for many

contributions, both direct and indirect, that range from specific enhancements to the

program, to fostering the wider acceptance of computational approaches in general, and

NEURON in particular, by the neuroscience community at large. We also thank the

countless NEURON users whose questions and suggestions continue to help guide the

evolution of this software and its documentation. We hope that everyone else will forgive

any omission and remind us, gently, in time for the second edition.

Finally, we thank our wives and children for their encouragement and patience while

we completed this book.

References

Moore, J.W. and Stuart, A.E. Neurons in Action: Computer Simulations with NeuroLab.

Sunderland, MA: Sinauer Associates, 2004.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

The NEURON Book

Table of contents

Note: page numbers in each chapter start from 1, and correspond to double-spaced

format.

Preface

Chapter 1. A tour of the NEURON simulation environment

Modeling and understanding 1

Introducing NEURON 2

1. State the question 3

2. Formulate a conceptual model 4

3. Implement the model in NEURON 7

Starting and stopping NEURON 8

Bringing up a CellBuilder 10

Enter the specifications of the model cell 11

Topology 11

Subsets 15

Geometry 16

Biophysics 20

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Contents of The NEURON Book November 29, 2004

Save the model cell 22

Execute the model specification 24

4. Instrument the model 25

Signal sources 25

Signal monitors 27

5. Set up controls for running the simulation 30

6. Save model with instrumentation and run control 31

7. Run the simulation experiment 33

8. Analyze results 37

References 40

Index 42

Chapter 2. Principles of neural modeling

Why model? 1

From physical system to computational model 2

Conceptual model: a simplified representation of a physical system 2

Computational model: an accurate representation of a conceptual model 3

An example 4

Index 6

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Chapter 3. Expressing conceptual models in mathematical
terms

Chemical reactions 2

Flux and conservation in kinetic schemes 3

Stoichiometry, flux, and mole equivalents 5

Compartment size 7

Scale factors 11

Electrical circuits 13

Cables 14

References 28

Index 29

Chapter 4. Essentials of numerical methods for neural
modeling

Spatial and temporal error in discretized cable equations 2

Analytic solutions: continuous in time and space 3

Spatial discretization 6

Adding temporal discretization 9

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

Contents of The NEURON Book November 29, 2004

Numerical integration methods 11

Forward Euler: simple, inaccurate and unstable 12

Numerical instability 15

Backward Euler: inaccurate but stable 18

Crank-Nicholson: stable and more accurate 21

Efficient handling of nonlinearity 24

Adaptive integration: fast or accurate, occasionally both 29

Implementational considerations 29

The user's perspective 32

Error control 41

Local variable time step method 42

Discrete event simulations 45

Error 46

Summary of NEURON's integration methods 50

Fixed time step integrators 51

Default: backward Euler 51

Crank-Nicholson 52

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Adaptive integrators 53

CVODE 54

DASPK 54

References 55

Index 57

Chapter 5. Representing neurons with a digital computer

Discretization 1

How NEURON separates anatomy and biophysics from purely numerical issues 4

Sections and section variables 5

Range and range variables 6

Segments 8

Implications and applications of this strategy 10

Spatial accuracy 11

A practical test of spatial accuracy 12

How to specify model properties 14

Which section do we mean? 14

1. Dot notation 15

2. Section stack 15

3. Default section 17

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

Contents of The NEURON Book November 29, 2004

How to set up model topology 17

Loops of sections 18

A section may have only one parent 19

The root section 19

Attach sections at 0 or 1 for accuracy 19

Checking the tree structure with topology() 20

Viewing topology with a Shape plot 21

How to specify geometry 22

Stylized specification 23

3-D specification 24

Avoiding artifacts 28

Beware of zero diameter 28

Stylized specification may be reinterpreted as 3-D specification 30

How to specify biophysical properties 32

Distributed mechanisms 33

Point processes 34

User-defined mechanisms 36

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Working with range variables 38

Iterating over nodes 38

Linear taper 39

How changing nseg affects range variables 40

Choosing a spatial grid 43

A consideration of intent and judgment 43

Discretization guidelines 49

The d_lambda rule 50

References 58

Index 61

Chapter 6. How to build and use models of individual cells

GUI vs. hoc code: which to use, and when? 2

Hidden secrets of the GUI 3

Implementing a model with hoc 4

Topology 5

Geometry 7

Biophysics 8

Testing the model implementation 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

Contents of The NEURON Book November 29, 2004

An aside: how does our model implementation in hoc compare with the output of

the CellBuilder? 10

Instrumenting a model with hoc 16

Setting up simulation control with hoc 17

Testing simulation control 19

Evaluating and using the model 19

Combining hoc and the GUI 20

No NEURON Main Menu toolbar? 21

Default section? We ain't got no default section! 21

Strange Shapes? 23

The barbed wire model 23

The case of the disappearing section 28

Graphs don't work? 32

Conflicts between hoc code and GUI tools 35

Elementary project management 37

Iterative program development 40

References 41

Index 42

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Chapter 7. How to control simulations

Simulation control with the GUI 1

The standard run system 4

An outline of the standard run system 6

fadvance() 6

advance() 6

step() 7

steprun() and continuerun() 8

run() 10

Details of fadvance() 11

The fixed step methods: implicit Euler and Crank-Nicholson 13

Adaptive integrators 22

Local time step integration with discrete events 25

Global time step integration with discrete events 34

Incorporating graphs and new objects into the plotting system 34

References 38

Index 39

Chapter 8. How to initialize simulations

State variables and STATE variables 2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

Contents of The NEURON Book November 29, 2004

Basic initialization in NEURON: finitialize() 5

Default initialization in the standard run system: stdinit() and init() 8

INITIAL blocks in NMODL 9

Default vs. explicit initialization of STATEs 11

Ion concentrations and equilibrium potentials 12

Initializing concentrations in hoc 16

Examples of custom initializations 18

Initializing to a particular resting potential 18

Initializing to steady state 20

Initializing to a desired state 22

Initializing by changing model parameters 23

Details of the mechanism 25

Initializing the mechanism 27

References 33

Index 34

Chapter 9. How to expand NEURON's library of mechanisms

Overview of NMODL 1

Example 9.1: a passive "leak" current 3

The NEURON block 6

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Variable declaration blocks 8

The PARAMETER block 9

The ASSIGNED block 10

Equation definition blocks 11

The BREAKPOINT block 11

Usage 11

Example 9.2: a localized shunt 12

The NEURON block 13

Variable declaration blocks 14

Equation definition blocks 15

The BREAKPOINT block 15

Usage 16

Example 9.3: an intracellular stimulating electrode 17

The NEURON block 17

Equation definition blocks 18

The BREAKPOINT block 18

The INITIAL block 20

Usage 20

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Contents of The NEURON Book November 29, 2004

Example 9.4: a voltage-gated current 21

The NEURON block 23

The UNITS block 24

Variable declaration blocks 24

The ASSIGNED block 24

The STATE block 25

Equation definition blocks 25

The BREAKPOINT block 26

The INITIAL block 27

The DERIVATIVE block 29

The FUNCTION block 30

Usage 32

Example 9.5: a calcium-activated, voltage-gated current 33

The NEURON block 35

The UNITS block 36

Variable declaration blocks 37

The ASSIGNED block 37

The STATE block 38

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Equation definition blocks 38

The BREAKPOINT block 38

The DERIVATIVE block 38

The FUNCTION and PROCEDURE blocks 39

Usage 39

Example 9.6: extracellular potassium accumulation 40

The NEURON block 42

Variable declaration blocks 44

The PARAMETER block 44

The STATE block 44

Equation definition blocks 44

The BREAKPOINT block 44

The INITIAL block 45

The DERIVATIVE block 46

Usage 46

General comments about kinetic schemes 47

Example 9.7: kinetic scheme for a voltage-gated current 51

The NEURON block 53

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

Contents of The NEURON Book November 29, 2004

Variable declaration blocks 53

The STATE block 53

Equation definition blocks 54

The BREAKPOINT block 54

The INITIAL block 55

The KINETIC block 55

The FUNCTION_TABLEs 57

Usage 58

Example 9.8: calcium diffusion with buffering 58

Modeling diffusion with kinetic schemes 59

The NEURON block 64

The UNITS block 64

Variable declaration blocks 65

The ASSIGNED block 65

The STATE block 65

LOCAL variables declared outside of equation definition blocks 66

Equation definition blocks 67

The INITIAL block 67

PROCEDURE factors() 68

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

The KINETIC block 69

Usage 71

Example 9.9: a calcium pump 73

The NEURON block 73

The UNITS block 74

Variable declaration blocks 75

The PARAMETER block 75

The ASSIGNED block 75

The CONSTANT block 76

The STATE block 76

Equation definition blocks 76

The BREAKPOINT block 76

The INITIAL block 77

The KINETIC block 78

Usage 79

Models with discontinuities 80

Discontinuities in PARAMETERs and ASSIGNED variables 80

Discontinuities in STATEs 82

Event handlers 84

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

Contents of The NEURON Book November 29, 2004

Time-dependent PARAMETER changes 85

References 86

Index 88

Chapter 10. Synaptic transmission and artificial spiking cells

Modeling communication between cells 2

Example 10.1: graded synaptic transmission 3

The NEURON block 6

The BREAKPOINT block 7

Usage 7

Example 10.2: a gap junction 10

Usage 11

Modeling spike-triggered synaptic transmission: an event-based strategy 12

Conceptual model 13

The NetCon class 14

Example 10.3: synapse with exponential decay 18

The BREAKPOINT block 20

The DERIVATIVE block 20

The NET_RECEIVE block 20

Usage 21

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Example 10.4: alpha function synapse 23

Example 10.5: Use-dependent synaptic plasticity 25

The NET_RECEIVE block 26

Example 10.6: saturating synapses 28

The PARAMETER block 31

The STATE block 32

The INITIAL block 32

The BREAKPOINT and DERIVATIVE blocks 32

The NET_RECEIVE block 33

Handling of external events 34

Handling of self-events 35

Artificial spiking cells 35

Example 10.7: IntFire1, a basic integrate and fire model 37

The NEURON block 38

The NET_RECEIVE block 39

Enhancements to the basic mechanism 40

Visualizing the membrane state variable 40

Adding a refractory period 42

Improved presentation of the membrane state variable 45

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

Contents of The NEURON Book November 29, 2004

Example 10.8: IntFire2, firing rate proportional to input 46

Implementation in NMODL 49

Example 10.9: IntFire4, different synaptic time constants 52

Other comments regarding artificial cells 58

References 59

Index 60

Chapter 11. Modeling networks

Building a simple network with the GUI 3

Conceptual model 4

Adding a new artificial spiking cell to NEURON 6

Creating a prototype net with the GUI 7

1. Define the types of cells 8

2. Create each cell in the network 11

3. Connect the cells 13

Setting up network architecture 14

Specifying delays and weights 15

4. Set up instrumentation 17

5. Set up controls for running simulations 19

6. Run a simulation 22

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

7. Caveats and other comments 23

Changing the properties of an existing network 23

A word about cell names 24

Combining the GUI and programming 26

Creating a hoc file from the NetWork Builder 26

NetGUI default section 27

Network cell templates 28

Network specification interface 29

Network instantiation 30

Exploiting the reusable code 31

References 47

Index 49

Chapter 12. hoc, NEURON's interpreter

The interpreter 3

Adding new mechanisms to the interpreter 5

The stand-alone interpreter 6

Starting and exiting the interpreter 6

Error handling 9

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

Contents of The NEURON Book November 29, 2004

Syntax 11

Names 11

Keywords 12

Variables 15

Expressions 16

Statements 18

Comments 19

Flow control 19

Functions and procedures 21

Arguments 22

Call by reference vs. call by value 24

Local variables 25

Recursive functions 25

Input and output 26

Editing 29

References 29

Inxex 30

Chapter 13. Object-oriented programming

Object vs. class 2

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

The object model in hoc 2

Objects and object references 3

Declaring an object reference 3

Creating and destroying an object 4

Using an object reference 5

Passing objrefs (and objects) to functions 6

Defining an object class 7

Direct commands 8

Initializing variables in an object 9

Keyword names 10

Object references vs. object names 11

An example of the didactic use of object names 12

Using objects to solve programming problems 13

Dealing with collections or sets 13

Array of objects 14

Example: emulating an "array of strings" 15

List of objects 16

Example: a stack of objects 16

Encapsulating code 18

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

Contents of The NEURON Book November 29, 2004

Polymorphism and inheritance 19

References 21

Index 22

Chapter 14. How to modify NEURON itself

A word about graphics terminology 1

Graphical interface programming 2

General issues 4

A pattern for defining a GUI tool template 6

Enclosing the GUI tool in a single window 8

Saving the window to a session 11

Tool-specific development 15

Plotting 15

Handling events 19

Finishing up 23

Index 28

Appendix A1. Mathematical analysis of IntFire4

Appendix A2. NEURON's built-in editor

Starting and stopping 2

Switching from hoc to emacs 2

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 29, 2004 Contents of The NEURON Book

Returning from emacs to hoc 2

Killing the current command 3

Moving the cursor 3

Modes 3

Deleting and inserting 4

Blocks of text: marking, cutting, and pasting 4

Searching and replacing 4

Text formatting and other tricks 5

Buffers and file I/O 5

Windows 6

Macros and repeating commands 7

References 7

Index 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

November 25, 2004 The NEURON Book: Chapter 1

Chapter 1

A tour of the NEURON simulation environment

Modeling and understanding

Modeling can have many uses, but its principal benefit is to improve understanding.

The chief question that it addresses is whether what is known about a system can account

for the behavior of the system. An indispensable step in modeling is to postulate a

conceptual model that expresses what we know, or think we know, about a system, while

omitting unnecessary details. This requires considerable judgment and is always

vulnerable to hindsight and revision, but it is important to keep things as simple as

possible. The choice of what to include and what to leave out depends strongly on the

hypothesis that we are studying. The issue of how to make such decisions is outside the

primary focus of this book, although from time to time we may return to it briefly.

The task of building a computational model should only begin after a conceptual

model has been proposed. In building a computational model we struggle to establish a

match between the conceptual model and its computational representation, always asking

the question: would the conceptual model behave like the simulation? If not, where are

the errors? If so, how can we use NEURON to help understand why the conceptual model

implies that behavior?

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 1 November 25, 2004

Introducing NEURON

NEURON is a simulation environment for models of individual neurons and

networks of neurons that are closely linked to experimental data. NEURON provides

numerically sound, computationally efficient tools for conveniently constructing,

exercising, and managing models, so that special expertise in numerical methods or

programming is not required for its productive use. Increasing numbers of

experimentalists and theoreticians are incorporating it into their research strategies. As of

this writing, more than 460 scientific publications have reported work done with

NEURON on topics that range from the molecular biology of voltage-gated channels to

the operation of networks containing thousands of neurons (see Research reports that

have used NEURON at http://www.neuron.yale.edu/neuron/bib/usednrn.html).

In the following pages we introduce NEURON by going through the development of

a simple model from start to finish. This will require us to consider each of these steps:

1. State the question that we are interested in

2. Formulate a conceptual model

3. Implement the model in NEURON

4. Instrument the model, i.e. attach signal sources and set up graphs

5. Set up controls for running simulations

6. Save the model with instrumentation and run controls

7. Run simulation experiments

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

8. Analyze results

Since our aim is to provide an overview, we have chosen a simple model that

illustrates just one of NEURON's strengths: the convenient representation of the spread

of electrical signals in a branched dendritic architecture. We could do this by writing

instructions in NEURON's programming language hoc, but for this example we will

employ some of the tools that are provided by its graphical user interface. Later chapters

examine hoc and the graphical tools for constructing models and managing simulations

in more detail, as well as many other features and applications of the NEURON

simulation environment (e.g. complex biophysical mechanisms, neural networks, analysis

of experimental data, model optimization, customization of the user interface).

1. State the question

The scientific issue that motivates the design and construction of this model is the

question of how synaptic efficacy is affected by synaptic location and the anatomical and

biophysical properties of the postsynaptic cell. This has been the subject of too many

experimental and theoretical studies to reference here. Interested readers will find

numerous relevant publications in NEURON's on-line bibliography (cited above), and

may retrieve working code for several of these from ModelDB

(http://senselab.med.yale.edu/senselab/modeldb/).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 1 November 25, 2004

2. Formulate a conceptual model

Most neurons have many branches with irregularly varying diameters and lengths

(Fig. 1.1 A), and their membranes are populated with a wide assortment of ionic channels

that have different ionic specificities, kinetics, dependence on voltage and second

messengers, and spatial distributions. Scattered over the surface of the cell may be

hundreds or thousands of synapses, some with a direct effect on ionic conductances

(which may also be voltage-dependent) while others act through second messengers.

Synapses themselves are far from simple, often displaying stochastic and use-dependent

phenomena that can be quite prominent, and frequently being subject to various pre- and

postsynaptic modulatory effects. Given all this complexity, we might well ask if it is

possible to understand anything without understanding everything. From the very onset

we are forced to decide what to include and what to omit.

Suppose we are already familiar with the predictions of the basic ball and stick model

(Rall 1977; Jack et al. 1983), and that experimental observations motivate us to ask

questions such as: How do synaptic responses observed at the soma vary with synaptic

location if dendrites of different diameters and lengths are attached to the soma? What

happens if some parts of the cell have active currents, while others are passive? What if a

neuromodulator or shift of the background level of synaptic input changes membrane

conductance?

Then our conceptual model might be similar to the one shown in Fig. 1.1 B. This

model includes a neuron with a soma that gives rise to an axon and two dendritic trunks,

and a single excitatory synapse that may be located at any point on the cell.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

A

B

Figure 1.1. A. Clockwise from top left: Ca1 and Ca3 pyramidal neurons (from

D.A. Turner); calbindin-, parvalbumin-, and calretinin-positive interneurons

(from A.I. Gulyás). B. Our conceptual model neuron. The conductance change

synapse can be located anywhere on the cell.

Although deliberately more complex than the prototypical ball and stick, the

anatomical and biophysical properties of our model are much simpler than the biological

original (Table 1.1). The axon and dendrites are simple cylinders, with uniform diameters

and membrane properties along their lengths. The dendrites are passive, while the soma

and axon have Hodgkin-Huxley sodium, potassium, and leak currents, and are capable of

generating action potentials (Hodgkin and Huxley 1952). A single synaptic activation

causes a localized transient conductance increase with a time course described by an

alpha function

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 1 November 25, 2004

g s

�
t ���

�
0 for t � tact

gmax

�
t � tact ��

s

e �
	 t � tact ��
s for t
 tact

Eq. 1.1

where tact is the time of synaptic activation, and gs reaches a peak value of gmax at t = τs

(see Table 1.2 for parameter values). This conductance increase mechanism is just

slightly more complex than the ideal current sources used in many theoretical studies

(Rall 1977; Jack et al. 1983), but it is still only a pale imitation of any real synapse (Bliss

and Lømo 1973; Ito 1989; Castro-Alamancos and Connors 1997; Thomson and Deuchars

1997).

Table 1.1. Model cell parameters

Length
µm

Diameter
µm

Biophysics

soma 30 30 HH gNa, gK, and gleak

apical dendr ite 600 1 passive with Rm = 5,000 Ω cm2, Epas = -65 mV

basilar dendr ite 200 2 same as apical dendrite

axon 1000 1 same as soma

Cm = 1 µf / cm2

cytoplasmic resistivity = 100 Ω cm

Temperature = 6.3 °C

Table 1.2. Synaptic mechanism parameters

gmax 0.05 µS

τs 0.1 ms

Es 0 mV

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

3. Implement the model in NEURON

With a clear picture of our model in mind, we are ready to express it in the form of a

computational model. Instead of writing instructions in NEURON's programming

language hoc, for this example we will employ some of the tools that are provided by

NEURON's graphical user interface.

We begin with the CellBuilder, a graphical tool for constructing and managing models

of individual neurons. At this stage, we are not considering synapses, stimulating

electrodes, or simulation controls. Instead we are focussing on creating a representation

of the continuous properties of the cell. Even if we were not using the CellBuilder but

instead were developing our model entirely with hoc code, it would probably be best for

us to follow a similar approach, i.e. specify the biological attributes of the model cell

separately from the specification of the instrumentation and control code that we will use

to exercise the model. This is an example of modular programming, which is related to

the "divide and conquer" strategy of breaking a large and complex problem into smaller,

more tractable steps.

The CellBuilder makes it easier for us to create a model of a neuron by allowing us to

specify its architecture and biophysical properties through a graphical interface. When we

are satisfied with the specification, the CellBuilder will generate the corresponding hoc

code for us. Once we have a model cell, we will be ready to use other graphical tools to

attach a synapse to it and plot simulation results (see 4. Instrument the model below).

The images in the following discussion were obtained under MSWindows; the

appearance of NEURON under UNIX, Linux, and MacOS is quite similar.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 1 November 25, 2004

Starting and stopping NEURON

No matter what a program does, the first thing you have to learn is how to start and

stop it. To start NEURON under UNIX or Linux, just type nrngui on the command line

and skip the remainder of this paragraph. Under MSWindows, double click on the nrngui

icon on your desktop (Fig. 1.2 left); if you don't see one there, bring up the NEURON

program group (i.e. use Start / Program Files / NEURON) and select the nrngui item

(Fig. 1.2 right). If you are using MacOS, open the folder where you installed NEURON

and double click on the nrngui icon.

Figure 1.2. Under MSWindows, start NEURON by clicking on the nrngui icon

on the desktop (left) or selecting the nrngui item in the NEURON program

group (right).

You should now see the NEURON Main Menu (Fig. 1.3 top), which offers a set of

menus for bringing up graphical tools for creating models and running simulations. If you

are using UNIX or Linux, a "banner" that includes the version of NEURON you are

running will be printed in the xterm where you typed nrngui, and the prompt will

change to oc> to indicate that NEURON's hoc interpreter is running. Under MacOS and

MSWindows, the "banner" and oc> prompt will appear in a new console window

(Fig. 1.3 bottom).

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

There are three different ways to exit NEURON; you can use whichever is most

convenient.

1. type ^D (i.e. control D) at the oc> prompt

2. type quit() at the oc> prompt

3. click on File in the NEURON Main Menu, scroll down to Quit, and release the mouse

button (Fig. 1.4)

Figure 1.3. Top: The NEURON Main Menu toolbar. Bottom: NEURON's

"banner" and oc> prompt in an MSWindows console window.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.4. One way to exit NEURON is to click on File / Quit in the

NEURON Main Menu toolbar.

Bringing up a CellBuilder

To get a CellBuilder just click on Build in the NEURON Main Menu, scroll down to

the CellBuilder item, and release the mouse button (Fig. 1.5).

Figure 1.5. Using the NEURON Main Menu to bring up a CellBuilder.

Across the top of the CellBuilder is a row of radio buttons and a checkbox, which

correspond to the sequence of steps involved in building a model cell (Fig. 1.6). Each

radio button brings up a different page of the CellBuilder, and each page provides a view

of the model plus a graphical interface for defining properties of the model. The first four

pages (Topology, Subsets, Geometry, Biophysics) are used to create a complete

specification of a model cell. On the Topology page, we will set up the branched

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

architecture of the model and give a name to each branch, without regard to diameter,

length, or biophysical properties. We will deal with length and diameter on the Geometry

page, and the Biophysics page is where we will define the properties of the membrane

and cytoplasm of each of the branches.

Figure 1.6. Top panel of the CellBuilder

The Subsets page deserves special comment. In almost every model that has more

than one branch, two or more branches will have at least some biophysical attributes that

are identical, and there are often significant anatomical similarities as well. Furthermore,

we can almost always apply the d_lambda rule for compartmentalization throughout the

entire cell (see below). We can take advantages of such regularities by assigning shared

properties to several branches at once. The Subsets page is where we group branches

into subsets, on the basis of shared features, with an eye to exploiting these

commonalities on the Geometry and Biophysics pages. This allows us to create a model

specification that is compact, efficient, and easily understood.

Enter the specifications of the model cell

�
Topology

We start by using the Topology page to set up the branched architecture of the model.

As Fig. 1.7 shows, when a new CellBuilder is created, it already contains a branch (or

"section," as it is called in NEURON) that will serve as the root of the branched

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 1 November 25, 2004

architecture of the model (the root of a tree is the branch that has no parent). This root

section is initially called "soma," but we can rename it if we desire (see below).

Figure 1.7. The Topology page. The left panel shows a simple diagram of the

model, which is called a "shape plot." The right panel contains many functions

for editing the branched architecture of a model cell.

The Topology page offers many functions for creating and editing individual sections

and subtrees. We can make the section that will become our apical dendrite by following

the steps presented in Fig. 1.8. Repeating these actions a couple more times (and

resorting to functions like Undo Last, Reposition, and Delete Section as needed to correct

mistakes) gives us the basilar dendrite and axon.

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Figure 1.8. Making a new section. Verify that the Make Section radio button is on, and then perform the

following steps.

Place the cursor near one end of an existing section.

Click to start a new section. One end of the new section will automatically attach

to the nearest end of an existing section; the other end is tethered to the cursor

while the mouse button is held down.

Drag to the desired length and orientation.

Release the mouse button.

Our model cell should now look like Fig. 1.9. At this point some minor changes

would improve its appearance: moving the labels away from the sections so they are

easier to read (Fig. 1.10), and then renaming the apical and basilar dendrites and the axon

(Figs. 1.11 and 12). The final result should resemble Fig. 1.13.

Figure 1.9. The model after all sections have been created.

Figure 1.10. To change the location of a label,

click on the Move Label radio button,

then click on the label,

drag it to its new position,

and release the mouse button.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.11. Preparing to change the name of a section. Each section we created was automatically given

a name based on "dend." To change these names, we must first change the base name as shown here.

Click the Basename button.

This pops up a Section name prefix window.

Click inside the text entry field of this new window, and type the

desired name. It is important to keep the mouse cursor inside the

text field while typing; otherwise keyboard entries may not have

an effect.

After the new base name is complete, click on the Accept button.

This closes the Section name prefix window, and the new base

name will appear next to the Basename button.

Figure 1.12. Changing the name of a section.

First make sure that the base name is what you want; if not, change the base name

(see Fig. 1.11).

Click the Change Name radio button.

Place the mouse cursor over the section whose name is to be changed.

Click the mouse button to change the name of the section.

Figure 1.13. The shape plot of the model with labels positioned and

named as desired.

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

�
Subsets

As mentioned above, the Subsets page (Fig. 1.14) is for grouping sections that share

common features. Well-chosen subsets can save a lot of effort later by helping us create

very compact specifications of anatomical and biophysical properties.

Figure 1.14. The Subsets page. The middle panel lists the names of all existing

subsets. In the shape plot, the sections that belong to the currently selected

subset are shown in red. When the Subsets page initially appears, it already has

an all subset that contains every section in the model.

The properties of the sections in this particular example suggest that we create two

subsets: one that contains the basilar and apical branches, which are passive, and another

that contains the soma and axon, which have Hodgkin-Huxley spike currents. To make a

subset called has_HH that contains the sections with HH currents, follow the steps in

Fig. 1.15. Then make another subset called no_HH that contains the basilar and apical

dendrites.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.15. Making a new subset.

With the Select One radio button on (Fig. 1.14), click on the

axon and soma sections while holding down the shift key. The

selected sections will be indicated in red . . .

. . . and the list of subsets will change to show that all is not the

same as the set { axon, soma} .

Next, click on the New SectionList button (a subset is a list of

sections).

This pops up a window that asks you to enter a name for the new

SectionList.

Click inside the text entry field of this new window and type the

name of the new subset, then click on the Accept button.

The new subset name will appear in the middle panel of the

CellBuilder.

�
Geometry

In order to use the Geometry page (Fig. 1.16) to specify the anatomical dimensions of

the sections and the spatial resolution of our model, we must first set up a strategy for

assigning these properties. After we have built our (hopefully efficient) strategy, we will

give them specific values.

The geometry strategy for our model is simple. Each section has different dimensions,

so the length L and diameter diam of each section must be entered individually. However,

for each section we will let NEURON decide how fine to make the spatial grid, based on

a fraction of the length constant at 100 Hz (spatial accuracy and NEURON's tools for

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

adjusting the spatial grid are discussed in Chapter 5). Figure 1.17 shows how to set up

this strategy.

Having set up the strategy, we are ready to assign the geometric parameters (see

Figs. 1.18 and 19).

Figure 1.16. When the Geometry page in a new CellBuilder is first viewed, a red

check mark should appear in the Specify Strategy checkbox. If not, clicking on

the checkbox will toggle Specify Strategy on.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.17. Specifying strategy for assignment of geometric parameters. First make sure that

Specify Strategy contains a red check (see Fig. 1.16). Then proceed with the following steps.

For the all subset, toggle d_lambda on.

Select soma in the middle panel, and then toggle L and diam on.

Repeat for apical, basilar, and axon, and the result should

resemble this figure.

Figure 1.18. Assigning values to the geometric parameters. Toggling Specify Strategy

off makes the middle panel show only the subsets and sections that we selected

when setting up our strategy. Adjacent to each of these are the names of the

parameters that are to be reviewed and perhaps changed. Here the subset all is

selected; the right panel displays the current value of the parameter associated

with it (d_lambda) and offers us the means to change this parameter if

necessary. According to the d_lambda criterion for spatial resolution,

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

NEURON will automatically discretize the model, breaking each section into

compartments small enough that none will be longer than d_lambda at 100 Hz.

The default value of d_lambda is 0.1, i.e. 10% of the AC length constant. This

is short enough for most purposes, so we do not need to change it.

Discretization is discussed in Chapter 5.

Figure 1.19. Assigning values to the geometric parameters continued.

The length and diameter of each section must

be changed from the default values.

To set the length of the soma to 30 µm, first

click inside the numeric field for L so that a red

editing cursor appears.

Then use the backspace key to delete the old

value, and finally type in the new value.

After doing the same for diam, the dimensions

of soma should look like this. The checkboxes

adjacent to the L and diam buttons indicate that

these parameters have been changed from their

default values. The x in the middle panel is

another reminder that at least one of the

parameters associated with soma has been

changed.

After adjusting L and diam for the dendrites and

the axon, the middle panel shows an x next to

the name of each section.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 1 November 25, 2004

�
Biophysics

The Biophysics page (Fig. 1.20) is used to insert biophysical properties of membrane

and cytoplasm (e.g. Ra, Cm, ion channels, buffers, pumps) into subsets and individual

sections. As with the Geometry page, first we set up our strategy (Fig. 1.21), and then we

review and adjust parameter values (Fig. 1.22). The CellBuilder will then contain a

complete specification of our model.

Figure 1.20. The Biophysics page, ready for specification of strategy. The right panel

shows the mechanisms that are available to be inserted into our model. For this simple

example, the number of mechanisms is deliberately small; adding new mechanisms is

covered in Chapter 9: How to expand NEURON's library of mechanisms.

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Figure 1.21. Specifying strategy for assignment of biophysical parameters. First make sure that Specify

Strategy contains a red check, then proceed with the following steps.

For the all subset, toggle Ra (cytoplasmic resistivity) and cm

(specific membrane capacitance) on.

Select the has_HH subset in the middle panel, and then

toggle HH on.

Finally select the no_HH subset and toggle pas on.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.22. Assigning values to the biophysical parameters. Toggling Specify Strategy off shows a list of

the names of the subsets that are part of the strategy. Beneath each subset are the names of the

mechanisms that are associated with it. Clicking on a mechanism brings up a set of controls in the right

panel for displaying and adjusting the parameters of the mechanism.

For the subset all, change the value of Ra

from its default (80 Ω cm) to the desired

value of 100 Ω cm.

The sections in the no_HH subset have a

passive current whose parameters must be

changed from their defaults (shown here).

The value of g_pas can be set by deleting

the default and then typing 1/5000

(= 1/Rm).

The final values of g_pas and e_pas. Not

shown: cm (all subset) and the parameters

of the hh mechanism (has_HH subset),

which have the desired values by default

and do not need to be changed, although it

is good practice to review them.

Save the model cell

After investing time and effort to set up our model, we would be wise to take just a

moment to save it. The CellBuilder, like NEURON's other graphical windows, can be

saved to disk as a "session file" for future re-use, as shown in Figures 1.23 and 1.24. For

more information about saving and retrieving session files, including how to use the Print

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

& File Window Manager GUI tool to select and save specific windows, see Using

Session Files for Saving and Retrieving Windows at

http://www.neuron.yale.edu/neuron/docs/saveses/saveses.html

Figure 1.23. Top: To save all of NEURON's graphical windows into a session file, first

click on File in the NEURON Main Menu and scroll down to save session. Bottom left:

This brings up a directory browser that can be used to navigate to the directory where the

session file will be saved. Bottom right: Click in the edit field at the top of the directory

browser and type the name to use for the session file, then click on the Save button.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.24. Left: To recreate the graphical windows that were saved to a session file,

first click on File in the NEURON Main Menu and scroll down to load session. Right:

Use the directory browser that appears to navigate to the directory where the session file

was saved. Then double click on the session file that you want to retrieve.

Execute the model specification

Now that the CellBuilder contains a complete specification of the model cell, we

could use the Export button on the Management page (see Chapter 6) to write out a hoc

file that, when executed by NEURON, would create the model. However, for this

example we will just turn Continuous Create on (Fig. 1.25). This makes the CellBuilder

send its output directly to NEURON's interpreter without bothering to write a hoc file.

The model cell whose specifications are contained in the CellBuilder is now available to

be used in simulations.

Figure 1.25. Continuous Create is initially off,

but clicking on the adjacent button toggles it on

and off.

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

If we make any changes to the model while Continuous Create is on, the CellBuilder

will automatically send new code to the interpreter. This can be very convenient during

model development, since it allows us to quickly examine the effects of any change.

Automatic updates might bog things down if we were dealing with a large model on a

slow machine. In such a case, we could just turn Continuous Create off, make whatever

changes were necessary, and then cycle it on and off again.

4. Instrument the model

Signal sources

In the NEURON simulation environment, a synapse or electrode for passing current

(current clamp or voltage clamp) is represented by a point source of current which is

associated with a localized conductance. These signal sources are called "point

processes" to distinguish them from properties that are distributed over the cell surface

(e.g. membrane capacitance, active and passive ionic conductances) or throughout the

cytoplasm (e.g. buffers), which are called "distributed mechanisms" or "density

mechanisms."

We have already seen how to use one of NEURON's graphical tools for dealing with

distributed mechanisms (the CellBuilder). To attach a synapse to our model cell, we turn

to one of NEURON's tools for dealing with point processes: the PointProcessManager

(Fig. 1.26). Using a PointProcessManager we can specify the type and parameters of the

point process (Fig. 1.27) and where it is attached to the cell.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.26. Bringing up a PointProcessManager in order to attach a synapse to

our model cell. In the NEURON Main Menu, click on Tools / Point Processes /

Managers / Point Manager, then proceed as shown in Fig. 1.27.

Figure 1.27. Configuring a new PointProcessManager to emulate a synapse.

A. Note the labels in the top panel. None means that a signal

source has not yet been created. The bottom panel shows a stick

figure of our model cell.

B. SelectPointProcess / AlphaSynapse creates a point process

that emulates a synapse with a conductance change governed by

Eq. 1.1, and shows us a panel for adjusting its parameters.

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

C. The top panel of the PointProcessManager indicates what kind

of point process has been specified, and where it is located (in this

case, at the midpoint of the soma). The bottom panel shows the

parameters of an AlphaSynapse: its start time onset and time

constant tau (tact and τs in Eq. 1.1), peak conductance gmax (gmax

in Eq. 1.1), and reversal potential e (Es in Table 1.2). The button

marked i (nA) is just a label for the adjacent numeric field, which

displays the instantaneous synaptic current.

D. For this example change onset to 0.5 ms and gmax to 0.05 µS;

leave tau and e unchanged.

Signal monitors

Since one motivation for the model is to examine how synaptic responses observed at

the soma vary with synaptic location, we want a graph that shows the time course of

somatic membrane potential. In the laboratory this would ordinarily require attaching an

electrode to the soma, so in a NEURON simulation it might seem to require a point

process. However, the computer automatically evaluates somatic Vm in the course of a

simulation. In other words, graphing Vm doesn't really change the system, unlike

attaching a signal source, which adds new equations to the system. This means that a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 1 November 25, 2004

point process is not needed; instead, we just bring up a graph that includes somatic Vm in

the list of variables that it plots (see Fig. 1.28).

We could monitor Vm at other locations by adding more variables to this graph, and

bring up additional graphs if this one became too crowded. However, it can be more

informative and convenient to create a "space plot" (Fig. 1.29), which shows Vm as a

function of position along one or more branches of a cell. This graph will change

throughout the simulation run, displaying the evolution of Vm as a function of space and

time.

Figure 1.28. Creating a graph to display somatic membrane potential as a function of time.

A. Click on Graph / Voltage axis in the

NEURON Main Menu.

B. In the graph that appears, the horizontal axis is

in milliseconds and the vertical axis is in

millivolts. The label v(.5) signifies that this graph

will show Vm at the middle of the default section.

With the CellBuilder, this is always the root

section, which in this example is the soma (the

concepts of "root section" and "default section"

are discussed in Chapter 5.

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Figure 1.29. Setting up a space plot.

A. The first step is to create a Shape plot by clicking

on Graph / Shape plot in the NEURON Main Menu.

B. This brings up a Shape plot window, which is

used to create the space plot.

C. Right click in the Shape plot window to bring up

its primary menu. While still pressing the mouse

button, scroll down the menu to the Space Plot item,

then release the button.

D. Place the cursor just to the left of the distal end

of the axon and press the left mouse button.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 1 November 25, 2004

E. While still holding the button down, drag the

cursor across the window to the right, finally

releasing the button when the cursor has passed the

distal end of the apical dendrite.

F. The branches along the selected path (axon,

soma, and apical dendrite) are now shown in red,

and a new graph window appears (see G). If you

like, you may now click on the Close button at the

upper left corner of the shape plot window to

conserve screen space

G. The x axis of the Space Plot window shows the

distance from the 0 end of the default section, which

in this example is the left end of the soma.

5. Set up controls for running the simulation

At this point we have a model cell with a synapse attached to the soma, and a

graphical display of somatic Vm. All that is missing is a means to start and control the

subsequent course of a simulation run. This is provided by the RunControl window

(Fig. 1.30), which allows us to specify many more options than we will use in this

example.

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

6. Save model with instrumentation and run control

After rearranging the RunControl, PointProcessManager, and graph window, our

customized user interface for running simulations and observing simulation results should

look something like Fig. 1.31. For the sake of safety and possible future convenience, it is

a good idea to use NEURON Main Menu / File / Save Session to save this custom GUI to

a session file.

Figure 1.30. Left: To bring up a window with controls for running simulations,

click on the RunControl button in NEURON Main Menu / Tools. Right: The

RunControl window provides many options for controlling the overall time

course of a simulation run. For this example, only three of these controls are

relevant.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 1 November 25, 2004

1. Init (mV) sets time t to 0, assigns the displayed starting value (-65 mV) to Vm

throughout the model cell, and sets the ionic conductances to their their steady

state values at this potential.

2. Init & Run performs the same initialization as Init (mV), and then starts a

simulation run.

3. Points plotted/ms determines how often the graphical displays are updated

during a simulation.

Three other items in this panel are of obvious interest, although we will not do

anything with them in this example. The first is dt, which sets the size of the

time intervals at which the equations that describe the model are solved. The

second is Tstop, which specifies the duration of a simulation run. Finally, the

button marked t doesn't actually do anything but is just a label for the adjacent

numeric field, which displays the elapsed simulation time. Additional features

of the RunControl window are discussed in Chapter 7: How to control

simulations.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Figure 1.31. The windows we will use to run simulations and observe simulation results. Other

windows that are present on the screen but not shown in this figure are the NEURON Main Menu and

the CellBuilder.

7. Run the simulation experiment

We are now ready to use our "virtual experimental rig" to exercise the model. When

we run a simulation with the synapse located at the soma (Fig. 1.32 and 33), a spike is

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 1 November 25, 2004

triggered. However, if we move the synapse even a small distance away from the soma

along the apical dendrite (Fig. 1.34) and run a new simulation, the epsp is too small to

evoke a spike (Fig. 1.35).

The utility of the space plot as a tool for understanding the temporal evolution of Vm

throughout the cell can be enhanced by using it like a storage oscilloscope, as shown in

Fig. 1.36. This allows us to compare the distribution of Vm at successive intervals during

a run. It might be helpful to do something similar with the plot of somatic Vm vs. t if we

wanted to compare responses to synaptic inputs with different parameters or locations.

Figure 1.32. Running a simulation.
A. Press Init & Run in the RunControl window to launch a simulation.

B. This makes time t advance from 0 . . .

. . . to 5 ms in 0.025 ms increments. The response of the model is shown in Fig.

1.33.

-1000 -600 -200 200 600

-80

-40

0

40

-1000 -600 -200 200 600

-80

-40

0

40
v

0 1 2 3 4 5

-80

-40

0

40

0 1 2 3 4 5

-80

-40

0

40
v(.5)

t = 0 ms

-1000 -600 -200 200 600

-80

-40

0

40

-1000 -600 -200 200 600

-80

-40

0

40
v

0 1 2 3 4 5

-80

-40

0

40

0 1 2 3 4 5

-80

-40

0

40
v(.5)

1

-1000 -600 -200 200 600

-80

-40

0

40

-1000 -600 -200 200 600

-80

-40

0

40
v

0 1 2 3 4 5

-80

-40

0

40

0 1 2 3 4 5

-80

-40

0

40
v(.5)

2

-1000 -600 -200 200 600

-80

-40

0

40

-1000 -600 -200 200 600

-80

-40

0

40
v

0 1 2 3 4 5

-80

-40

0

40

0 1 2 3 4 5

-80

-40

0

40
v(.5)

3

-1000 -600 -200 200 600

-80

-40

0

40

-1000 -600 -200 200 600

-80

-40

0

40
v

0 1 2 3 4 5

-80

-40

0

40

0 1 2 3 4 5

-80

-40

0

40
v(.5)

4

-1000 -600 -200 200 600

-80

-40

0

40

-1000 -600 -200 200 600

-80

-40

0

40
v

0 1 2 3 4 5

-80

-40

0

40

0 1 2 3 4 5

-80

-40

0

40
v(.5)

5

Figure 1.33. Snapshots of the space plot (top) and the graph of Vm vs. t at the soma (bottom) taken at 1 ms

intervals. Synaptic input at the soma triggers a spike that propagates actively along the axon and spreads

with passive decrement into the apical dendrite.

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Figure 1.34. Changing synaptic location.

A. In the top panel of the PointProcessManager, click on Show

and scroll down to Shape.

B. The top panel remains unchanged, but the bottom panel of the

PointProcessManager now displays a shape plot of the cell, with

a blue dot that indicates the location of the synapse.

C. Clicking on a different point in the shape plot moves the

synapse to a new location. This change is reflected in the top and

bottom panels of the PointProcessManager.

Figure 1.35. Pressing Init & Run starts a new

simulation. Even though the synapse is still quite

close to the soma, the somatic depolarization is

now too small to trigger a spike (space plot not

shown).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 1 November 25, 2004

Figure 1.36. A. Activating "keep lines" can help

visualize the evolution of Vm more clearly. Right

click in the space plot window to bring up its primary

menu, then scroll down to Keep Lines and release the

mouse button. The next time the primary graph menu

is examined, a red check mark will appear next to

this item as an indication that keep lines has been

toggled on (Fig. 1.37 A).

B. To keep the graph from filling up with an opaque

tangle of lines, we should make sure the stored traces

will be sufficiently different from each other.

Plotting only 5 traces per millisecond will do the

trick for this example (leave dt = 0.025 ms).

C. Now pressing Init & Run generates a set of traces

that facilitate a close examination of the process of

excitation and impulse conduction over the model.

For this example the synapse was at the middle of the

soma (soma(0.5)). Before running another simulation

with a different synaptic location, it would be a good

idea to erase these traces (see Fig. 1.37).

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Figure 1.37. How to erase traces.

A. Bring up the primary graph menu and scroll down

to Erase.

B. The traces will disappear when the mouse button

is released. Since keep lines is active, running

another simulation will generate a new set of traces.

8. Analyze results

In this section we turn from our specific example to a consideration of the analysis of

results. Models are generally constructed either for didactic purposes or as a means for

testing a hypothesis. The design and analysis of any model are both strongly dependent

on this original motivation, which determines what features are included in the model,

what variables are regarded as important enough to measure, and how these

measurements are to be interpreted.

While computational models are arguably simpler than any (interesting) experimental

preparation, analysis of simulation results presents its own special problems. In the first

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 1 November 25, 2004

place, attempting to use a digital computer to mimic the behavior of a biological system

introduces many potential complexities and artifacts. Some arise from the fact that

neurons are continuous in space and time, but a digital computer can only generate

approximate solutions for a finite number of discrete locations at particular instants. Even

so, under the right conditions the approximation can be very good indeed. Furthermore, a

well-designed simulation environment can reduce the difficulty of achieving good results.

Other difficulties can arise if there is a mismatch between the expectations of the user

and the level of detail that has been included in a model. For example, the most widely

used computational model of a conductance change synapse is designed to do the same

thing each and every time it is "activated," yet most real synapses display many kinds of

use-dependent plasticity, and many also have a high degree of stochastic variability. And

even the venerable Hodgkin-Huxley model (Hodgkin and Huxley 1952), which is

probably the classical success story of computational neuroscience, does not replicate all

features of the action potential in the squid giant axon, because it does not completely

capture the dynamics of the currents that generate the spike (Moore and Cox 1976;

Fohlmeister et al. 1980; Clay and Shlesinger 1982). Such discrepancies are potentially a

problem only if a user who is unaware of their existence attempts to apply a model

outside of its original context.

The first analysis that is required of all computational modeling is actually the

verification that what has been implemented in the computer is a faithful representation

of the conceptual model. At the least, this involves checking to be sure that the intended

anatomical and biophysical features have been included, that parameters have been

assigned the desired values, and that appropriate initialization and integration methods

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

have been chosen. It may also be necessary to test the model's biophysical mechanisms to

ensure that they show the correct dependence on time, membrane potential, ionic

concentrations, and modulators. This means understanding the internals of the

computational model, which in turn demands a nontrivial grasp of the programming

language in which it is expressed. A custom graphical interface that includes well-

designed menus and "variable browsers" can make it easier to answer the frequently

occurring question "what are the names of things?" Even so, every simulation

environment is predicated on a set of underlying concepts and assumptions, and questions

inevitably arise that can only be answered on the basis of knowledge of these core

concepts and assumptions.

Verification should also involve the qualitative, if not quantitative, comparison of

simulation results with basic predictions obtained from experimental observations on

biological preparations or generated with prior models. Discrepancies between prediction

and simulation are usually caused by trivial errors in model implementation, but

sometimes the fault lies in the prediction. Detecting these more interesting outcomes

requires practical facility with the simulation environment, so that the level of effort does

not obscure one's thinking about the problem.

Agreement between prediction and simulation is reassuring and suggests that the

model itself may be useful for generating experimentally-testable predictions. Thus the

effort shifts from verifying the model to characterizing its behavior in ways that extend

beyond the initial test runs. Both verification and characterization of neural models may

entail determining not only membrane potential but also rate functions, levels of

modulators, and ionic conductances, currents, and concentrations at one or more locations

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 1 November 25, 2004

in one or more cells. Thus it is necessary to be able to gather and manage measurements,

both within a single simulation run and across a family of runs in which one or more

independent variables are assigned different values.

Similar concerns arise in connection with optimization, in which one or more

parameters are adjusted until the behavior of the model satisfies certain criteria.

Optimization also opens a host of new questions whose answers depend in part on the

user's judgment, and in part on the resources provided by the simulation environment.

Which parameters should remain fixed and which should be adjustable? What constitutes

a "run" of the model? What are the criteria for goodness of fit? What constraints, if any,

should be imposed on adjustable parameters, and what rules should govern how they are

adjusted?

In summary, analysis of results can be the most difficult aspect of any experiment,

whether it was performed on living neurons or on a computer model, yet it can also be the

most rewarding. The issues raised here are critical to the informed use of any simulation

environment, and in the following chapters we will reexamine them in the course of

learning how to develop and exercise models with NEURON.

References

Bliss, T.V.P. and Lømo, T. Long-lasting potentiation of synaptic transmission in the

dentate area of the anaesthetised rabbit following stimulation of the perforant path. J.

Physiol. 232:331-356, 1973.

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

Castro-Alamancos, M.A. and Connors, B.W. Distinct forms of short-term plasticity at

excitatory synapses of hippocampus and neocortex. Proc. Nat. Acad. Sci. 94:4161-4166,

1997.

Clay, J.R. and Shlesinger, M.F. Delayed kinetics of squid axon potassium channels do

not always superpose after time translation. Biophys. J. 37:677-680, 1982.

Fohlmeister, J.F., Adelman, W.J.J., and Poppele, R.E. Excitation properties of the squid

axon membrane and model systems with current stimulation. Statistical evaluation and

comparison. Biophys. J. 30:79-97, 1980.

Hodgkin, A.L. and Huxley, A.F. A quantitative description of membrane current and its

application to conduction and excitation in nerve. J. Physiol. 117:500-544, 1952.

Ito, M. Long-term depression. Ann. Rev. Neurosci. 12:85-102, 1989.

Jack, J.J.B., Noble, D., and Tsien, R.W. Electric Current Flow in Excitable Cells.

London: Oxford University Press, 1983.

Moore, J.W. and Cox, E.B. A kinetic model for the sodium conductance system in squid

axon. Biophys. J. 16:171-192, 1976.

Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of

Physiology, vol. 1, part 1: The Nervous System, edited by E.R. Kandel. Bethesda, MD:

American Physiological Society, 1977, p. 39-98.

Thomson, A.M. and Deuchars, J. Synaptic interactions in neocortical local circuits: dual

intracellular recordings in vitro. Cerebral Cortex 7:510-522, 1997.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 1 November 25, 2004

Chapter 1 Index

A

AlphaSynapse 26

parameters 27

analysis 37

approximation 38

assumptions 1

C

CellBuilder 7

bringing up 10

root section 12, 28

CellBuilder GUI

Biophysics page 20

assigning values 22

specifying strategy 21

Continuous Create 24

Geometry page 16

assigning values 18

d_lambda 18

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

specifying strategy 18

Management page 24

Management page

Export 24

Subsets page 11, 15

all subset 15

making a new subset 16

Topology page 11

base name 14

Basename 14

changing the name of a section 14

making a new section 13

cm 20-22

compartmentalization 11, 19

cytoplasmic resistivity 21

D

d_lambda rule 11

detail

how much 1, 38

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 1 November 25, 2004

diam 16

diameter 4

directory browser 23, 24

discrepancy

between physical system and conceptual model 38

between prediction and simulation 38, 39

discretization 19, 38

distributed mechanism 20, 25

dt 32

E

elapsed simulation time 32

F

focus

cursor 14

G

good programming style

divide and conquer 7

modular programming 7

Graph

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

creating

Shape plot 29

Space Plot 29

Voltage axis 28

Graph GUI

primary menu

Erase 37

Keep Lines 36

H

hh mechanism 22

hoc 3, 24

hypothesis 1, 37

I

initialization 32, 38

initialization

membrane potential 32

instrumentation 7, 25

ion channel 20

ionic conductance 25

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 1 November 25, 2004

J

judgment 1, 40

L

L 16

length 4

length constant 16, 19

M

membrane capacitance 21

membrane potential 27, 28

membrane resistance 22

model

computational 1, 7

analysis 37

model specification 24

conceptual 1, 4, 38

model specification 7, 24

N

NEURON

starting and exiting 8

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

NEURON Main Menu 8

NEURON Main Menu GUI

Build

CellBuilder 10

File

load session 24

save session 23

Save Session 31

Graph

Shape plot 29

Voltage axis 28

Tools

Point Processes 26

RunControl 31

NEURON program group 8

nrngui 8

numeric integration 38

O

optimization 40

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 1 November 25, 2004

oscilloscope 34

P

parameters

biophysical 21, 22

geometric 18

pas mechanism 21

e_pas 22

g_pas 22

PFWM 22

point process 25

PointProcessManager 25

configuring as

AlphaSynapse26

creating 26

location 27, 35

location

changing 35

parameters 27

PointProcessManager GUI

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

SelectPointProcess 26

Show

Shape 35

R

Ra 20, 21

default value 22

RunControl 30

creating 31

RunControl GUI

dt 32

Init 32

Init & Run 32

Points plotted/ms 32

t 32

Tstop 32

running a simulation 34

S

section 11

currently accessed

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 1 November 25, 2004

default section 28, 30

root section 12

session file 22

loading

from NEURON Main Menu 24

from PFWM 22

saving

from NEURON Main Menu 23

from PFWM 22

shape plot 12, 14

Shape plot

creating 29

Shape plot GUI

primary menu

Space Plot 29

signal monitors 27

vs. signal sources 27

signal sources 25

simulation

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 25, 2004 The NEURON Book: Chapter 1

running 34

starting 34

time 32

simulation control 7, 30

space 28, 29, 38

space plot 28

Space Plot

creating 29

squid axon 38

storage oscilloscope 34

synapse

AlphaSynapse26

conductance change 26

system equations

effect of signal sources 27

T

t 32, 34

time 28, 32, 34, 38

topology 10

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 1 November 25, 2004

U

user interface

as virtual experimental rig 33

custom GUI 31, 39

V

v 28

variable browser 39

variables

independent 40

verification 38

Vm 27

W

what are the names of things? 39

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 2

Chapter 2

The modeling perspective

This and the following chapter deal with concepts that are not NEURON-specific but

instead pertain equally well to any tools used for neural modeling.

Why model?

In order to achieve the ultimate goal of understanding how nervous systems work, it

will be necessary to know many different kinds of information:

� the anatomy of individual neurons and classes of cells, pathways, nuclei, and higher

levels of organization

� the pharmacology of ion channels, transmitters, modulators, and receptors

� the biochemistry and molecular biology of enzymes, growth factors, and genes that

participate in brain development and maintenance, perception and behavior, learning

and forgetting, health and disease

But while this knowledge will be necessary for an understanding of brain function, it isn't

sufficient. This is because the moment-to-moment processing of information in the brain

is carried out by the spread and interaction of electrical and chemical signals that are

distributed in space and time. These signals are generated and regulated by mechanisms

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 2 November 26, 2004

that are kinetically complex, highly nonlinear, and arranged in intricate anatomical

structures. Hypotheses about these signals and mechanisms, and how nervous system

function emerges from their operation, cannot be evaluated by intuition alone, but require

empirically-based modeling. From this perspective, modeling is fundamentally a means

for enhancing insight, and a simulation environment is useful to the extent that it

maximizes the ratio of insight obtained to effort invested.

From physical system to computational model

Just what is involved in creating a computational model of a physical system?

Conceptual model: a simplified representation
of a physical system

The first step is to formulate a conceptual model that attempts to capture just the

essential features that underlie a particular function or property of the physical system. If

the aim of modeling is to provide insight, then formulating the conceptual model

necessarily involves simplification and abstraction (Fig. 2.1 left). When a physical system

is already simple enough to understand, there is no point in further simplification because

we won't learn anything new. If instead the system is complex, a conceptual model that

omits excess detail can foster understanding.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 2

Computational
model

Conceptual
model

Physical
system

simplify
be

faithful

Figure 2.1. Creating a computational model of a physical system involves two

steps. The first step deliberately omits real-world complexities to produce a

conceptual model. In the second step, this conceptual model must be faithfully

translated into a computational model, without any further subtractions or

additions.

But some models contain essential irreducible complexities, and even conceptual

models that are superficially simple can resist intuition. To evaluate such a model it is

often necessary to devise a hypothesis or test in which the behavior of the model is

compared against a prediction. Computational models are useful for performing such

tests. The conceptual model, and the hypothesis behind it, determine what is included in

the computational model and what is left out.

When we formalize our description of a biological system, the first language we use

is mathematics. The conceptual model is usually expressed in mathematical form,

although there are occasions when it is more convenient to express the concept in the

form of a computer algorithm. Chapter 3 is concerned with mathematical representations

of chemical and electrical phenomena relevant to signaling in neurons.

Computational model: an accurate representation
of a conceptual model

A computational model is a working embodiment of a conceptual model through the

medium of computer simulation. It can assist hypothesis testing by serving as a virtual

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 2 November 26, 2004

laboratory preparation in which the functional consequences of the hypothesis can be

examined. Such tests can be valid only if the computational model is as faithful to the

conceptual model as possible. This means that the computational model must be

implemented in a way that does not impose additional simplifications or introduce new

properties that were not consciously chosen by the user; otherwise how can the user tell

whether simulation results truly reflect the properties of the conceptual model, and are

not a byproduct of distortions produced by trying to implement the model with a

computer? This ideal is impossible to meet, and the proper use of any simulator requires

judgment by the user as to whether discrepancies between concept and concrete

representation are benign or vicious.

A useful simulation environment enables experimental tests of hypotheses by

facilitating the construction, use, and revision of computational models that are faithful to

the original idea and its subsequent evolution. NEURON is designed to meet this goal,

and one of the aims of this book is to show you how to tell whether the model you have

in mind is matched by the NEURON simulation you create.

An example

Suppose we are interested in how the cell of Fig. 2.2 A responds to current injected at

the soma. We could imagine an enormously complicated conceptual model that attempts

to mimic all of the detail of the physical system. But if we're really interested in insight,

we might start with a much simpler conceptual model, like the ball and stick shown in

Fig. 2.2 B. Most of the anatomical complexity of the physical system lies in the dendritic

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 2

tree, but our conceptual model approximates the entire dendritic tree by a very simple

abstraction: a cylindrical cable.

So going from the physical system to the model involved simplification and

abstraction. What about going from the conceptual model to a computational model?

The statements in Fig. 2.2 C specify the topology of the computational model using

hoc, NEURON's programming language. Note that everything in the conceptual model

has a direct counterpart in the computational model, and vice versa: the transition

between concept and computational model involves neither simplification nor additional

complexity. All that remains is to assign physical dimensions and biophysical properties,

and the computational model can be used to generate simulations that reflect the behavior

of the conceptual model.

soma

dendrite

 create soma, dendrite

 connect dendrite(0), soma(1)

A B C

Figure 2.2. A. Detailed morphometric reconstruction of Ca1 pyramidal neuron (from

D.A. Turner). B. "Ball and stick" conceptual model for studying charging properties of

a neuron as seen from the soma. C. The computational implementation of the

conceptual model in hoc, NEURON's programming language.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 2 November 26, 2004

Chapter 2 Index

A

abstraction 2, 5

accuracy 3

approximation 5

B

ball and stick 4

C

complexity 1, 3, 4

D

detail 2, 4

discrepancy

between conceptual model and computational model 4

H

hypothesis

testing 2, 3

I

insight 2, 4

intuition 2, 3

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 2

J

judgment 4

M

model

ball and stick 4

computational 2, 3

implementation 4, 5

conceptual 2

modeling

empirically-based 2

rationale 2

P

physical system 2

representing by a model 2, 4

prediction 3

S

simplification 2, 4, 5

simulation environment

utility of 2, 4

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 2 November 26, 2004

space 1

T

time 1

topology 5

U

understanding 1, 2

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Chapter 3

Expressing conceptual models in mathematical terms

Computational neuronal modeling usually focusses on voltage and current in

excitable cells, but it is often necessary to represent other processes such as chemical

reactions, diffusion, and the behavior of electronic instrumentation. These phenomena

seem quite different from each other, and each has evolved its own distinct "notational

shorthand." Because these specialized notations have particular advantages for addressing

domain-specific problems, NEURON has provisions that allow users to employ each of

them as appropriate (see Chapter 9: How to expand NEURON's library of

mechanisms). Apparent differences notwithstanding, there are fundamental parallels

among these notations that can be exploited at the computational level: all are equivalent

to sets of algebraic and differential equations. In this chapter, we will explore these

parallels by examining the mathematical representations of chemical reactions, electrical

circuits, and cables.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 3 November 26, 2004

Chemical reactions

C1 C2 O
co

α (v)

β
co

(v)

α
12

(v)

β
12

(v)

Internal free calcium

Saturable calcium buffer

Vesicle
ACh

i
Ca

AChase

Fig. 3.1. Left: a voltage-gated channel modeled as a three-state kinetic scheme

with voltage-dependent rate constants. Right: cartoon of a model of

acetylcholine (ACh) release that involves the influx, buffering, and diffusion of

calcium, exocytosis requiring binding of three calcium ions per vesicle, and

enzymatic breakdown of ACh (rate constants omitted for clarity).

A natural first step in thinking about voltage-dependent or ligand-gated channel

models or elaborate cartoons of dynamic processes is to express them with chemical

reaction notation, i.e. kinetic schemes (Fig. 3.1). Kinetic schemes focus attention on

conservation of material (in a closed set of reactions, material is neither created or

destroyed) and flow of material from one state to another.

The notion of "state" is context-dependent: it may mean actual material quantity of a

molecular species (sometimes moles, sometimes mass), the well-stirred molar

concentration in a volume or the density on a surface, or the probability of a particle

being in a particular state. Thus when we refer to "the value of state A" we mean a value

expressed in the dimensions of A. When A is in units of concentration or density, "the

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

material in state A" is the product of A and the size of the compartment (volume or

surface) in which A is distributed.

Flux and conservation in kinetic schemes

In a kinetic scheme, arrows that point toward or away from a state represent paths

along which material enters or leaves the state. For each state there is a differential

equation that expresses how the amount of material in the state is affected by fluxes that

enter and leave it. These differential equations are specified by the states in the kinetic

scheme and the paths along which material can move between them.

Thus

A �
k

B
Eq. 3.1

means that material leaves state A at a rate that is proportional to the product of the value

of A and a rate constant k, where A and k are understood to be nonnegative. From the

standpoint of state A, the flux along this path is -kA, and this defines a term in the

differential equation for this state.

dA
dt
��� k A Eq. 3.2a

But the flux that leaves A in Eq. 3.1 is just the flux that enters B, so

dB
dt
� k A Eq. 3.2b

Suppose we have a closed system in which Eq. 3.1 is the only chemical reaction that

can occur. Adding Eqns. 3.2a and b together, we have

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 3 November 26, 2004

dA
dt
� dB

dt
� 0 Eq. 3.3

which we can integrate to get

A + B = a constant Eq. 3.4

Equation 3.4 is a statement of the principle of conservation of material: in a closed

system with the reaction described by Eq. 3.1, the sum of A and B is conserved.

Any kinetic scheme is easily translated into a corresponding set of differential

equations. Each differential equation expresses the rate of change of each state as the

difference between the flux entering the state and the flux leaving the state. For example

the kinetic scheme

A B E

DC

k1

k2

k3

k4

k5

k6

Eq. 3.5

has five states, and is equivalent to five differential equations. Focussing on B, we see

that the flux entering is the sum of k1 A, k3 C, and k4 D, while the flux leaving is the sum

of k2 B and k5 B, so the corresponding differential equation is

dB
dt
� k1 A ��� k2

�
k5 � B

�
k 3 C

�
k 4 D Eq. 3.6a

The differential equations for the other states are

dA
dt
��� k1 A

�
k6 E Eq. 3.6b-e

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

dC
dt
� k2 B � k3 C

dD
dt
��� k4 D

dE
dt
� k5 B � k6 E

To derive the conservation rules for a kinetic scheme, we just find linear

combinations of these equations that add up to 0, and then integrate them. For the

example of Eq. 3.6, we see that adding all of the equations together gives

dA
dt
� dB

dt
� dC

dt
� dD

dt
� dE

dt
� 0 Eq. 3.7

which we integrate to obtain the conservation rule

A + B + C + D + E = a constant Eq. 3.8

i.e. the sum of the five states is conserved.

Stoichiometry, flux, and mole equivalents

In the reaction

A
�

B
�

�

kb

k f

C Eq. 3.9

we see that producing one mole of C requires consumption of two moles: one mole of A,

and one mole of B. That is, a change of C implies equal (but opposite) changes of A

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 3 November 26, 2004

and B. The forward flux is kf A B and the backward flux is kb C, so this reaction

translates to the differential equations

dA
dt
��� k f A B

�
k b C

dB
dt
��� k f A B

�
k b C Eq. 3.10

dC
dt
� k f A B � k b C

from which we can generate several different linear combinations that add up to zero.

Two obvious combinations are

dA
dt
� dC

dt
� 0 Eq. 3.11a

and

dB
dt
� dC

dt
� 0 Eq. 3.11b

from which we conclude that both A + C and B + C are conserved. Note that A, B, and C

must have the same units (otherwise Eqns. 3.11a and b would involve the addition of

dimensionally inconsistent values), while kb has units of 1/time and kf is in units of

1/time × units of A.

Confusion may occur with reactions like

A
�

A
�

�

kb

k f

B Eq. 3.12

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

or the equivalent

2 A
�

�

k b

k f

B Eq. 3.13

if the underlying principle of conservation is overlooked. There is certainly no question

that the equation for B is

dB
dt
� k f A2 � k b B Eq. 3.14

but what can we say about dA/dt?

To answer this question, we reexamine Eq. 3.13 and realize that it means that two

moles of A produce one mole of B. So an increase of B implies twice as large a decrease

of A, i.e.

dA
dt
� 2 � � k f A2 � k b B � Eq. 3.15

From Eqns. 3.14 and 15 we see that, in a closed system described by Eq. 3.13,

dA
dt
�

2
dB
dt
� 0 Eq. 3.16

and the conservation rule is that A + 2B is constant.

Compartment size

Textbook treatments of kinetic schemes generally begin with the explicit assumptions

that all states use identical dimensions (usually concentration) and are distributed in the

same volume. Up to this point, we have tacitly made the same assumptions, because they

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 3 November 26, 2004

allow kinetic schemes to be translated into differential equations without having to take

compartment size into account.

However, in neuronal modeling this is often too restrictive. Consider a model of the

role of diffusion and active transport in regulating the amount of calcium in a thin shell

adjacent to the cell membrane (Fig. 3.2). Some of the calcium is pumped out, and some

diffuses between the shell and a bulk internal compartment ("core") at a rate that is

proportional to a constant kd.

o
Ca

i
Ca

bulk
Ca

Fig. 3.2. In this model, [Ca2+] in a thin shell just inside the cell membrane is

regulated by a pump in the cell membrane and by diffusional exchange with

bulk stores of calcium in the core of the cell.

A kinetic scheme formulation of this model is

Cai

�

�

kd

kd

Cabulk
Eq. 3.17a-c

Cai
�

Pump
�

�

k2

k1

Ca Pump

Ca Pump
�

�

k 4

k3

Cao

�
Pump

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Here the active transport of calcium is represented by a pair of first order reactions

between calcium ions in solution on either side of cell membrane, and a calcium pump

that is restricted to the membrane. The states of this model are the amounts of calcium in

the extracellular fluid (Cao), the shell (Cai), and the core of the cell (Cabulk), and the

membrane-associated pump in its "free" and "calcium-bound" forms (Pump and CaPump,

respectively). We want to translate these reactions into a corresponding set of differential

equations, but the reactants occupy four regions, each of which has a different size. If the

volume of the core (volbulk) is much larger than that of the shell (volshell), then a small

amount of calcium could move from the core to the shell and have a significant effect on

the concentration Cai while there is almost no change in the concentration Cabulk. And

how do we deal with Eq. 3.17b and c, in which some reactants are described in terms of

concentration, i.e. material/volume, while others are material densities, i.e. material/area?

In such situations, it is useful to realize that what we're trying to do is to write an

equation for each state variable that expresses the rate of change of material as the

difference between fluxes (material/time) into and out of the state. We start by defining

the quantity of material as the product of the state variable and the size of its

compartment, and then ensure that each term in the equation has the same units.

To see how this works, let's translate Eq. 3.17a-c into the corresponding differential

equations. In order to avoid the distraction of scale factors, we start by assuming that

areas and volumes and are in [cm2] and [cm3], respectively, while material densities

(Pump and CaPump) are in micromoles per cm2 [µmole/cm2] and concentrations (Cao,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 3 November 26, 2004

Cai, and Cabulk) are in [µmole/cm3]. Later we will relax this assumption to see how scale

factors enter into the picture.

We start with Cabulk, which has the simplest equation.

volbulk

d Cabulk

dt
� k d Cai

� k d Cabulk
Eq. 3.18

The total material in this state is volbulk Cabulk, the flux that enters it is kd Cai, and the

flux that leaves it is kd Cabulk. The left hand side of Eq. 3.18 is the rate of change of

material in this state, and it has units of [µmole/ms]. Since every term in this equation

must have the same units, it is clear that kd must be in [cm3� ms].

The equation for Cao is

volo

d Cao

dt
� k3CaPump � k4Cao Pump Eq. 3.19

which, like Eq. 3.18, has units of [µmole/ms] on the left hand side. Since CaPump is in

[µmole/cm2], it follows that k3 must have units of [cm2/ms], and k4 must be in

[cm5/ms µmole].

The state CaPump appears in two reactions, so its differential equation has more

terms.

area pump
d CaPump

dt
� k1Cai Pump

�
k 4Cao Pump

 � � k2

�
k3 � CaPump

Eq. 3.20

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Once again the left hand side is in [µmole/ms], and it is clear that k1 must have the same

units as k4, i.e. [cm5/ms µmole], while the units of k2 must be [cm2/ms], identical to those

of k3.

The equation for Pump is

area pump
d Pump

dt
� � k2

�
k3 � CaPump

� � k1Cai Pump
�

k 4Cao Pump �
Eq. 3.21

The terms on the right hand side of this equation are the same as those in Eq. 3.20 but

with opposite signs, and units are obviously consistent throughout.

For Cai the equation is

vol shell

d Cai

dt
� kd Cabulk

� k d Cai
� k1Cai Pump

�
k2CaPump

Eq. 3.22

and the units of all terms are consistent.

Scale factors

Up to this point we have used the same units for all calcium concentrations:

[µmole/cm3]. What if we prefer a more customary measure for Cao, e.g. [millimole/liter]?

No problem--1 µmole/cm3 is equivalent to 1 millimole/liter, i.e. the values are

numerically equal, so we can use the same rate constants and equations as before, without

having to insert scale factors into our equations.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 3 November 26, 2004

Now suppose we decide that [cm3] is too large a unit for intracellular volumes, and

that we would prefer to use [µm3] instead for volbulk and volshell? At first this seems

perplexing, because the units of the left hand side of Eq. 3.18 would be

[µm3 µmole/ms cm3], while the right hand side is still in [µmole/ms]. We are rescued

from confusion by recalling that 1 µm = 10-4 cm, so [µm3 µmole/ms cm3] is equivalent to

10-12 [µmole/ms], and we have

volbulk

d Cabulk

dt
� 1012 � k d Cai

� k d Cabulk � Eq. 3.23

The 1012 on the right hand side of Eq. 3.23 is a scale, or "conversion," factor, and if we

wanted to be pedantic we would point out that it has units of [cm3/µm3]. In any case, its

numeric value makes sense, because a small net movement of calcium will have a much

larger effect on the concentration Cabulk if volbulk is 1 µm3 rather than 1 cm3.

Of course we also have to apply a scale factor in Eq. 3.22, the other equation that

involves an intracellular volume. By identical reasoning we obtain

vol shell

d Cai

dt
� 1012 � k d Cabulk

� k d Cai

� k1Cai Pump
�

k2CaPump �
Eq. 3.24

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Electrical circuits

An electrical circuit (Fig. 3.3) can be translated to an equivalent set of equations by

combining Kirchhoff's current and voltage laws with the characteristics of the individual

devices in the circuit. Here we present a brief heuristic approach to how this can be done.

Space and time preclude discussion of related topics such as graph theory; for a more

thorough development of circuit analysis, motivated readers are referred elsewhere (e.g.

(Nilsson and Riedel 1996)).

C R

V

e
RV

m

Cell

A
1

V
oI

clamp

V
e

e
C

C
f

V
f

A
f

Fig. 3.3. Left: A simple parallel RC circuit. Right: Circuit for recording from a

cell while passing current through the same electrode. Amplifier A f and

capacitor Cf are used to compensate for the electrode capacitance Ce.

To develop the equations that describe a circuit, we will employ Kirchhoff's current

law which states that the algebraic sum of all currents entering a node (a connection

between two or more device terminals) is always zero. Every node in a circuit has a

voltage, and every connection between nodes ("branch" or "edge") has a current. In order

for voltage throughout a circuit to be determined unambiguously, each node must be on a

path that ultimately leads to ground. We can then write the current balance equation for

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 3 November 26, 2004

each node (the "node equations"), and solve these equations to find the potential at each

node and the current through each element in the circuit.

Table 3.1 lists common circuit elements with their characteristic equations and

schematic representations. The arrows in the figures of the resistor and capacitor indicate

the direction of current flow when i given by the characteristic equation is positive. For

the voltage source we have adopted the usual convention for the direction of positive

current flow (away from the "positive" terminal, which is symbolized by the longer of the

two transverse lines).

Table 3.1. Common circuit elements

Type of element Characteristic equation Schematic representation

Ground v � 0 v

Wire v1 � v2 v
1

v
2

Linear resistor i � �
v1 � v2 �

�
R

R

v
1

v
2

i

Linear capacitor i � C d
�
v1 � v2 �

�
dt

C

v
1

v
2

i

Voltage source v1 � v2 � E
�
t � v

1
v

2
i

E

Current source i � I
�
t � v

1
v

2I

Ideal amplifier

v
3

� G
�
v

1 � v
2 �

i1 � i2 � 0

+

−

v
1

v
2

v
3

1
i

2
i

3
i

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Figure 3.4 illustrates the application of Kirchhoff's current law to a circuit consisting

of a capacitor in parallel with a resistor. There are two nodes, but one is grounded so its

potential is 0. Since only one node has a potential that is unknown, this circuit can be

described by a single node equation.

The current flow along all branches attached to the ungrounded node is indicated by

the diagram on the right side of Fig. 3.4. To apply Kirchhoff's current law to this node,

we must assume a positive direction for current flow along every edge that attaches to the

node. We want to emphasize that these assumed directions are completely arbitrary, and

no matter what we decide, the final equations will be the same. Here we have chosen the

convention that current away from a node adds to the current balance equation, which

gives us

IC

�
IR
� 0 Eq. 3.25

Referring to Table 3.1 for the device properties of capacitors and resistors, we obtain the

ordinary differential equation

C
dV
dt
� V

R
� 0 Eq. 3.26

whose solution is

V � t � � V0e�
t

�
RC Eq. 3.27

where V0 is the initial voltage on C.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 3 November 26, 2004

C

I

R

I

V

RC

V

IRIC

Fig. 3.4. Left: Schematic diagram of a simple parallel RC circuit, which has

only one node at which potential is unknown. Right: Node diagram indicating

the flow of current away from this single node.

The slightly more complex circuit of Fig. 3.5 has four nodes. There are only two

nontrivial equations for the voltages at these nodes, since we already know that the

grounded nodes have a voltage of 0. The potentials at the two ungrounded nodes are

unknown, and we need to formulate the node equations for them. Once again, we can

assign the directions of all currents arbitrarily, but once we have chosen the positive

direction of current flow through R3, we have committed ourselves to the positive

direction of IR3
 relative to both node 1 and node 2. So if we assume that positive current

in C1, R1, and R3 flows away from node 1, and apply the convention that "current away

from a node adds to the current balance equation," we have

IC1

�
IR1

�
IR3

� 0 Eq. 3.28a

which is the current balance equation for node 1.

To get the other current balance equation, we will assume that the positive direction

for current in C2 and R2 are away from node 2, so these currents add to its current

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

balance equation. However, we have already chosen a direction for positive current flow

in R3, and it happens to be toward node 2. The current flow diagrams for nodes 1 and 2

(Fig. 3.5 bottom right) underscores the fact that resistor R3 makes equal but opposite

contributions to current balance at nodes 1 and 2. Consequently the current IR3
 is

subtracted from the current balance equation for node 2.

IC2

�
IR2

� IR3

� 0 Eq. 3.28b

1V

IC1 IR1

IR3

C1 C2R1 R2

IR1IC1 IC2 IR2

IR3
2V1V

R3

2V

IC2 IR2

IR3

Fig. 3.5. Top: A circuit with three nodes. Bottom: Current flow diagram at each

of the two nodes where potential is unknown. Note the direction of current flow

in R3.

Substituting device properties into these equations gives

C1

dV1

dt

� V1

R1

� � V1
� V2 �
R3

� 0 Eq. 3.29a

C2

dV 2

dt
� V2

R2

�

� V1
� V2 �
R3

� 0 Eq. 3.29b

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 3 November 26, 2004

Again note the - sign applied to the current in R3 in the second node equation. This pair

of coupled first order differential equations constitutes a second order initial value

problem, which has a solution of the form

V1
� t � � A1e

� t
���

a � B1e
� t

���
b Eq. 3.30a-b

V2
� t � � A2e

� t
���

a � B2e
� t

���
b

where A1, B1, A2, and B2 are determined by the values of V1 and V2 at t = 0, and the

time constants � a and � b are the eigenvalues of the matrix �
� 1

C1 � 1
R1

� 1
R3 � 1

C1R3

1
C2R3

� 1
C2 � 1

R2

� 1
R3 �
	 Eq. 3.31

As a final example of the equivalence between an electrical circuit and a set of

equations, let us consider a circuit that could be used to compensate for electrode

capacitance. Anyone who has ever recorded from a cell with a microelectrode knows that

electrode resistance and capacitance can interfere with experimental measurements.

Figure 3.6 shows a simplified circuit of a common method used to compensate for

electrode capacitance when recording with a sharp microelectrode under current clamp.

This circuit includes a cell, a microelectrode whose electrical properties are represented

by an equivalent circuit consisting of a series resistance Re and a single lumped

capacitance Ce located at the "amplifier" end of the electrode, a current source Iclamp for

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

injecting current into the cell, and a "headstage amplifier" A1. It also has an amplifier A f

and capacitor Cf that provide positive feedback to compensate for the electrode

capacitance.

e
RV

m

Cell

A
1

V
oI

clamp

V
e

e
C

C
f

V
f

A
f

Fig. 3.6. Capacitance compensation under current clamp. The capacitance Ce of

the microelectrode distorts recordings by slowing and attenuating the response

of Ve to changes in Vm and Iclamp. Amplifier A f and capacitor Cf compensate

for this by supplying charging current to Ce.

The open circles mark the nodes that are not grounded. The first node is the site at

which the electrode is attached to the cell, and the voltage at this node is Vm, the local

membrane potential of the cell. As Fig. 3.7 suggests, the current balance equation for this

node is

i inj
� iRe

� 0 Eq. 3.32

i.e. the current iR
e
 that flows through the electrode resistance equals the current i inj that is

injected into the cell.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 3 November 26, 2004

i
inj

e
RV

m

Cell

i
R

e

Fig. 3.7. The first node of the circuit in Fig. 3.6. The current injected into the

cell equals the current that passes through the electrode resistance Re.

The voltages at the remaining three nodes are unknown, so we will need three

equations. Taking advantage of the characteristic equations for an amplifier (Table 3.1),

we see immediately that the nodes at the outputs of the feedback and headstage amplifiers

have voltages that are given by

V f
� Gf Vo

Eq. 3.33

and

Vo � G1Ve
Eq. 3.34

where Gf and G1 are the "gains" or amplification factors of the feedback and headstage

amplifiers, respectively. For the third equation, we apply Kirchhoff's current law to the

remaining node, which is diagrammed in Fig. 3.8. The current balance equation for this

node is

iRe

�
iCe

� Iclamp
� iCf

�
i+
� 0 Eq. 3.35

Each device attached to this node contributes a term to Eq. 3.35, e.g. iC
e
 is the current that

charges the electrode capacitance, and iC
f
 is the current supplied by the feedback

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

capacitor Cf. Referring to Fig. 3.6 and Table 3.1, we replace each term in Eq. 3.35 by the

corresponding characteristic equation to get

Ve
� V m

Re

�
Ce

d Ve

dt
� Iclamp

� Cf

d � V f
� Ve �

dt
�

0 � 0 Eq. 3.36

which rearranges to

� Ce

�
Cf �

dVe

dt
� Cf

dV f

dt
�

Vm
� Ve

Re

�
Iclamp

Eq. 3.37

Interested readers may wish to combine Eqns. 3.33, 34, and 37 to derive a single

differential equation that relates the "output" voltage Vo to the "input" voltage Vm.

I
clamp

V
ee

R

e
C

C
f

i
R

e

i
e

C

i
+

i
C

f

A
1

Fig. 3.8. The third node of the circuit in Fig. 3.6. Perfect compensation for

electrode capacitance (which can never be achieved with real amplifiers and

electrodes) requires that iCf
 balances iCe

 exactly.

Cables

The spread of electrical and chemical signals in a cable are described by equations

that combine conservation laws with formulas that express how voltage and

concentration gradients drive the movement of charge and mass. This discussion focusses

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 3 November 26, 2004

on electrical signals, since the basic form of these equations is identical for chemical

signals (Rall 1977; Crank 1979; Carslaw and Jaeger 1980; Jack et al. 1983), and similar

considerations arise in connection with their numerical solution.

The propagation of electrical signals along an unbranched cable is governed by the

one-dimensional cable equation

�
V

�
T
�

F � V � �
� 2V

�
X 2

Eq. 3.38

where V and F are continuous functions of space and time, which are represented by X

and T (with appropriate scaling) (Rall 1977; Jack et al. 1983). The branched architecture

typical of most neurons is dealt with by combining partial differential equations of this

form with appropriate boundary conditions. This is the approach taken in NEURON,

whose programming language hoc and graphical user interface have special features that

allow us to avoid the task of writing families of cable equations and puzzling out their

boundary conditions. Instead, we construct models by specifying the properties of

individual neurites and how they are interconnected. NEURON then applies the standard

strategy of spatial and temporal discretization to convert our specification into algebraic

difference equations, which it solves numerically (Rall 1964; Crank 1979; Carslaw and

Jaeger 1980) (see Chapter 4: Essentials of numerical methods for neural modeling).

We can derive the cable equation by combining the physical principle of conservation

of charge with Ohm's law. Focussing on these separately provides insight into the process

of spatial discretization and the meaning of boundary conditions. In addition we can

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

easily handle issues of branching and spatially-varying diameter that were assumed away

in the cable equation but are dominant physical features of real neurons.

Conservation of charge requires that the sum of currents flowing into any region from

all sources must equal zero. For example, if Figure 3.9 represents part of a cell,

conservation of charge means that

�
ia
���

A

im dA � 0 Eq. 3.39

where the first term is the sum of all axial currents ia (in [mA]) flowing into the region

through cross-section boundaries, and the second term is the total transmembrane current

found by integrating the transmembrane current density im (in [mA/cm2]) over the

membrane area A (in [cm2]) of the region. The usual sign convention is that outward

transmembrane current is positive and axial current into a region is positive. If electrode

current sources are present, they are treated exactly the same as membrane currents

except for the sign convention, i.e. electrode current into a cell (depolarizing current) is

positive. Including electrode current is in the conservation equation gives

�
ia
� �

A
im dA

� �
A

is dA � 0 Eq. 3.40

The physical size of electrode current sources is generally very small compared to the

spatial extent of a region, so the mathematical form for is is usually a delta function of

position is [mA] · δ(x-x0, y-y0, z-z0) [cm-2]. It becomes a matter of personal preference

whether to keep electrode currents under an integral, analogous to distributed membrane

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 3 November 26, 2004

currents, or merely to add is [mA] to the sum of ia in whatever region the electrode

happens to be. In either case, the extra terms add nothing to the conceptual analysis, so

we will omit them from the following equations to reduce irrelevant clutter.

im

im
im

im

ia

ia

ia

ia

Fig. 3.9. The net current that flows into any region of a cell is 0. The arrows

indicate the positive directions for transmembrane (im) and axial (ia) currents.

A standard approach in computer simulation is to divide the neuron into regions or

compartments small enough that the spatially-varying im in any compartment j is well

approximated by its value at the center of the compartment. Equation 3.40 then becomes

im j
A j
�
�
k

iakj Eq. 3.41

where Aj is the surface area of compartment j.

Up to this point we have relied entirely on the principle of conservation of charge.

Ohm's law is invoked to resolve the axial currents between compartment j and its

neighbors (right hand side of Eq. 3.41): each axial current is approximated by the voltage

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

drop between the centers of the compartments divided by the resistance of the path

between them (the "axial resistance")

iakj �
� vk

� v j �
�
r jk Eq. 3.42

This transforms Eq. 3.41 into

im j
A j
�
�
k

� vk
� v j �

�
r jk Eq. 3.43

This automatically takes care of the direction of axial current flow, since vj < vk implies

that current flows into compartment j.

The total membrane current is the sum of capacitive and ionic components

im j
A j
� c j

dv j

dt
�

iion j

� v j , t � Eq. 3.44

where cj is the membrane capacitance of the compartment and iionj
(vj, t) includes the

effects of varying ionic channel conductances. In summary, the spatial discretization of

branched cables yields a set of ordinary differential equations of the form

c j

dv j

dt

�
iion j

� v j , t � �
�
k

� vk
� v j �

�
r jk Eq. 3.45

As mentioned above, injected source currents would be added to the right hand side of

this equation.

Equation 3.45 involves two approximations. First, axial current is specified in terms

of the voltage difference between the centers of adjacent compartments. The second

approximation is that spatially-varying membrane current is represented by its value at

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 3 November 26, 2004

the center of each compartment. This is much less drastic than the often heard statement

that a compartment is assumed to be "isopotential." It is far better to picture the

approximation in terms of voltage, membrane current, and axial current varying linearly

between the centers of adjacent compartments. Indeed, the linear variation in voltage is

implicit in the usual description of a cable in terms of discrete electrical equivalent

circuits where all the membrane channels in a compartment have been pushed into a

single point at the center of the compartment.

Two special cases of Eq. 3.45 deserve particular attention. The first of these allows us

to recover the usual parabolic form of the cable equation. Consider the interior of an

unbranched cable with constant diameter. The axial current consists of two terms

involving compartments with indices j-1 and j+1, i.e.

c j

dv j

dt

�
iion j

� v j , t � �
v j � 1

� v j

r j � 1, k

� v j � 1
� v j

r j � 1, k
Eq. 3.46

If each compartment has length ∆x and diameter d, its capacitance is Cm π d ∆x and the

axial resistance is Ra ∆x / π (d/2)2, where Cm is specific membrane capacitance and Ra is

cytoplasmic resistivity. Equation 3.46 then becomes

C m

dv j

dt

�
i j
� v j , t � � d

4 Ra

v j � 1
� 2v j

�
v j

�
1

�
x2 Eq. 3.47

where the total ionic current iionj
 is replaced by the ionic current density ij. As ∆x → 0,

the right hand term becomes the second partial derivative of membrane potential with

respect to distance at the location of the now infinitesimal compartment j, and we have

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Cm

�
v

�
t
�

i � v , t � � d
4 Ra

� 2v
�

x2
Eq. 3.48

Multiplying both sides by Rm and recognizing that i Rm = v gives

Rm C m

�
v

�
t

�
v �

d Rm

4 Ra

� 2v
�

x2 Eq. 3.49

Scaling t and x by the time and space constants τm = RmCm and λ = 1
2

�
d Rm

Ra

 (i.e.

substituting T = t / τm and X = x / λ) transforms Eq. 3.49 into the form shown in Eq. 3.38.

The second special case of Eq. 3.45 allows us to recover the boundary conditions.

This is an important issue since naive discretizations at the ends of the cable have

destroyed the second order accuracy of many simulations. The boundary condition for the

terminal end of a nerve fiber is that no axial current flows at the end of the cable, i.e. the

end is sealed. This is implicit in Eq. 3.45, where the right hand side will consist only of

the single term (vj-1 - vj) / rj-1, j when compartment j lies at the end of an unbranched

cable.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 3 November 26, 2004

References

Carslaw, H.S. and Jaeger, J.C. Conduction of Heat in Solids. 2 ed. Oxford: Oxford

University Press, 1980.

Crank, J. The Mathematics of Diffusion. 2 ed. London: Oxford University Press, 1979.

Jack, J.J.B., Noble, D., and Tsien, R.W. Electric Current Flow in Excitable Cells.

London: Oxford University Press, 1983.

Nilsson, J.W. and Riedel, S.A. Electric Circuits. 5 ed. Reading, MA: Addison-Wesley,

1996.

Rall, W. Theoretical significance of dendritic tree for input-output relation. In: Neural

Theory and Modeling, edited by R.F. Reiss. Stanford: Stanford University Press, 1964, p.

73-97.

Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of

Physiology, vol. 1, part 1: The Nervous System, edited by E.R. Kandel. Bethesda, MD:

American Physiological Society, 1977, p. 39-98.

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

Chapter 3 Index

A

accuracy

effect of boundary conditions 27

active transport 8, 9

amplifier 14

gain 14, 20

headstage 19

approximation 24, 25

assumptions 7, 9, 15, 16, 23, 26

axial current 23-25, 27

axial current

positive current convention 23

axial resistance 25, 26

B

boundary conditions 22

sealed end 27

branched architecture 22, 25

buffer 2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 3 November 26, 2004

C

cable 21

branched 25

unbranched 22, 26, 27

calcium

amount of 8

concentration 9

pump 9

channel 26

channel

conductance 25

ligand-gated 2

model 2

voltage-gated 2

charge 21

conservation 22, 24

circuit 13

analysis 13

branch 13

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

edge 13

element 14

amplifier 14

capacitor 14

current source 14

ground 14

resistor 14

voltage source 14

wire 14

equivalent 18, 26

node 13

parallel RC 15

positive current convention 14

closed system 2, 3, 7

compartment 3, 24

adjacent 25

size 3, 7, 9, 24

concentration 2, 7, 9

gradient 21

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 3 November 26, 2004

conservation law 21

core 8

current 13

density 23, 26

electrode 19, 20, 23

source 23, 25

current clamp 18

cytoplasmic resistivity 26

D

density 2, 9

diffusion 8

discretization 22

spatial 22, 25, 27

temporal 22

E

eigenvalue 18

electrode

capacitance 18

compensation 18

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

resistance 18

equation

algebraic 1

cable 22, 26

characteristic 14

current balance 13, 15

difference 22

differential 1, 3, 4, 6, 9, 10, 15, 18, 21

ordinary 15, 25

partial 22

F

feedback

amplifier 19

capacitor 19

positive 19

flux 3-5, 9

flux

backward 6

forward 6

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 3 November 26, 2004

function

continuous

of space 22

of time 22

delta 23

G

graph theory 13

I

initial value problem 18

K

kinetic scheme 2, 3

compartment size 8

conservation rules 5

equivalent differential equations 4

Kirchhoff's current law 13

M

mass 21

material 2

amount 2, 9

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

concentration 2

conservation 2

density 2

membrane area 23

membrane capacitance 25

membrane current

capacitive 25

ionic 25

positive current convention 23

membrane potential 19, 26

membrane potential

isopotential 26

model

conceptual 1

mole equivalents 5

N

neurite 22

O

Ohm's law 24

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 3 November 26, 2004

R

rate constant 3

S

scale factor 11

shell 8

signal

chemical 21

electrical 21

specific membrane capacitance 26

state 2, 4, 7, 9

state

as amount of material 2

as concentration 2

as density 2

as probability 2

stoichiometry 5

surface area 24

T

time constant 18

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 3

U

units 2

consistency 6, 9, 11

V

voltage 13

gradient 21

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

November 27, 2004 The NEURON Book: Chapter 4

Chapter 4

Essentials of numerical methods for neural modeling

NEURON uses many strategies to achieve computational accuracy and efficiency,

some of which are detailed elsewhere (Hines 1984). It also draws on several numerical

methods libraries for vector (Press et al. 1992) and matrix (Stewart and Leyk 1994)

methods, solving systems of sparse equations (Sparse 1.3 (Kundert 1986)), and adaptive

integration (CVODES (Hindmarsh and Serban 2002) and IDA (Hindmarsh and Taylor

1999)). These all make their own special contributions to NEURON's performance, but

they are already well documented elsewhere so this chapter will not discuss them in any

detail. Instead, the emphasis will be on how NEURON deals with the fact that neurons

are distributed analog systems that are continuous in time and space, but digital

computation is inherently discrete. Because of this fundamental disparity, implementing a

model of a neuron with a digital computer raises many purely numerical issues that have

no relationship to the biological questions that are of primary interest, yet must be

addressed if simulations are to be tractable and produce reliable results.

We saw in Chapter 3 that the principle of conservation of charge can be expressed

with a single ordinary differential equation

C
dV
dt

�
I ion

� I inj
Eq. 4.1

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 4 November 27, 2004

so long as the transmembrane current density is nearly uniform over the surface of a cell.

If current density varies too much, the computational representation must consist of two

or more coupled compartments. These are described by a set of equations of the form

C j

dv j

dt
�

I ion j

���
k

vk � v j

r jk

�
I inj j

Eq. 4.2

where the second term on the right hand side is the sum of all axial currents from

neighboring compartments. Additional terms and equations are necessary if extracellular

fields (the extracellular mechanism) or electronic instrumentation (linear circuits)

are to be included in the simulation.

Selection of a method for numerical integration of these equations is guided by

concerns of stability, accuracy, and efficiency. In this chapter we review these important

concepts and explain the rationale for the integrators used in NEURON. We start with a

theoretical analysis of the errors that are introduced by discretizing the linear cable

equation. Then we move on to a comparative analysis of methods for computing

numerical solutions, which is illustrated by a series of case studies that bring up issues

related to the practical concerns of empirically-based modeling.

Spatial and temporal error

in discretized cable equations

A linear cable with uniform properties is described by the equation

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

c � V
dt

�
g V � a

2Ra
�

2V

� x2
Eq. 4.3

where V is the membrane potential in volts, c the specific membrane capacitance in

[F/cm2], g the specific membrane conductance in [S/cm2], a the radius in [cm], Ra the

cytoplasmic resistivity in [Ω cm], and x the distance along the cable in [cm], so that each

term in Eq. 4.3 has units of [A/cm2]. We assume that the cable is L cm long, and that the

axial current at each end is zero, i.e. "sealed end" boundary conditions, which implies that

� V � � x = 0 at x = 0 and x = L. The membrane potential is a function of time and

location V(t,x), and the initial condition V(0,x) can be any spatial pattern that satisfies the

boundary conditions.

Analytic solutions: continuous in time and space

The spatial patterns that preserve their shape, changing only in amplitude, are the

Fourier cosine terms cos(πnx/L). From Fourier theory, we know that any spatial pattern

can be represented as an infinite sum of such cosine patterns (Strang 1986).

These cosine patterns always satisfy the boundary condition at x=0 because sin(0)=0.

Satisfaction of the boundary condition at x = L, i.e. sin(πn) = 0, requires that n be an

integer. The pattern preserves its shape because substituting V(t,x) = Vn(t) cos(πnx/L) into

Eq. 4.3 gives

c
d V n

�
t �

dt
�

g V n

�
t � � �

� 2n2a

2Ra L2
V n

�
t � Eq. 4.4

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 4 November 27, 2004

which has the solution

V n

�
t � � V n

�
0 � e�

kn t Eq. 4.5a

where n is the number of half waves in the cosine pattern, Vn(0) is its initial amplitude,

and the rate of decay is

k n
� g

c
�

� 2n2a

2Ra L2c
Eq. 4.5b

When n = 0, voltage is independent of location along the length of the cable and

decays with the membrane time constant τm = c/g seconds (top graph in Fig. 4.1). If n is

large, i.e. when the spatial frequency of the cosine pattern is high, the second term on the

right hand side of Eq. 4.5b is dominant, so the pattern decays very quickly at a rate that is

proportional to the square of the number of half waves on the cable (see Fig. 4.1,

especially the bottom graph). In a continuous cable, there is no limit to the spatial

frequency, but high spatial frequencies decay extremely quickly.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

0 0.6 0.8 1

−1

0

1

0.2 0.4

arc length
n = 0

0 0.2 0.4 0.6 0.8 1

−1

0

1

arc length
n = 1

0 0.2 0.4 0.6 0.8 1

−1

0

1

arc length

n = 2

0 0.2 0.4 0.6 0.8 1

−1

0

1

arc length
n = 3

0 0.2 0.4 0.6 0.8 1

−1

0

1

arc length
n = 4

0 0.2 0.4

−1

0

1

0.30.1

mτtime /

Figure 4.1. Top five graphs: These are the first five spatial patterns of V that preserve

their shape along a uniform cylindrical passive cable. V is plotted as a function of

normalized distance along the cable for n = 0, 1, 2, 3, and 4 half cycles. The decay of

these patterns with time is illustrated by "snapshots" taken at t = 0, 0.1, 0.2, 0.3, and 0.4

times the membrane time constant τm. Note that larger n implies faster decay. Bottom

graph: Amplitudes of these patterns plotted as functions of normalized time. Starting

with the top trace and working down, n = 0, 1, 2, 3, and 4. Dots mark the amplitudes at

the times of the snapshots shown in the upper graphs. These amplitudes assume cable

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 4 November 27, 2004

length is π times its DC length constant λ, so that n = 1 makes the first and second terms

of Eq. 4.5b equal. Shorter cables have bigger kn, hence decay is more rapid.

Adding a current stimulus to the equations is not difficult, but the detailed derivation

is not necessary to our discussion of discretization error. Two points are worth

mentioning, however. First, any stimulus can be represented as a Fourier sum. Second, a

cosine stimulus with a specific spatial frequency excites a voltage response with the same

spatial frequency and an amplitude that follows a single exponential decay,

asymptotically approaching a steady state.

Spatial discretization

Now let us compare the continuous cable solution of Eq. 4.5 with the solution of a

cable equation that has been discretized in space by replacing �
2V � � x2 with the second

order correct approximation

�
2V

� x2
� V

�
x

���
x � � 2V

�
x � �

V
�
x �
�

x �
�

x2
Eq. 4.6

For concreteness we need to specify precisely which values of x are allowed. The

ordinary approach is to suppose m points with the first point at x = 0 and the last point at

x = L, so that ∆x = L/(m-1). However, NEURON takes a different approach to

discretization, in which there are m intervals of length ∆x = L/m and the m points are at

the centers of these intervals. Thus the centers are at x = (i + 0.5)L/m where 0 ≤ i < m.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

With either method, m is the number of points in space at which a numerical solution

for V is computed, and m = 1 corresponds to a spatial frequency of 0, i.e. uniform

membrane potential along the entire cable. Furthermore, for either approach the largest

number of half waves that can be represented in the discretized system is n = m-1 so the

highest spatial frequency is (m-1)/2L cycles per unit length. This result is related to the

Nyquist sampling theorem, which states that at least two samples must be captured per

cycle in order to accurately measure the frequency of a signal (Strang 1986).

The ordinary method puts the ith point at x = iL/(m-1), so cos(πnx/L) =

cos(π(m-1)iL/(m-1)L) = cos(πi), and the value of V alternates sign at adjacent points.

With NEURON's method, the largest n is also m-1 because, at n = m, cos(πnx/L) =

cos(πm(m+0.5)L/mL) = cos(π(m+0.5)) = 0.

With the ordinary method, the second difference at the ith point is most easily

computed from the real part of

ej � n
�
i � 1 ��� � m

�
1 �
� 2e j � n i � � m

�
1 � �

e j � n
�
i

�
1 ��� � m

�
1 �

 ��� e j � n � � m
�

1 �
	 2 � e�
j � n � � m

�
1 �
� e j � n i � � m

�
1 �

 � 2
�
cos

� � n � �
m � 1 � � � 1 � e j � n i � � m

�
1 � Eq. 4.7

which is

2
�
cos

� � n � �
m � 1 � � � 1 � cos

� � n i � �
m � 1 � � Eq. 4.8

NEURON's method gives

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 4 November 27, 2004

2 � cos ��� n � m ��� 1 � cos ��� n � i � 0.5 �	�
� m � 1 ��� Eq. 4.9

Therefore, for either method

d V nm

dt
� � k nm V nm

Eq. 4.10

where

k nm
� g

c
�

�
1 � cos

� � n
�

x � L � � a

Ra c
�

x2
Eq. 4.11

The solution of Eq. 4.10 is

V nm � t �
� V nm � 0 � e� knm t Eq. 4.12

Note that knm approaches kn (Eq. 4.5b) when n∆x/L is << 1 (because cos(φ) � 1 - φ2/2

when φ is small). This makes sense when one realizes that L/n is half of the wavelength

of the spatial pattern, so "n∆x/L is small" means that the discretization interval ∆x is short

compared to the wavelength of the spatial pattern. Thus the discrete system is "sampling"

the spatial pattern at an interval that is fine enough to allow a smooth representation of

the pattern. Restating this in more formal terms, the discretized system approximates the

original continuous system more closely at those spatial frequencies for which the

discretization interval ∆x is short compared to the spatial wavelength.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0
number of half waves

analytic solution

ordinary method
NEURON’s method

10
log tau

Figure 4.2. Normalized time constant for decay of spatial patterns vs. number of

half waves along a uniform passive cylindrical cable (cable parameters as in

Fig. 4.1).

Figure 4.2 shows the normalized time constant of decay τ = 1/kτm as a function of the

number of half waves for the continuous cable of Fig. 4.1 as well as for discretized

models of this cable with 2, 4, 8, and 16 points. We must point out that, for both

discretization methods, doubling the number of points reduces the error in the time

constant for a given spatial frequency by a factor of 4. Also note that, for small numbers

of compartments and at the highest spatial frequencies, the spatial error of NEURON's

discretization method is significantly less than that of the ordinary method.

Adding temporal discretization

So far we have solved the spatially continuous and spatially discretized cables

analytically with respect to time. Now we complete the discretization with respect to

time. The numerical integration methods that have seen the widest use in empirically-

based neural modeling are forward Euler, backward Euler, and Crank-Nicholson. Later in

this chapter we will examine each of these individually and in more detail. For the

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 4 November 27, 2004

purpose of our present theoretical analysis, it is better to treat them all at once by

introducing a parameter θ so that

dV
dt
� V

�
t

� �
t � � V

�
t �

�
t

Eq. 4.13a

is evaluated at t+θ∆t by using V interpolated from its values at t and t+θ∆t, i.e.

V
�
t

��� �
t � �

�
1 �
� � V

�
t � ���

V
�
t

���
t � Eq. 4.13b

Thus Eq. 4.10 becomes

V
�
t

� �
t � � V

�
t �

�
t

� � k nm V
�
t

��� �
t � Eq. 4.14

Drawing on Eq. 4.13b, we can write this as

V
�
t

� �
t � � V

�
t �

�
t

� � k nm

� �
1 �
� � V

�
t � ���

V
�
t

� �
t ��� Eq. 4.15

When θ = 0 Eq. 4.15 is the forward Euler method, θ = 1 turns it into the backward Euler

method, and θ = 0.5 gives us the Crank-Nicholson method.

From Eq. 4.15 we immediately get the iteration equation

V nm

�
t

� �
t � � � 1 � �

1 �
� � k nm

�
t

1
�	�

k nm
�

t
 V nm

�
t � Eq. 4.16

The first term on the right hand side of this equation is the iteration coefficient; if its

magnitude for any spatial frequency is > 1, the iterations will diverge. With the forward

Euler method (θ = 0), the iteration coefficient with the largest magnitude is for the spatial

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

frequency at which n = m. At this frequency, the cos(πn∆x/L) term in Eq. 4.11 is -1,

making the decay rate constant

k mm
� g

c
� 2a

Ra c
�

x2
Eq. 4.17

so we see that the magnitude of the iteration coefficient is > 1 when kmm∆t > 2. If we

want the discretized system to represent high spatial frequencies, ∆x must be small, and

this makes the second term in kmm dominant. Substituting θ = 0 and kmm � 2a/Rac∆x2

into Eq. 4.16 and rearranging, we find that, for the forward Euler method to avoid

numerical instability, the combination of ∆t and ∆x must obey the constraint

�
t

�
x2 �

Ra c

a
Eq. 4.18

With the backward Euler method (θ = 1), there is no constraint on ∆t because knm is

always positive and so the iteration coefficient is greater than 0 and less than 1. For the

Crank-Nicholson method (θ = 0.5), the iteration coefficient never becomes less than -1,

so this method is formally stable for all ∆t.

Numerical integration methods

Now we continue our comparative analysis of numerical methods for integrating

Eq. 4.1 and 4.2 by examining them in the context of practical examples. We start with the

simplest approach: explicit or forward Euler, which is not used in NEURON for reasons

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 4 November 27, 2004

that will become clear. Then we consider the implicit or backward Euler method, Crank-

Nicholson, CVODE, and DASPK, which are all available in NEURON.

Forward Euler: simple, inaccurate and unstable

Suppose we are modeling a neuron that has nearly uniform transmembrane current

density. For our conceptual model of this cell, we also assume that its resting potential is

0 mV, its membrane conductance g is constant and linear, and that we are not injecting

any current into it. The techniques we use to understand and control error in simulations

of this linear, passive model are immediately generalizable to active and nonlinear cases.

Conservation of charge in this model is described by Eq. 4.1, which simplifies to

dV
dt

�
kV � 0 Eq. 4.19

where the rate constant k is the inverse of the membrane time constant τm = g/c. The

analytic solution of Eq. 4.19 is

V
�
t � � V

�
0 � e

� kt Eq. 4.20

Let us compare this to a numeric solution computed with the forward Euler method.

The forward Euler method is based on a simple approximation. From the initial

conditions we know the starting value of the dependent variable (V(0)), and the

differential equation that describes the model (Eq. 4.19) gives us the initial slope of the

solution (-kV(0)). The approximation assumes that the slope of the solution is constant for

a short period of time. Then we can extrapolate from the value of V at time 0 to a new

value a brief interval into the future. Now we see why this is called the "forward" Euler

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

method: we are starting from something that is already known and projecting into the

future. The forward Euler method is one of many integrators that calculate future values

entirely on the basis of present, and possibly also past, values; these are called "explicit"

integrators to distinguish them from "implicit" integrators, such as backward Euler and

Crank-Nicholson (see below), which involve future values in the calculation.

In general terms, if a system is described by the differential equation

dV
dt

� f
�
V , t � Eq. 4.21

then the forward Euler method approximates a solution by repeatedly applying

V
�
t

� �
t � � V

�
t � �

f
�
V

�
t � , t � � t Eq. 4.22

For this example, Eq. 4.22 becomes

V
�
t

� �
t � � V

�
t � � k V

�
t � � t Eq. 4.23

(cf. Eq. 4.16 with θ = 0).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 4 November 27, 2004

0 1 2 3
0

0.2

0.4

0.6

0.8

1

t

analytic
solution

Euler
forward

0 1 2 3
0

0.04

0.08

0.12 error

t

Figure 4.3. Left: analytic solution to Eq. 4.19 (solid line with circles) and results

of the forward Euler method (squares) for V(0) = 1, k = 1/s, and ∆t = 0.5 s

(modified from (Hines and Carnevale 1997)). Right: absolute error of the

forward Euler method with ∆t = 0.5 (squares), 0.25 (circles), and 0.125 s (+).

The left panel of Fig. 4.3 shows the forward Euler solution obtained for rate

parameter k = 1/s (i.e. 1/second), initial condition V(0) = 1, and time interval ∆t over

which we extrapolate, assuming the transmembrane ionic current is constant within each

interval. The current that is used for a given interval is found from the value of the

voltage at the beginning of the interval (filled squares). This current determines the slope

of the line segment that leads to the voltage at the next time step. The dashed line shows

the value of the voltage after the first time step as a function of ∆t. Corresponding values

for the analytic solution (solid line) are indicated by filled circles.

The issue of accuracy in numerical simulation is complex, and we discuss it more

thoroughly later in this chapter (see Error). For the moment we only mention that the

forward Euler method has "first order accuracy," which means that the local error is

proportional to ∆t. This is demonstrated in the right panel of Fig. 4.3, where the absolute

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

difference between the analytic solution and the results of the forward Euler method is

plotted for ∆t = 0.5, 0.25, and 0.125 s (squares, circles, and +, respectively). Cutting ∆t by

a factor of 2 reduced error by very nearly half (∆t was comparable to the model's time

constant (1 s) so slight deviations from strict proportionality are to be expected).

Numerical instability

We have already broached this topic from a theoretical standpoint in the setting of a

uniform cable model (see Adding temporal discretization above), but it is still useful to

consider stability of numerical integration in the context of "simpler" compartmental

models. What would happen if the forward Euler method were applied to Eq. 4.19 using a

very large time step, e.g. ∆t = 3 s? The simulation would become numerically unstable,

with the first step extrapolating down to V = -2, the second step going to V = -2 + 6 = 4,

and each successive step oscillating with geometrically increasing magnitude.

Simulations of the two compartment model on the left of Fig. 4.4 demonstrate an

important aspect of instability. Suppose the initial condition is V = 0 in one compartment

and V = 2 in the other. According to the analytic solution, at first the potentials in the two

compartments converge rapidly toward each other (time constant = 1/41 s), and later they

decay slowly toward 0 (time constant = 1 s).

If we use the forward Euler method with ∆t = 0.5 s, we realize that there will be a

great deal of trouble during the time where the voltages are changing rapidly. We might

imagine that we can deal with this by choosing a ∆t that will carefully follow the time

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 4 November 27, 2004

course of the voltage changes, i.e. let ∆t be small when they are changing rapidly, and

larger when they are changing slowly.

The results of this strategy are shown on the right of Fig. 4.4. After 0.2 s with ∆t =

0.001 s, the two voltages have nearly come into equilibrium. Then we changed ∆t to

0.2 s, which is small enough to follow the slow decay closely. Unfortunately, no matter

how small the difference between the voltages, the difference grows geometrically at

each time step. This happens even if the difference consists only of roundoff error,

because the time step used in the forward Euler method must never be more than twice

the smallest time constant in the system.

Linear algebra clarifies the notion of "time

constant" and its relationship to stability. For a

linear system with N compartments, there are

exactly N spatial patterns of voltage over all

compartments such that only the amplitude of the

pattern changes with time, while the shape of the

pattern is preserved. The amplitudes of these

patterns or "eigenfunctions" are given by e
t

�

i
, where λi is called the eigenvalue of the

ith eigenfunction. The real part of each eigenvalue is the reciprocal of one of the time

constants of the solutions to the differential equations that describe the system. The ith

pattern decays exponentially to 0 if the real part of λi is negative; if the real part is

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Earlier in this chapter (see Spatial

and temporal error in discretized

cable equations) we saw that the

eigenfunctions for a uniform

cylindrical cable with sealed ends

took the form of cosine waves. The

decay rates kn and knm of that

theoretical discussion equal -1 times

the corresponding eigenvalues.

November 27, 2004 The NEURON Book: Chapter 4

positive, the amplitude grows catastrophically. If λi has an imaginary component, the

pattern oscillates with frequency ωi = Im(λi). In a passive electrical system that contains

only resistance and capacitance, all λi are real and negative.

Our two compartment model has two such patterns. In one, the voltages in the two

compartments are identical; this pattern decays with the time course e�
t
. The other

pattern, in which the voltages in the two compartments are equal but have opposite sign,

decays with the much faster time course e�
41t

.

Figure 4.4. Left: The two compartments of this model are connected by a small

axial resistance, so the membrane potentials are normally in quasi-equilibrium

with each other while at the same time decaying fairly slowly toward 0.

Right: The forward Euler method (dashed lines) is numerically unstable

whenever ∆t is greater than twice the smallest time constant. The analytic

solution (solid lines) is the sum of two exponentials with time constants 1 s and

1/41 s. The solution step size was 0.001 s for the first 0.2 s, after which it

increased to 0.2 s. Modified from (Hines and Carnevale 1997).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 4 November 27, 2004

The key idea is that a problem involving N coupled differential equations can always

be transformed into a set of N independent equations, each of which is solved separately.

Numerical solution of these equations must use a time step ∆t that is small enough for the

solution of each equation to be stable. This why stability criteria that involve ∆t depend

on the smallest time constant.

If the ratio between the slowest and fastest time constants is large, the system is said

to be stiff. Stiffness is a serious problem because a simulation may have to run for a very

long time in order to show changes governed by the slow time constant, yet a small ∆t

has to be used to follow changes due to the fast time constant.

Signal sources may change the stability properties of a system by altering the time

constants that describe it. A current source (perfect current clamp) does not affect

stability because it does not affect the time constants. Any other signal source imposes a

load on the compartment to which it is attached, changing the time constants and the

corresponding eigenfunctions. The more closely it approximates a voltage source (perfect

voltage clamp), the greater this effect will be.

Backward Euler: inaccurate but stable

The numerical stability problems of the forward Euler method can be avoided if the

equations are evaluated at time t + ∆t, i.e. the approximate solution is found from

V
�
t

� �
t � � V

�
t � �

f
�
V

�
t

� �
t � , t

� �
t � � t Eq. 4.24

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

which is called the implicit or backward Euler method. This equation can be derived from

Taylor's series truncated at the ∆t term but with t + ∆t in place of t.

For our example with one compartment, the backward Euler method gives

V
�
t

� �
t � � V

�
t �

1
�

k
�

t
Eq. 4.25

(cf. Eq. 4.16 with θ = 1). Figure 4.5 shows several iterations of Eq. 4.25. Each step moves

to a new point (ti+1, V(ti+1)) such that the slope there points back to the previous point

(ti, V(ti)). If ∆t is very large, the solution does not oscillate with geometrically increasing

amplitude like the forward Euler method, but instead converges geometrically toward the

steady state.

0 1 2 3
0

0.2

0.4

0.6

0.8

1

t

analytic
solution

backward
Euler

Figure 4.5. Comparison of analytic solution to Eq. 4.19 (solid line with circles)

with results from the backward Euler method (Eq. 4.25, squares) for V(0) = 1, k =

1/s, and ∆t = 1 s. At the end of each step, the slope at the new value (heavy lines)

points back to the beginning of the step. The dashed line shows the voltage after

the first time step as a function of ∆t. Modified from (Hines and Carnevale 1997).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 4 November 27, 2004

The robust stability of the backward Euler method are readily demonstrated by

applying it to the two compartment model (Fig. 4.6). Notice that a large ∆t gives a

reasonable qualitative understanding of model behavior, even though the solution does

not follow the early rapid voltage changes. Furthermore the step size can be changed

according to how quickly the state variables are changing, yet the solution remains stable.

The backward Euler method requires solution of a set of nonlinear simultaneous

equations at each step. To compensate for this extra work, the step size needs to be as

large as possible while preserving good quantitative accuracy. Like the forward Euler

method, backward Euler has first order accuracy (see Error below), but it is more

practical for initial exploratory simulations since reasonable values of ∆t produce fast

simulations that are almost always qualitatively correct, and, as we have seen here, tightly

coupled compartments do not generate large error oscillations but instead come quickly

into equilibrium because of its excellent stability.

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

t

Figure 4.6. Simulation of the two compartment model of Fig. 4.4 using the

backward Euler method. Left: ∆t = 0.2 s, much larger than the fast time

constant. Right: ∆t was initially 0.02 s, small enough to follow the first time

constant closely. After 0.1 s, ∆t increased to 0.2 s but the solution remained

stable. Thin lines are analytic solution, thick lines are backward Euler solution.

Modified from (Hines and Carnevale 1997).

Crank-Nicholson: stable and more accurate

The central difference or Crank-Nicholson method (Crank and Nicholson 1947) is an

implicit integrator that is equivalent to advancing by one half step with backward Euler

and then advancing by another half step with forward Euler (Fig. 4.7). The value at the

end of each step is along a line determined by the estimated slope at the midpoint of the

step. The local error of this method is proportional to the square of the step size, so for a

given ∆t we can expect a large accuracy increase. In fact, simulation of our one

compartment model with ∆t = 1 s (Fig. 4.7) is much more accurate than the forward Euler

simulation with ∆t = 0.5 s (Fig. 4.3).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 4 November 27, 2004

A most convenient feature of the central difference method is that the amount of

computational work for the extra accuracy beyond the backward Euler method is trivial,

since after computing V(t + ∆t/2) with backward Euler, we just have

V
�
t

� �
t � � 2V

�
t

�
�

t
2

� � V
�
t � Eq. 4.26

so the extra accuracy does not cost extra computations of the model functions.

0 1 2 3

−0.2

0.2

0.6

1

0

0.4

0.8

t

analytic
solution

Nicholson
Crank−

Figure 4.7. Simulations of the one compartment model with the Crank-Nicholson

method, which uses the slope at the midpoint of the step (short thick lines) to

determine the new value (squares). These are almost indistinguishable from the

analytic solution (solid line with circles). The dashed line shows the voltage after the

first time step as a function of ∆t. Modified from (Hines and Carnevale 1997).

One might well ask what effect the forward Euler half step has on numerical stability.

The left panel in Fig. 4.8 shows the solution for the two compartment model of Fig. 4.4

computed using the central difference method with ∆t much larger than the fast time

constant. The sequence of a backward Euler half step followed by a forward Euler half

step approximates an exponential decay by

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

V
�
t

� �
t � � V

�
t � 1 � 0.5k

�
t

1
�

0.5k
�

t
Eq. 4.27

(cf. Eq. 4.16 with θ = 0.5). As ∆t becomes very

large, the step multiplier approaches -1 from

above, so the solution oscillates with decreasing

amplitude. Technically speaking the Crank-

Nicholson method is stable because the error

oscillations decay with time.

This example demonstrates that artifactual

large amplitude oscillations may result if the time

step is too large. Such oscillations can affect

simulations of models that involve voltage clamps or in which very small resistances

couple adjacent segments. However, in some cases oscillations can be minimized by

using small ∆t while the solution contains a large amplitude component that is changing

rapidly, and increasing ∆t after the slower components dominate the solution (Fig. 4.8

right).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

To prevent oscillations in the numeric

solution for a model of a cylindrical

cable, the normalized increments in

time (∆T = ∆t / τm) and space (∆X =

∆x/λ, where ∆x is the distance between

adjacent nodes and λ is the DC length

constant) must satisfy the relationship

∆T/∆X � 1/2 (see chapter 8 in Crank

(1979)).

The NEURON Book: Chapter 4 November 27, 2004

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

t

Figure 4.8. Simulations of the two compartment model using the Crank-Nicholson

method. Left: Significant error oscillations can appear when the simulation has a

large amplitude component with a time constant much smaller than ∆t. However, the

simulation is numerically stable because the oscillation amplitude decreases at each

step. Right: ∆t was initially 0.02 s, i.e. smaller than the fastest time constant

(~ 0.0244 s), so the simulation followed the rapid collapse of the fast component.

After 0.1 s, ∆t increased to 0.2 s; this provoked oscillations, but their amplitude is

only a small fraction of the total response and decays rapidly, so the trajectories

appear smooth. Thin lines are analytic solution, thick lines are Crank-Nicholson

solution. Modified from (Hines and Carnevale 1997).

Efficient handling of nonlinearity

Nonlinear equations generally need to be solved iteratively to maintain second order

accuracy. However, voltage-dependent membrane properties, which are typically

formulated in analogy to Hodgkin-Huxley (HH) type channels, allow the cable equation

to be cast in a linear form that can be solved without iterations yet is still second order

correct. A direct solution of the voltage equations at each time step t � t + ∆t using the

linearized membrane current I(V,t) = g (V - E) is sufficient as long as the slope

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

conductance g and the effective reversal potential E are known to second order at time

t + 0.5∆t. HH type channels are easy to solve at t + 0.5∆t since the conductance is a

function of state variables that can be computed using a separate time step offset by 0.5∆t

with respect to the voltage equation time step. That is, to integrate a state from t - 0.5∆t to

t + 0.5∆t we only require a second order correct value for the voltage-dependent rates at

the midpoint time t.

Figures 4.9 and 10 illustrate the differences between the unstaggered and staggered

time step approaches. The left panel of Fig. 4.9 shows membrane potential v and the

gating variable m from an action potential simulation computed with the ordinary, i.e.

unstaggered, implementation of the Crank-Nicholson method. The superior accuracy

achieved with staggered time steps is apparent in Fig. 4.10. The middle panels of these

two figures zoom in on the solutions between 2.0 and 2.2 ms to reveal the sequence of

calculations. The right panels demonstrate that using staggered time steps turns a system

of differential equations with nonlinear coupling into a linear system of decoupled

equations, so that second order accuracy is achieved without having to resort to iterations.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 4 November 27, 2004

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
ms

m

0 1 2 3 4 5

−80

−40

0

40
mV

ms

staggered
dt = 0.001 ms

unstaggered
dt = 0.1 ms

ms
1.8 1.9 2 2.1

0.2

0.4

0.6

0.8 m

−40

−20

0

20

40
mV

unstaggered
dt = 0.1 ms

ms
1.8 1.9 2 2.1

0

0.02

0.04

0.06

0.08

0 1 2 3 4 5
ms

|m error|

0

5

10

15
mV

0 1 2 3 4 5
ms

|v error| unstaggered

dt = 0.02 ms

dt = 0.01 ms

Figure 4.9. Simulated response of a 100 µm2 patch of membrane with HH

channels to a 0.025 nA current lasting 0.5 ms, computed with the ordinary

(unstaggered) Crank-Nicholson method using time step ∆t = 0.1 ms. Left: The

spike was noticeably delayed compared to the standard for accuracy (dashed

traces, computed with Crank-Nicholson using staggered time steps and ∆t =

0.001 ms). Similar errors were observed in h and n (traces omitted for clarity).

Middle: A magnified view of these solutions from 2.0 to 2.2 ms. Dots mark the

individual values computed by the unstaggered Crank-Nicholson method. The

unstaggered method advances the solution in two stages. First the new membrane

potential v(t + ∆t) is computed from the values of v, m, h, and n at t. Then the new

values of m, h, and n are computed analytically from their values at t and the

average of the old and new membrane potentials (v(t) + v(t+∆t)) / 2. Right: The

absolute error of v and m is proportional to the integration time step ∆t, i.e. the

solution has only first order accuracy.

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

For HH equations in a single compartment, using staggered time steps converts four

simultaneous nonlinear equations at each step to four independent linear equations that

have the same order of accuracy. Since the voltage-dependent rates use the voltage at the

midpoint of the integration step, integration of channel states can be done analytically

with just a single addition and multiplication and two table lookup operations. While this

efficient scheme achieves second order accuracy, the tradeoff is that the tables depend on

the value of ∆t and must be recomputed whenever ∆t changes.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 4 November 27, 2004

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
ms

m

0 1 2 3 4 5
ms

−80

−40

0

40
mV

staggered
dt = 0.001 ms dt = 0.1 ms

staggered
dt = 0.1 ms
staggered

1.8 1.9 2 2.1
ms

−40

−20

0

20

40
mV

1.8 1.9 2 2.1
ms

staggered m

dt = 0.001 and 0.1 ms

0.2

0.4

0.6

0.8 m

0

0.01

0.02

0.03

0.04

0.05

0 1 2 3 4 5
ms

|m error|

0

2

4

6

8
mV

0 1 2 3 4 5
ms

|v error| staggered

dt = 0.05 ms

dt = 0.1 ms

Figure 4.10. Simulated action potential from the same model as in Fig. 4.9, but

computed with Crank-Nicholson using staggered time steps. Left: The solution

with ∆t = 0.1 ms was almost indistinguishable from the standard for accuracy.

Similar improvements were observed in h and n. Right: An expanded view of

these solutions, with dots marking the values computed with ∆t = 0.1 ms. First

the values of m, h, and n at t + 0.5∆t are computed analytically from their values

at t - 0.5∆t and the membrane potential v at t. Then the values of m, h, and n at

t + 0.5∆t are used to update v from t to t + ∆t. Right: Plots of the absolute error

of v and m show that the error is proportional to the square of the integration

time step ∆t, i.e. using staggered time steps increases solution accuracy to

second order.

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

Adaptive integration: fast or accurate, occasionally both

There is a wide variety of problems for which an adaptive time step method might

have much higher performance than a fixed step method, e.g. ∆t could grow very large

when all states are varying slowly, as during interspike intervals. On the other hand, in

problems involving propagating action potentials or networks of cells, it may happen that

some state somewhere in the system is always changing quickly. In such cases ∆t is

always small in order to follow whichever state is varying fastest. Thus it is often not

clear in advance that the increased overhead of an adaptive time step method will be

repaid by an occasional series of long time steps.

Implementational considerations

The variable order variable time step integrator CVODE was written by Cohen and

Hindmarsh (Cohen and Hindmarsh 1994, 1996) to solve ordinary differential equation

(ODE) initial value problems of the form

y
� � f

�
y , t � Eq. 4.28a-c

y
�
0 � � y0

y ��� N

where y′ is the first derivative of y with respect to t, and bold face is used to signify

vectors (lower case) and matrices (upper case). Since there are many different adaptive

integrators, it is worthwhile to review the reasons why CVODE is particularly relevant to

NEURON.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 4 November 27, 2004

1. CVODE employs Backward Differentiation Formula (BDF) methods suitable for stiff

problems, which are common in neuronal modeling.

2. CVODE was easily interfaced to the existing NEURON structure. It would be neither

convenient nor efficient to gather all of the equations for every compartment and

every membrane mechanism into one huge bag and throw it at a solver. The interface

between ODE solver and the definition and setup of equations that are already

distributed among membrane mechanisms requires a map between the internal

NEURON states and the ODE state vector y, as well as a map between the internal

computations for f and the ODE state derivative vector y′. Programming an efficient

map between the distributed internal Jacobian (J = ∂f/∂y) evaluation and a sparse

matrix representation is possible but complex. The CVODE solver obviates this

problem since it allows programmers to define their own problem-dependent linear

solvers. This means NEURON can exploit the existing block structure of the Jacobian

matrix and reuse the local block solvers that are already distributed within the

membrane mechanism objects.

3. CVODE (and DASPK--see below) allows a sophisticated balance between accuracy

of solution of M y = b and solution time by supporting the preconditioned iterative

Krylov method, which requires one to only supply a solver for P y = b, where P is in

some sense an approximation to M such that P-1 M is approximately the identity

matrix and is chosen so that computation of the inverse of P is much faster than

computation of the inverse of M. Small off-diagonal elements in the Jacobian are

usually ignored for Gaussian elimination efficiency, but can occasionally have an

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

adverse effect on stability and thereby limit the effective time step. It is not yet clear

which method is more robust when such off-diagonal terms are ignored in the context

of nerve simulations: the Krylov method, or direct use of the approximate Jacobian in

CVODE.

4. Finally, CVODE was implemented using encapsulated data structures, so it was

conceptually simple to place it in an object-oriented class wrapper for use in

implementing a local variable time step method. An important pre-existing feature of

CVODE that helped support local variable time steps was the ability to efficiently

retreat to any time within the previous integration interval.

Unfortunately, models that contain linear circuits and extracellular fields cannot be

expressed, or at least are not easy to express, in the form shown in Eq. 4.28. Such models

take the form

C y
� � f

�
y , t � Eq. 4.29a-c

y
�
0 � � y0

y ��� N

where some rows in the C matrix may be 0 (introduction of algebraic equations), and the

nonzero rows may have off-diagonal elements (capacitors between nodes). In principle

one could use the singular value decomposition of C to recast the system as

z
� � g

�
z , x , t � Eq. 4.30a and b

0 � h
�
z , x , t �

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 4 November 27, 2004

and satisfy the latter constraint directly whenever f is calculated. This is what NEURON

does with the zero area nodes at the ends of sections, where membrane potential is

governed by an algebraic equation rather than an ODE, without too much trouble and

with no loss of efficiency. However, in practice f(y, t) is given by an algorithm which one

cannot multiply by a matrix. Also the sparse structure of f is generally lost in the

transformation, making g much more dense and hence less efficient to solve.

For these reasons, when extracellular or linear circuit mechanisms are present and a

variable step integration method is requested, the fast CVODE method is replaced by the

slower but more robust DASPK method of Brown, Hindmarsh, and Petzold (Brown et al.

1994), which is available from http://netlib.org.

The user's perspective

A key feature of using CVODE is that one does not set the integration step size, but

instead specifies tolerance criteria for local relative and absolute errors. The solver then

adjusts ∆t and the local error order of the implicit difference approximation (from first

order up to O(∆t6)) so that the local error for each state is less than the sum of its relative

and absolute error tolerances.

Figure 4.11 illustrates the performance of CVODE in simulations of the two

compartment model using two different values for the local absolute error tolerance.

CVODE is capable of a high degree of accuracy, but caution must be exercised in setting

the error tolerance, and it is a good idea to compare results against fixed time step

methods during (and even after) model development.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

For a more biologically relevant example of how CVODE can reduce the time

necessary to produce accurate simulations, let us compare simulations of a neocortical

layer V pyramidal cell model (Mainen and Sejnowski 1996) generated with the Crank-

Nicholson and CVODE integrators. The model was subjected to a 900 ms depolarizing

current applied to the soma, which evoked two bursts of spikes (Fig. 4.12 top). A series

of simulations was run with the Crank-Nicholson method using progressively smaller ∆t

until the time at which the last action potential crossed above 0 mV converged to a

constant value; this occurred for ∆t � 0.01 ms, and a simulation performed with ∆t =

0.01 ms took 340 seconds to complete on a 2.2 GHz Pentium 4 PC with 512 K cache.

Solutions computed with CVODE converged to the same zero crossing time of the last

spike, i.e. same global error, when absolute tolerance was 2.5 · 10-3 for all states except

[Ca2+]i, which had an absolute tolerance of 2.5 · 10-7; using these tolerances, the solution

runtime was 19 seconds. Thus CVODE achieved the same accuracy as the most accurate

fixed time step solution, but with a runtime that was almost 20 times faster.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 4 November 27, 2004

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

CVode.atol(0.005)

t
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

CVode.atol(0.1)

t

Figure 4.11. Simulations of the two compartment model using CVODE. Left:

Filled circles on one of the traces mark the times at which CVODE calculated

solutions. When the solution is changing rapidly, ∆t is very small, but it grows

quite large when the solution changes slowly. If the local absolute error

tolerance is sufficiently strict (0.005 for this example), there is no visible

difference between the computed and analytic solutions. Right: Thin lines are

the analytic solution, thick lines the CVODE solution. Increasing the error

tolerance allows CVODE to take larger steps, but spurious transients may occur

if the criterion is too lax.

The bottom panel of Fig. 4.12 demonstrates the control that CVODE exerted over ∆t

throughout the entire simulation. When states were changing most rapidly, ∆t fell to

values much smaller than 0.01 ms, but during the long interburst interval it increased to a

maximum of ~4.4 ms. The smallest steps were restricted to the onset and offset of the

injected current (t = 5 and 905 ms) and brief intervals starting just before the threshold

and ending shortly after the depolarized peak of each spike, as can be seen in an

expanded view of the transition from the interburst interval to the beginning of the second

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

burst (Fig. 4.13). The remarkable speedup by CVODE is due to the fact that ∆t was much

larger than 0.01 ms for most of the simulation.

−80

−60

−40

−20

0

 20
mV

0 200 400 600 800 1000
ms

−3

−2

−1

0

1

0 200 400 600 800 1000
ms

log
10

dt

dt = 0.01 ms

CVODE

Figure 4.12. Top: CVODE was used to compute somatic membrane potential in

a model of a neocortical layer V pyramidal cell subjected to a long depolarizing

current pulse; Crank-Nicholson method with ∆t = 0.01 ms produced results that

are indistinguishable at the scale of this figure. Bottom: For most of the

simulation, CVODE used time steps much larger than 0.01 ms. The order of

integration (not shown) ranged from 2 to 5, most steps being second or third

order. Figure from (Hines and Carnevale 2001).

The only difficulty that CVODE introduced is an excessive literalness required for

interpretation of discrete functions. To see what this means, consider this strategy for

emulating a "ramp clamp": filling the elements of a Vector with a linearly increasing

sequence of values and then using the Vector class's play() method to drive the

command potential of a voltage clamp. Figure 4.14 shows this technique applied to a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 4 November 27, 2004

single compartment model with HH currents that was clamped by an SEClamp (series

resistance rs = 106 Ω). The elements of a Vector were assigned the series of values

-65+0.125i for 0 � i � 401, i.e. a linear ramp that swept from -65 to -15 mV over the

course of 10 ms, assuming ∆t = 0.025 ms. A second Vector filled with the

corresponding times (0.025i) was used to insure that each command potential in the

sequence was applied at the proper time.

Simulations of this model using the implicit Euler method with a 0.025 ms time step

display smoothly varying membrane potential and clamp current, even when examined at

the scale of individual time steps (Fig. 4.14 right). This is because the stream of values

delivered by the Vector is equivalent to a second order piecewise linear function, i.e.

command potential itself varies smoothly with time.

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

670 670.5 671 671.5

−60

−40

−20

0

 20
mV

672
ms

log
10

dt

670 670.5 671 671.5

−3

−2

−1

0
672
ms

dt = 0.01 ms

CVODE

Figure 4.13. Top: An expanded view of the first spike in the second burst from Fig. 4.12. The

times of computed solutions are marked by + symbols. Bottom: ∆t fell below 0.01 ms from just

before the threshold of each spike until shortly after its peak. Figure from (Hines and Carnevale

2001).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 4 November 27, 2004

0 2 4 6 8 10
ms

−0.2

0

0.2

0.4

0.6

0.8
nA

−65

−55

−45

−35

−25

−15
mV

0 2 4 6 8 10
ms

1 1.02 1.04 1.06 1.08 1.1
ms

0

0.05

0.1

0.15
nA

−60.2

−60

−59.8

−59.6
mV

1 1.02 1.04 1.06 1.08 1.1
ms

Figure 4.14. Ramp clamp using the Vector class's play() method works well with

fixed ∆t integration because command potential is effectively a continuous function

of time. Top traces are membrane potential, bottom traces are clamp current.

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

0 2 4 6 8 10
ms

−25

−35

−45

−55

−65

−15
mV

0 2 4 6 8 10
ms

0.6

nA
0.8

0.4

0.2

0

−0.2

0.15
nA

0.1

0.05

0
1 1.02 1.04 1.06 1.1

ms
1.08

−59.6
mV

−59.8

−60

1 1.02 1.04 1.06 1.1
ms

1.08
−60.2

Figure 4.15. Using Vector.play() with CVODE produces large capacitive transients in clamp

current (bottom traces) because the value sequence in the Vector that drives command potential

is treated as a first order step function. The local absolute error tolerance parameter atol is 0.001

in this simulation and in Fig. 4.16.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 4 November 27, 2004

0 2 4 6 8 10
ms

−0.2

0

0.2

0.4

0.6

0.8
nA

−65

−55

−45

−35

−25

−15
mV

0 2 4 6 8 10
ms

1 1.02 1.04 1.06 1.08 1.1
ms

0.15
nA

0.1

0.05

0

−59.6
mV

−59.8

−60

−60.2
1 1.02 1.04 1.06 1.08 1.1

ms

Figure 4.16. Vector.play() with interpolation works well with CVODE because the Vector

that drives command potential is treated as a piecewise linear function. See text for details.

However, under CVODE the stream must be considered a first order equivalent step

function. Driving the voltage clamp with this step function makes membrane potential

jump from one level to another and produces substantial capacitance current transients at

each step discontinuity (Fig. 4.15).

This problem has been addressed in NEURON 5.4 by adding a linear interpolation

option to the Vector class's play() method. This

option, which works both with fixed ∆t and

CVODE, treats our two vectors as if they defined a

piecewise linear function. This means we can

represent the ramp command used in this example by a pair of vectors whose elements

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

In the future, play() will be

extended to cubic spline and will

allow "continuous" play of a smooth

function defined by a Vector.

November 27, 2004 The NEURON Book: Chapter 4

are -65, -15 and 0, 10, respectively. Simulation results using Vector.play() with

linear interpolation under CVODE are shown in Fig. 4.16.

Error control

An important issue in adaptive integration is selection of appropriate values for local

error control. Variable time steps elevate the issue of "physiological accuracy" (see Error

below) to a level of high concern. Experience so far suggests that control of local

absolute error is much more important than control of local relative error. One can

specify an error criterion based on local relative error, but in neural modeling there is

hardly ever a reason to require increasing absolute accuracy around the 0 value of most

states, especially voltage.

The scale of states is often a crucial consideration, in that the maximum absolute error

must be consistent with the desired resolution of each state. An extreme example is a

calcium pump model with pump density measured in [moles/cm2]. Here an appropriate

value is 10-14 [mole/cm2], and an allowable error of 0.01 is clearly nonsense. For this

reason, it is essential that each state that is badly scaled, e.g. [Ca2+] i measured in [mM],

be given its own explicit maximum absolute error. NEURON accommodates this need by

allowing the user to set specific error criteria for individual states that take precedence

over any global criterion.

NEURON's default error setting for CVODE is 10 µV for membrane potential and

0.1 nM for internal free calcium concentration, so that a simulation of the classical

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 4 November 27, 2004

Hodgkin-Huxley action potential at 6.3° C has accuracy comparable to a second order

correct simulation with fixed ∆t = 25 µs.

Local variable time step method

NEURON provides a network connection (NetCon) class for network simulations in

which cell to cell communication can be abstractly represented by the (possibly delayed)

delivery of logical events, as opposed to graded interaction via gap junctions or electrical

synapses (see Chapter 10). The notion of a cell driven by discrete input events naturally

suggests an expansion of the simulation domain wherein variable time step methods

provide substantial performance gains.

It may happen that only a few cells in a network are active at any one time, but with a

global time step these active cells govern the time step for all (Fig. 4.17). NEURON's

local variable time step method merely uses a separate CVODE solver instance for each

cell, thus integrating that cell's states with time steps governed only by those state

dynamics and the discrete input events.

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

1.0

0.10.1

0 1 2 3 4 5
ms

0

−40

−80

40
mV

points

interpolate
advance

init

103
107

5
4

177 f(y)

14168×177 =
Global step: 8 states/f(y)

points

interpolate
advance

init

71
68

2
3

115 f(y)

points

interpolate
advance

init

78
76

1
2

138 f(y)

0 1 2 3 4 5
ms

0

−40

−80

40
mV

10124×(138+115) =
Local step: 4 states/f(y)

Figure 4.17. Integration with local variable time steps can significantly improve

computational efficiency. The top figure shows a simple feedforward network

implemented with a NetStim artificial spiking cell (white) and a pair of single

compartment biophysical model neurons with Hodgkin-Huxley membrane (black and

red). All synapses are excitatory, with latencies between presynaptic spike and

postsynaptic conductance change shown in ms. The white cell produces a single spike at

t = 0 ms. This triggers a spike in the black cell, but the red cell requires inputs from both

synapses to make it fire. The short vertical lines in the middle and bottom figures mark

the times at which solutions are computed using the global (middle) and local (bottom)

variable time step methods. Note that, if rapid changes occur in any cell (e.g. onset of an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 4 November 27, 2004

epsp, or the upstroke and peak of a spike), the global method forces extra computations

in all cells, even those in which nothing much is happening. This does not occur with the

local method. The total computational cost of a simulation depends chiefly on the total

number of times that new STATEs are calculated. The global method evaluated f(y) (see

Eq. 4.29a) 177 times, calculating 8 STATEs each time (4 STATEs per cell), for a total of

1416; the local method required 253 evaluations of f(y), but these were in individual

cells so only 4 STATEs were calculated each time, and the local method's total was 1012.

Therefore the global method was ~1.4 times more costly than the local method.

All cells are always on a list ordered by their current time and all outstanding events

are on a list ordered by their delivery time. These lists are implemented as splay trees to

minimize insertion and removal times (proportional to the log of the size of the list), and

the least time element can be accessed in constant time. The last fact that prepares our

arena for action is that a CVODE instance can, without integrating equations, retreat from

its current time to any time back to the beginning of its previous time step.

The network simulation advances in time by checking the cell and event lists to find

the least time cell or event, whichever is first. If a cell is first, that cell is integrated

according to its current time step, and moved to a location on the cell list appropriate to

its new time. If an event is first, it is delivered to the proper cell. That cell retreats to the

delivery time and becomes the least time cell, and the event is removed from the list and

discarded.

It is easy to devise networks in which the speed improvement of the local time step

approach is arbitrarily great. e.g. chains of neurons. However, this method yields no

benefit in periods of synchronous activity. If events are extremely numerous, neither the

local nor the global variable time step method improves simulation speed. When multiple

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

events per reasonable ∆t arrive regularly, fixed time step integration nicely aggregates all

events in a step without regard to their temporal microstructure, whereas variable step

methods' scrupulous handling of each event is out of all proportion to the conceptual

approximation of the network.

The choice of methods is thus dependent on the problem and the user's intent. To

encourage the exploration that is necessary to determine which method may be best

suited for a particular application, NEURON allows any of its fixed or variable time step

methods to be used with no changes to the user-level specification of the problem.

The local variable time step method considerably increases the complexity of the

underlying communication between interpreter and solver with respect to recording

results. With a global time step, whether fixed or variable, the fadvance() function (see

Chapter 7) has a clear and precise meaning, i.e. the exit time differs from the entry time

by the interval ∆t. The problem is that, with the local variable time step, each cell has its

own time stream, so each recorded variable must be mapped to the appropriate time

stream. This problem is solved by the CVode class's record(), which records both a

variable and its associated times into a pair of Vectors.

Discrete event simulations

One limiting case of the variable step simulation style is the "event-driven" or

discrete event simulation, in which cells jump from event to event. Here a single

compartment is used merely as a stage in which the voltage never changes (the natural

time step is infinite), and the "cells" are represented by point processes that receive

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 4 November 27, 2004

events from, and produce events to, the NetCon instances. A large variety of useful

artificial spiking cells (e.g. integrate and fire, firing frequency dependent on input), as

well as mechanisms of use-dependent synaptic plasticity, are susceptible to discrete event

simulation because their equations can be solved analytically, so that "cell" state needs

only to be computed at the event. This topic is discussed more thoroughly in Chapter 10.

Error

The total or global error in a simulation is a combination of errors from two sources.

The local error emerges from the extrapolation process within a time step. For the

backward Euler method this is easily analyzed with Taylor's series truncated at the term

proportional to ∆t.

V
�
t

� �
t � � V

�
t � �

V
� �

t
� �

t � � t � V �
�
t * �

�
t2

2
Eq. 4.31

where t � t * � t
���

t .

The forward and backward Euler methods both ignore second and higher order terms,

so the error at each step is proportional to ∆t2. Integrating over a time interval T requires

T/∆t steps, so the error that accumulates in this interval is on the order of ∆t2T/∆t, i.e. the

local error for the Euler methods is proportional to ∆t. Applying a similar analysis to the

Crank-Nicholson method finds that its local error is proportional to ∆t2. Therefore we can

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

always decrease the local error of these fixed step methods as much as we like by

reducing ∆t.

The second contribution to total error comes from the cumulative effect of past errors,

which have moved the computed solution away from the trajectory of the analytic

solution. Thus, if our computer solution has a nonzero total error at time t1, then even if

we could solve the equations exactly from that time forward using the state values at t1 as

our initial condition, the future solution will be inaccurate because we are on a different

trajectory. This means that the second component of total error depends on the dynamics

of the system itself.

The total error of a simulation is therefore not easy to analyze. For the one and two

compartment models we have examined in this chapter, all trajectories end up at the same

steady state, so total error tends to decrease with time, but not all systems behave like

this. Particularly treacherous are systems with chaotic behavior, in which, once the

computed solution diverges even slightly from the proper trajectory, it subsequently

moves rapidly away from the original and the time evolution becomes totally different.

Chaos is not the only circumstance that may produce high sensitivity to numerical

error. Consider the Hodgkin-Huxley membrane action potentials elicited by two current

stimuli, one near threshold and the other twice as strong. The left panel of Fig. 4.18

shows action potentials computed with the backward Euler method using time steps of 25

and 5 µs, the Crank-Nicholson method using ∆t = 25 µs, and CVODE using local

absolute error tolerance = 0.01. For the strong stimulus, all three integration methods

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 4 November 27, 2004

produced nearly identical results. However, the backward Euler method displayed a

noticeable error when the 25 µs time step was used to compute the response to the weak

stimulus (dashed line). The weak stimulus allowed membrane potential to hover near

spike threshold, so that a small error due to the time step could grow into a large error in

the time of occurrence of the action potential. The error was much smaller in the

simulation computed with ∆t = 5 µs.

However, behavior near threshold is highly sensitive to almost any factor, be it a

parameter of the numerical integration method (e.g. ∆t or ∆x) or a parameter of the model

itself. This is seen in the right panel of Fig. 4.18, where all solutions were computed with

CVODE (local absolute error tolerance = 0.01) and the sodium channel density
�

g Na was

varied by only 1%. This small variation of
�

g Na did almost nothing to the response to the

strong stimulus, but its effect on the latency of the spike elicited by the weak stimulus

was comparable to the integration error of the backward Euler method with ∆t = 25 µs.

This demonstrates that it is important to know the sensitivity of results to every model

parameter, and ∆t is just one more parameter that is added as a condition of being able to

run simulations on a digital computer.

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

0 2 4 6

−80

−40

0

40

t

2mA/cm
0.0225

2mA/cm
0.045

0 2 4 6

−80

−40

0

40

+1% −1%

t

0.045
mA/cm2

0.0225
mA/cm2

Figure 4.18. Simulations of Hodgkin-Huxley membrane action potentials

elicited by 0.3 ms current stimuli with amplitude of 0.0225 or 0.045 mA/cm2.

Left: Sensitivity to integration time step. For each stimulus amplitude,

responses were computed using CVODE (local absolute error tolerance = 0.01),

Crank-Nicholson (∆t = 25 µs), and backward Euler (∆t = 25 and 5 µs). The

backward Euler solution with 25 µs time step showed a noticeable error. Right:

Sensitivity to variation in
�

gNa . All traces were computed with CVODE (local

absolute error tolerance = 0.01). Peak sodium conductance was 0.12 S/cm2

(solid lines) ± 1% (dotted and dashed lines). The three traces elicited with the

large stimulus are indistinguishable in this graph.

Using extremely small ∆t might seem to be the best way to reduce error. However,

computers represent real numbers as floating point numbers with a fixed number of

digits, so if you keep adding 10-20 to 1 you may always get a value of 1, even after

repeating the process 1020 times. Operations that involve the difference of similar

numbers, as when differences are substituted for derivatives, are especially prone to such

roundoff error. Consequently there is a limit to the accuracy improvement that can be

achieved by decreasing ∆t.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 4 November 27, 2004

Generally speaking, it would be desirable to use what might be called "physiological"

values of ∆t, i.e. time steps that give a good representation of the state trajectories without

having a numerical accuracy that is orders of magnitude better than the accuracy of our

physiological measurements (which is generally not as good as 5%, and seldom better).

The question is not so much how large the error of a simulation is relative to the analytic

solution, but whether the simulation error leads us to trajectories that are significantly

different from the set of trajectories defined by the error in our parameters. Insofar as

removal of any source of error has value, there is a temptation to treat the model

equations as sacred runes which must be solved to an arbitrarily high precision.

Nevertheless, determining the meaning of a simulation run requires judgment. A

misplaced emphasis on numerical accuracy should not obscure the fact that qualitative

results may be quite sufficient. We agree with John Moore, our mentor and colleague,

who is fond of quoting R. Hamming: "The purpose of computing is insight, not numbers"

(Hamming 1987).

Summary of NEURON's integration methods

NEURON offers the user a choice of several different integration methods. For any

particular problem, the best way to determine which is the method of choice is to run

comparison simulations with several values of ∆t or local error tolerance to see which

executes most quickly while achieving the desired accuracy. In performing such trials,

one must remember that the stability properties of a simulation depend on the entire

system that is being modeled. Because of interactions between "biological" components

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

and any "nonbiological" elements, such as stimulators or voltage clamps, the time

constants of the entire system may be different from those of the biological components

alone. A current source (perfect current clamp) does not affect stability because it does

not change the time constants. Any other signal source imposes a load on the

compartment to which it is attached, changing time constants and potentially introducing

troublesome stiffness. The more closely a signal source approximates a voltage source

(perfect voltage clamp), the greater this effect will be.

Fixed time step integrators

Implicit integrators are used as NEURON's fixed time step methods. This is in part

because of their superior stability compared to explicit integrators (Dahlquist and Bjorck

1974).

Default: backward Euler

NEURON's default integration method is backward Euler, a fixed step first order

implicit scheme that produces good qualitative results with large time steps when

extremely stiff ODEs and even algebraic equations are present in the system, e.g. models

that involve voltage clamps. Because of its robust stability, it can be used with extremely

large time steps to find the steady state solution for a linear ("passive") system.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 4 November 27, 2004

Crank-Nicholson

When the global parameter secondorder is set to 2, NEURON uses a variant of the

Crank-Nicholson method. This has local error proportional to ∆t2 and is therefore

particularly accurate for small time steps.

In implicit integration methods, all current balance equations must be solved

simultaneously. The backward Euler algorithm does not resort to iteration to deal with

nonlinearities, since its numerical error is proportional to ∆t anyway. The special feature

of the Crank-Nicholson variant is its use of a staggered time step algorithm to avoid

iteration of nonlinear equations (see Efficiency in the section Crank-Nicholson: stable

and more accurate above). This converts the current balance part of the problem to one

that requires only the solution of simultaneous linear equations, making the

computational cost per time step almost identical to the backward Euler method.

The second order fixed time step method works with HH-type Ohm's law channels,

but its accuracy is really only first order when the instantaneous current-voltage relation

of the channels is nonlinear or when channel gating models are expressed with kinetic

schemes (the SOLVE scheme METHOD sparse statement in NMODL solves kinetic

schemes using the fully implicit method). Accuracy is also formally first order for models

involving changing ion concentration, though that is a negligible issue when dt is small

enough to accurately follow voltage changes.

Although the Crank-Nicholson method is formally stable, models with stiff equations

require small ∆t to avoid numerical oscillations (Fig. 4.8). It is unusable in the presence

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

of voltage clamps, extracellular mechanisms, or linear circuits, since the solution of

algebraic equations gives results with large numerical oscillations.

Adaptive integrators

NEURON's adaptive integrators free the user from having to choose an integration

step size. Instead, they automatically adjust integration order and ∆t so that the solution

satisfies a user-specified error criterion. While this may be the most salient feature of

these methods, there are several reasons why they may be preferable to fixed step

integrators:

� Adaptive integrators usually require less time for a given degree of accuracy.

� They avoid the problem of "empty temporal resolution" (many solution points when

nothing is happening) that occurs with fixed time step integration.

� Currents, voltages, and conductances are all known to the same accuracy at the same

time, unlike the staggered Crank-Nicholson method.

� Events occur at their actual times instead of being constrained to multiples of ∆t. For

example, with fixed time steps, current step discontinuities are only first order correct

unless they are defined to lie on time step boundaries. Precise timing may be

particularly important in network simulations.

Switching between fixed and variable time step methods is as easy as a button press

(NEURON Main Menu / Tools / VariableStepControl / Use variable dt) and does not

affect any GUI tools. Plots of expressions vs. time still look the same, and Vector

recording of temporal streams still works. There is no need to change model descriptions,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

The NEURON Book: Chapter 4 November 27, 2004

or at least to change the statements that define the equations. Ease of switching is crucial

since relative performance between high overhead variable step and low overhead fixed

step methods ranges widely. For example, simulation of the demonstration models by

Mainen and Sejnowski (1996) slowed down by a factor of 2 or sped up by a factor of 7,

depending on number of spikes in a simulation run and whether there were long intervals

in which no state changed rapidly.

CVODE

CVODE handles any kind of model description involving DERIVATIVE or KINETIC

representations of gating states, ion accumulation/diffusion, or nonlinear current-voltage

relations. It does not work with models that involve extracellular mechanisms, linear

circuits, perfect voltage clamps, or capacitors between nodes. Each cell in a network

simulation may have its own local time step, but time steps must be global if there are

gap junctions between different cells. Cell mechanisms that have analytical solutions (e.g.

integrate and fire artificial spiking cells) can be implemented in a way that allows discrete

event simulations.

DASPK

The DASPK method is suitable for models that involve extracellular mechanisms,

linear circuits, perfect voltage clamps, or capacitors between nodes. However, there is no

local variable step variant of DASPK.

Page 54 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

References

Brown, P.N., Hindmarsh, A.C., and Petzold, L.R. Using Krylov methods in the solution

of large-scale differential-algebraic systems. SIAM Journal of Scientific Computing

15:1467-1488, 1994.

Cohen, S.D. and Hindmarsh, A.C. CVODE User Guide. Livermore, CA: Lawrence

Livermore National Laboratory, 1994.

Cohen, S.D. and Hindmarsh, A.C. CVODE, a stiff/nonstiff ODE solver in C. Computers

in Physics 10:138-143, 1996.

Crank, J. The Mathematics of Diffusion. 2 ed. London: Oxford University Press, 1979.

Crank, J. and Nicholson, P. A practical method for numerical evaluation of solutions of

partial differential equations of the heat-conduction type. Proceedings of the Cambridge

Philosophical Society 43:50-67, 1947.

Dahlquist, G. and Bjorck, A. Numerical Methods. Englewood Cliffs, New Jersey:

Prentice-Hall, 1974.

Hamming, R.W. Numerical Methods for Scientists and Engineers. 2 ed: Dover

Publications, 1987.

Hindmarsh, A.C. and Serban, R. User documentation for CVODES, an ODE solver with

sensitivity analysis capabilities: Lawrence Livermore National Laboratory, 2002.

Hindmarsh, A.C. and Taylor, A.G. User documentation for IDA, a differential-algebraic

equation solver for sequential and parallel computers: Lawrence Livermore National

Laboratory, 1999.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

The NEURON Book: Chapter 4 November 27, 2004

Hines, M. Efficient computation of branched nerve equations. Int. J. Bio-Med. Comput.

15:69-76, 1984.

Hines, M.L. and Carnevale, N.T. The NEURON simulation environment. Neural

Computation 9:1179-1209, 1997.

Hines, M.L. and Carnevale, N.T. NEURON: a tool for neuroscientists. The

Neuroscientist 7:123-135, 2001.

Kundert, K. Sparse matrix techniques. In: Circuit Analysis, Simulation and Design, edited

by A. Ruehli: North-Holland, 1986.

Mainen, Z.F. and Sejnowski, T.J. Influence of dendritic structure on firing pattern in

model neocortical neurons. Nature 382:363-366, 1996.

Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P. Numerical Recipes in

C. 2 ed. Cambridge: Cambridge University Press, 1992.

Stewart, D. and Leyk, Z. Meschach: Matrix Computations in C. Proceedings of the

Centre for Mathematics and its Applications. Vol. 32. Canberra, Australia: School of

Mathematical Sciences, Australian National University, 1994.

Strang, G. Introduction to Applied Mathematics. Wellesley, MA: Wellesley-Cambridge

Press, 1986.

Page 56 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

Chapter 4 Index

%DELTA t 11, 14, 15, 19, 21, 23, 25, 27

%DELTA x 6, 8, 11

A

absolute error 14, 26, 28

local 32

tolerance 32, 41

accuracy 14

physiological 41, 50

quantitative 20

vs. speed 30

analytic solution 3

trajectory 47

approximation

of a continuous system by a discrete system 8

artificial spiking cell 43, 46

under CVODE 54

atol 39

axial current 2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

The NEURON Book: Chapter 4 November 27, 2004

B

backward Euler method 10, 18, 19, 21

iteration coefficient 11

local error 20, 46

stability 20

summary 51

biophysical neuron model 43

boundary condition

sealed end 3

BREAKPOINT block

SOLVE

sparse 52

C

cable

passive cylindrical 2, 4, 5, 9

calcium

concentration

free 41

pump 41

Page 58 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

channel

density 48

gating model 52

HH type 24

under CVODE 54

linear 52

nonlinear 52

under CVODE 54

compartment 9

compartment

adjacent 2

computational efficiency 22, 24, 27, 29, 30, 32, 43, 52, 54

computational efficiency

and STATEs 44

concentration

and accuracy 52

conductance

slope 24

Crank-Nicholson method 10, 21, 23, 25, 26, 28

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

The NEURON Book: Chapter 4 November 27, 2004

hybrid of backward and forward Euler 21

iteration coefficient 11

local error 21, 46

kinetic scheme 52

stability 23

staggered time steps 25, 26, 28

summary 52

unstaggered time steps 25, 26

CVODE 29, 30, 32, 35, 40, 42, 44

and model descriptions 54

default error criteria 41

local error 32, 41

summary 54

CVode class

record() 45

cytoplasmic resistivity 3

D

DASPK 30, 32

summary 54

Page 60 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

DERIVATIVE block

and CVODE 54

diffusion

under CVODE 54

discrete event simulation 45, 54

discrete event simulation

conditions for 46, 54

discretization 2

E

eigenfunction 16, 18

eigenvalue 16

equation

algebraic 31, 51, 53

differential 13, 16

coupled vs. independent 18, 25

sacred runes 50

event 44, 53

event

delivery 42, 44

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

The NEURON Book: Chapter 4 November 27, 2004

input 42

logical 42

extracellular mechanism 2, 32, 53

F

forward Euler method 10

iteration coefficient 10

local error 14, 46

stability 11, 15

Fourier theory 3

frequency 17

frequency

spatial 4, 6, 7, 9, 10

function

discrete 35

piecewise linear 36, 40

G

gap junction

under CVODE 54

Gaussian elimination 30

Page 62 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

H

Hamming, R.W. 50

I

insight 50

integrate and fire 46, 54

ion accumulation

under CVODE 54

iteration

coefficient 10

equation 10

J

Jacobian

approximate 31

judgment 50

K

KINETIC block

and CVODE 54

L

linear algebra 16

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

The NEURON Book: Chapter 4 November 27, 2004

linear circuit 2, 32, 53

M

modeling 30, 41

modeling

empirically-based 9

N

numeric integration 2, 11, 50

adaptive 29, 53

global time step 42-44, 54

local time step 31, 42-44, 54

switching to fixed time step 53

analytic integration of channel states 27

explicit 13, 51

fixed time step 32, 51

event aggregation to time step boundaries 45

switching to adaptive 53

implicit 13, 51, 52

instability 11, 15

iteration of nonlinear equations 24, 52

Page 64 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

order of accuracy 27, 32, 46

stability 31, 50

effect of signal sources 18, 51

summary 50

numerical error 46

chaotic system 47

control 12, 41

global 33, 46

local 14, 21, 32, 46

oscillations 20, 23

roundoff 16

spatial 2, 9

temporal 2

effect of spatial discretization 9

Nyquist sampling theorem 7

P

parameters

sensitivity to 48

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

The NEURON Book: Chapter 4 November 27, 2004

Q

qualitative results 20

R

relative error

local 32, 41

local

tolerance 32

S

secondorder 52

section

nodes

zero area 32

spatial accuracy

second order 6

spatial grid 6

specific membrane capacitance 3

specific membrane conductance 3

standard run system

fadvance() 45

Page 66 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 4

state variable 20, 25, 30

synaptic plasticity 46

system

continuous 1, 3, 5, 6, 8, 9

discretized 6, 8, 9

linear 16, 25, 51

nonlinear 25, 27, 52

stiff 18, 30, 51, 52

system equations

matrix form 29

extracellular field 31

linear circuit 31

T

Taylor's series 19, 46

temporal accuracy

empty 53

U

user's intent 45

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 67

The NEURON Book: Chapter 4 November 27, 2004

V

variables

abrupt change 53

Vector class

play() 35

under adaptive integration 40

under fixed time step integration 36, 40

with interpolation 40

voltage clamp

ramp clamp 35

Page 68 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Chapter 5

Representing neurons with a digital computer

Information processing in the nervous system involves the spread and interaction of

electrical and chemical signals within and between neurons and glia. From the

perspective of the experimentalist working at the level of cells and networks, these

signals are continuous variables. They are described by the diffusion equation and the

closely-related cable equation (Crank 1979; Rall 1977), in which potential (voltage,

concentration) and flux (current, movement of solute) are smooth functions of time and

space. But everything in a digital computer is inherently discontinuous: memory

addresses, data, and instructions are all specified in terms of finite sequences of 0s and 1s,

and there are finite limits on the precision with which numbers can be represented. Thus

there is no direct parallel between the continuous world of biology and what exists in

digital computers, so special effort is required to implement digital computer models of

biological neural systems. The aim of this chapter is to show how the NEURON

simulation environment makes it easier to bridge this gap.

Discretization

To simulate the operation of biological neurons, NEURON uses the tactic of

discretizing time and space, which means approximating these partial differential

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 5 November 27, 2004

equations by a set of algebraic difference equations that can be solved numerically

(numerical integration; see Chapter 4: Essentials of numerical methods for neural

modeling). Indeed, spatial discretization, in one form or another, lies at the core of all

simulators used to model biological neurons.

Discretization is often couched in terms of "compartmentalization," i.e. approximating the

cable equation by a series of compartments connected by resistors (see Chapter 4 and

Cables in Chapter 3). However, it is more insightful to regard discretization as an

approximation of the original continuous system by another system that is discontinuous

in time and space. Viewed in this way, simulating a discretized model amounts to

computing the values of spatiotemporally continuous variables over a set of discrete

points in space (a "grid" of "nodes") for a finite number of instants in time. The size of

the time step and the fineness of the spatial grid jointly determine the accuracy of the

solution, and may also affect its stability. How faithfully a computed solution emulates

the behavior of the continuous system depends on the spatial intervals between adjacent

nodes, and the temporal intervals between solution times. These should be small enough

that the discontinuous variables in the discretized model can approximate the curvature in

space and time of the continuous variables in the original physical system.

Choosing an appropriate discretization is a recurring practical problem in neural

modeling. The accuracy required of a discrete approximation to a continuous system, and

the effort needed to compute it, depend on the anatomical and biophysical complexity of

the original system and the question that is being asked. Thus finding the resting

membrane potential of an isopotential model with passive membrane may require only a

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

few large time steps at one point in space, but determining the time course of Vm

throughout a highly branched model with active membrane as it fires a burst of spikes

demands much finer spatiotemporal resolution; furthermore, selecting ∆x and ∆t for

complex models can be especially difficult.

Although the time scale of biophysical processes may suggest a natural ∆t, it is

usually not clear at the outset how fine the spatial grid should be. Both the accuracy of

the approximation and the computation time increase as the number of nodes used to

represent a cable increases. A single node is usually adequate to represent a short cable in

its entirety, but a large number of closely spaced nodes may be necessary for long cables

or highly branched structures. Also, as we intimated above, the choice of a spatial grid is

closely related to the choice of the integration time step, especially with NEURON's

Crank-Nicholson (second order) integrator, which can produce spurious oscillations if the

time step is too long for the spatial grid (see Chapter 4).

Over the years, a certain amount of folklore and numerous unreliable rules of thumb

have emerged concerning the topic of "compartment size." Among the topics we cover in

this chapter are a practical method for quickly testing spatial accuracy, and a rational

basis for specifying the spatial grid that makes use of the AC length constant at high

frequencies (Hines and Carnevale 2001).

No less important is the practical question of how to manage all the parameters that

exist throughout a model. Returning briefly to the metaphor of "compartments," let us

consider membrane capacitance, a parameter that has a different value in each

compartment. Rather than specify the capacitance of each compartment individually, it is

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 5 November 27, 2004

better to deal in terms of a single specific membrane capacitance that is constant over the

entire cell, and have the program compute the values of the individual capacitances from

the areas of the compartments. Other parameters such as diameter or channel density may

vary widely over short distances, so the granularity of their representation may have little

to do with numerically adequate discretization.

How NEURON separates anatomy and biophysics

from purely numerical issues

Thinking in terms of compartments leads to model implementations that require users

to keep track of the correspondence between compartments and anatomical locations. If

we change the size or number of compartments, e.g. to see whether spatial discretization

is adequate for numerical accuracy, we must also abandon the old mapping between

compartments and locations in favor of a completely new one.

So even though NEURON is a compartmental modeling program, it has been

designed to separate the specification of biological properties (neuron shape and

physiology) from computational issues such as the number and size of compartments.

This makes it easy to trade off between accuracy and speed, and enables convenient

verification of the numerical correctness of simulations. It also shields users from

numerical details, so they can focus on matters that are biologically relevant.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

NEURON accomplishes this by employing four related concepts: sections, range,

range variables, and segments. These concepts are defined in the following paragraphs,

and discussed later in this chapter under the heading How to specify model properties.

Sections and section variables

A section is a continuous length of unbranched cable with its own anatomical and

biophysical properties. Each section in a model can be the direct counterpart of a neurite

in the original cell. This reduces the difficulty of managing anatomically detailed models,

because neuroscientists naturally tend to think in terms of axonal and dendritic branches

rather than compartments.

Figure 5.1 illustrates how a cell might be mapped into sections. The cartoon at the top

shows how an anatomist might regard this cell: the soma gives rise to a branched

dendritic tree and an axon hillock which is connected to a myelinated axon. The bottom

of Fig. 5.1 shows how to break this cell into sections in order to build a NEURON model.

Notice that each biologically significant anatomical structure corresponds to one or more

sections of the model: the cell body (Soma), axon hillock (AH), myelinated internodes

(Ii), nodes of Ranvier (Ni), and dendrites (Di). Sections allow this kind of

functional/anatomical parcellation of a cell to remain foremost in the mind of the person

who constructs and uses a NEURON model.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 5 November 27, 2004

Figure 5.1. Top: Cartoon of a neuron indicating biologically significant

structures. Bottom: How these structures are represented by sections in a

NEURON model. Reproduced from (Hines and Carnevale 1997).

Certain properties apply to a section as a whole. These properties, which are

sometimes called section variables, are length L, cytoplasmic resistivity Ra, and the

discretization parameter nseg (see Table 5.1 and following section).

Table 5.1. Section variables

Name Meaning Units

L section length [µm]

Ra cytoplasmic resistivity [Ω cm]

nseg discretization parameter [1], i.e. dimensionless

Range and range variables

Many variables in real neurons are continuous functions of position throughout the

cell. In NEURON these are called range variables (see Table 5.2 for examples). While

each section is ultimately discretized into compartments, range variables are specified in

terms of a continuous parameter: normalized distance along the centroid of each section.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

This normalized distance, which is called range or arc length, varies linearly from 0 at

one end of the section to 1 at the other. Figure 5.2 depicts the correspondence between

the physical distance of a point along the length of a section and its location in units of

normalized distance.

Table 5.2. Some examples of range variables

Name Meaning Units

di am diameter [µm]

cm specific membrane capacitance [µf/cm2]

v membrane potential [mV]

i na sodium current [mA/cm2]

nai internal sodium concentration [mM]

n_hh Hodgkin-Huxley potassium conductance
gating variable

[1], i.e. dimensionless

0 1
distance

normalized

0
distance
physical

length
physical

Figure 5.2. Top: The arrow indicates the location of a point at a particular physical

distance from one end of a section. Bottom: In NEURON, this location is expressed in

terms of normalized distance ("range") along the length of the section.

One way to access the values of range variables and other section properties is by dot

notation, which specifies the name of the section, the name of the variable, and the

location of interest. Thus

soma. di am(0) = 10

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 5 November 27, 2004

sets the diameter closest to the 0 end of the soma section to 10 µm, and

dend. v(0. 5)

returns the membrane potential at the middle of the dend section. Note that the value

returned by sect i onname. r angevar (x) is the value at the center of the segment (see

below) that contains x, not the linear interpolation of the values associated with the

centers of adjacent segments. If parentheses are omitted, the position defaults to 0.5

(middle of the section), i.e. dend. v(0. 5) and dend. v both refer to membrane potential

at the midpoint of dend.

Range variables and related topics are covered more thorougly below in How to

specify model properties.

Segments

As already mentioned, NEURON computes membrane current and potential at one or

more discrete positions ("nodes") that are equally spaced along the interior of a section.

In addition to these internal nodes, there are terminal nodes at the 0 and 1 ends. However,

no membrane properties are associated with terminal nodes so the voltage at the 0 and 1

locations is defined by a simple algebraic equation (the weighted average of the potential

at adjacent internal nodes) rather than an ordinary differential equation. Each section has

a parameter nseg that controls the number of internal nodes. These nodes are located at

arc length = (2 i - 1) / 2 nseg where i is an integer in the range [1, nseg] (Fig. 5.3).

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Figure 5.3. Each section has a discretization parameter nseg that governs the

number of internal nodes (black dots inside the section) at which membrane

potential is computed. The thin lines mark conceptual boundaries between

adjacent segments.

You can think of a section as being broken into nseg segments of equal length,

which are conceptually demarcated by evenly spaced boundaries at intervals of 1 / nseg,

so that each segment has one node at its midpoint. This internal node is the point at which

the voltage of the segment is defined. The transmembrane currents over the entire surface

area of a segment are associated with its node. Nodes of adjacent segments are connected

by resistors that represent the resistance of the intervening cytoplasm (Fig. 5.7).

Each section in a model can have a different value for nseg. One way to specify this

value is with dot notation, e.g.

axon. nseg = 3

ensures that membrane current and potential will be computed at three points along the

length of the section called axon. The value to choose for nseg depends on the degree of

spatial accuracy and resolution that is desired: larger values of nseg mean more nodes

spaced at shorter intervals, so that the piecewise linear approximation in space becomes

more accurate and smoother. Strategies for selecting appropriate values of nseg are

discussed later in this chapter under Discretization guidelines.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 5 November 27, 2004

Implications and applications of this strategy

Range, range variables, and nseg free the user from having to keep track of the

correspondence between segment number and position along each branch of a model.

This avoids the tendency of compartmental modeling approaches to confound

representation of the physical properties of neurons, which are biologically relevant, with

implementational details such as compartment size, which are mere artifacts of having to

use a digital computer to emulate the behavior of a distributed physical system that is

continuous in time and space.

For a concrete example of the complications that can arise in a compartment-oriented

simulation environment, suppose the axon shown in Fig. 5.4 is 1000 µm long and we are

particularly interested in the membrane potential at a point 700 µm from its left end. If

our model has 5 compartments numbered 0 to 4, then we want to know the membrane

potential in compartment 3, but if there are 25 compartments, it is compartment 17 that

deserves our attention. It is easy to see that dealing with highly branched models can be

quite confusing. But in NEURON, the membrane potential of interest is simply called

axon. v(0. 7) , regardless of the value of axon's discretization parameter nseg.

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

0 1000 µm
700 µm

430

0 2417

Figure 5.4. Boxed in by compartments. Top: Conceptual model of an

unbranched axon 1000 µm long. We are interested in membrane potential at a

point 700 µm from its left end. Middle and bottom: The index of the

compartment that corresponds to the location of interest depends on how many

compartments there are.

Spatial accuracy

As we mentioned in Chapter 4, the spatial discretization method employed by

NEURON produces solutions that are second order correct in space, i.e. spatial error

within a section is proportional to the square of its segment length. It is crucial to realize

that the location of the second order correct voltage is not at the edge of a segment but

rather at its center, i.e. at its node (Fig. 5.3; also see Spatial discretization in

Chapter 4). This has several important consequences.

� To allow branching and injection of current at the precise ends of a section while

maintaining second order correctness, extra voltage nodes that represent compartments

with 0 area are defined at the section ends. It is possible to achieve second order

accuracy with sections whose end nodes have nonzero area compartments, but the

areas of these terminal compartments would have to be exactly half that of the internal

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 5 November 27, 2004

compartments, and extra complexity would be imposed on administration of channel

density at branch points.

� To preserve second order accuracy, localized current sources (e.g. synapses, current

clamps, voltage clamps--see Point processes below) must be placed at nodes. For

the same reason, all sections should be connected at nodes.

� If nseg is even, dend. v(0. 5) and dend. v will return a value that actually comes

from "the nearest internal node" which is not at the middle of dend but instead

depends on roundoff error. Using odd values for nseg avoids such capricious

outcomes by ensuring that there will be a node at the midpoint of each section.

� Second order spatial accuracy means that the results of a NEURON simulation are a

piecewise linear approximation to the continuous system. Therefore second order

accurate estimates of continuous variables at intermediate locations in space can be

found by linear interpolation between nodes.

A practical test of spatial accuracy

A convenient way to test the spatial accuracy of a model is to start by running a

"control" simulation with the current resolution that will serve as a basis for comparison.

Then execute the command

f or al l nseg * = 3

which increases spatial resolution by a factor of 3 throughout the model and reduces

spatial error terms by a factor of 9. Now run a "test" simulation and see if a significant

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

qualitative or quantitative change has occurred. The absence of a significant change is

evidence that the control simulation was sufficiently accurate in space.

Why triple nseg instead of just doubling it? Because NEURON uses a piecewise

linear approximation to emulate the continuous variation of membrane current and

voltage in space. The breakpoints in this piecewise linear approximation are located at the

internal nodes of each section. Multiplying nseg by an even number will shift these

breakpoints to new locations, making it hard to compare the results of the control and test

simulations. For instance, with nseg = 1, voltage is computed at arc length = 0.5, but

with nseg = 2 it is computed at arc length = 0.25 and 0.75 (see Fig. 5.3). If simulations

with nseg = 1 and nseg = 2 did produce different results, it could be difficult to know

whether this reflects improved spatial accuracy or is just due to the fact that the two

simulations computed solutions at different points in space. Tripling nseg adds new

breakpoints (at arc length = 1/6 and 5/6 in Fig. 5.3) without changing the locations of any

that were already there (at 0.5 in this case). Any odd multiple could be used, but 3 is a

practical value since it reduces spatial error by almost an order of magnitude, which is

probably enough to detect inadequate spatial accuracy.

While repeatedly tripling nseg throughout an entire model is certainly a convenient

and effective method for testing the spatial grid, this is generally not a good way to

achieve computational efficiency, especially if geometry is complex and biophysical

properties are nonuniform. Models based on quantitative morphometric data often have

several branches that need nseg ≥ 9, while many other branches require only 1 or 3

nodes. By the time the spatial grid is just adequate in the former, it will be much finer

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 5 November 27, 2004

than necessary in the latter, increasing storage and prolonging run time. We return to this

problem at the end of this chapter in the section Choosing a spatial grid.

How to specify model properties

In Chapter 1 we used the CellBuilder to implement a computational model of a

particular conceptual model. First we specified the topology (branched architecture) of

the computational model, then its geometry (physical dimensions), and finally its

biophysical properties. This is also a good sequence to follow when implementing a

computational model by writing hoc code, and we will examine each of these steps in

turn. However, at some points it will be necessary to address syntactic details. The first

syntactic detail has to do with "the currently accessed section," an idea so fundamental

that we must consider it before proceeding to topology.

Which section do we mean?

Most of our attention in the following paragraphs will be devoted to sections. We will

see how to create sections, assemble them into a model with the desired topology, and

specify their geometric and biophysical attributes. Because sections share property names

(e.g. length L, diameter di am), it is always necessary to specify which section is being

discussed. This is called the currently accessed section.

NEURON offers three ways to specify the currently accessed section, each being

compact in some contexts and cumbersome in others: dot notation, section stack, and

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

default section. We consider them in order of precedence, starting with the method that

has highest priority.

1. Dot notation

Syntax sectionname.variablename

Examples

dendr i t e[2] . L = dendr i t e[1] . L + dendr i t e[0] . L

axon. v = soma. v

pr i nt soma. gnabar

axon. nseg = 3* axon. nseg

Comments

� This takes precedence over the other methods

� Dot notation is necessary in order to refer to more than one section within a

single statement

2. Section stack

Syntax sectionname { stmt }

where stmt is one or more statements. sectionname becomes the currently

selected section during execution of stmt. Afterwards, the currently selected

section reverts to whatever it was before sectionname was seen.

Comments

� This is the most useful method for programming, since the user has explicit

control over the scope of the section and can set several range variables.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 5 November 27, 2004

� Nesting is allowed to any level, i.e.

sectionname1 {
stmt1
sectionname2 {

stmt2
sectionname3 {

et c.
}

}
}

� Avoid the error

soma L=10 di am=10

(i.e. missing curly brackets), which sets soma. L, then pops the section stack

and sets di am for whatever section is then on the stack.

� Control flow should reach the end of stmt in order to automatically pop the

section stack. Therefore stmt should not include the cont i nue, br eak , or

r et ur n statement.

� A section cannot be used as a variable for assignment or passing as an

argument to a function or procedure. However, the same effect can be

obtained with the Sect i onRef class, which allows sections to be referenced

by normal object variables. The use of push_sect i on() for this purpose

should be avoided except as a last resort.

� Looping over sets of sections is most often done with the f or al l and

f or sec commands.

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

3. Default section

Syntax access sectionname

defines a default section that will be the currently selected section when the first

two methods are not in effect. If a model has a conceptually privileged section

that gets most of the use, it is best to declare it as the default section, e.g.

access soma

Having done this, one can determine the values of voltage and other variables by

a minimum of typing at the interpreter's oc> prompt. Thus after soma is declared

to be the default section,

pr i nt v , i na, gk_hh

will print out the membrane potential, sodium current, and Hodgkin-Huxley

potassium conductance at soma(0. 5) .

Comments

� Dot notation and stack of sections both take precedence over this method.

� The access statement should only be used once in a program. The

sectionname { stmt }

form is almost always the right way to specify the current section.

How to set up model topology

In the NEURON simulation environment, the

branched topology of a model cell is constructed by

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

A tree has the property that any

two points on it are connected

by a unique path.

The NEURON Book: Chapter 5 November 27, 2004

creating sections and attaching them to each other in the form of a tree. Sections are

created with hoc statements of the form

cr eat e sectionname

They can be attached to each other with the syntax

connect child(0 or 1) , parent(x)

which connects the 0 or 1 end of child to location x on parent. The alternative syntax

connect child(0 or 1) , x

attaches child to location x on the currently accessed section.

Loops of sections

A model of a cell cannot contain a loop of sections. If a sequence of connect

statements produces a loop of sections, an error is generated when the internal data

structures are created, and NEURON's interpreter will require that the loop be broken by

disconnecting one of the sections in the loop. Tight electrical loops can be implemented

with the Li near Mechani sm class.

Loops that involve sections are allowed if at least one element in the loop is a

membrane mechanism, e.g. a gap junction. For the sake of stability it may be preferable

to use the the Li near Mechani sm class to set up this kind of nonlocal coupling between

system equations. Gap junctions can also be implemented with mechanisms that use

POI NTER variables, but this may cause spurious oscillations if coupling is tight (see

Example 10.2: a gap junction in Chapter 10).

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

A section may have only one parent

If an attempt is made to attach a child to more than one parent, a notice is printed on

the standard error device saying that the section has been reconnected. To avoid the

notice, disconnect the section first with the procedure di sconnect () .

The root section

Each section in a tree has a parent section, except for the root section. The root

section is determined implicitly by the fact that we never "connect" it to anything. Any

section can be used as a root section, and the identity of the root section has no effect on

computational efficiency. The root section and the default section (i.e. the section

specified by the access statement) are different things and shouldn't be confused with

each other. Every model has a root section, and most often this turns out to be something

called soma, but there is no absolute requirement that a model have a default section.

Usually it is most convenient to construct a model in such a way that the root and default

sections are the same, but this isn't mandatory.

Attach sections at 0 or 1 for accuracy

Section attachments must be located at nodes to preserve second order spatial

accuracy. It is generally best for x to be either 0 or 1, rather than an intermediate value.

Attempting to connect a section to a non-node location will result in the section actually

being connected to the nearest internal node of the parent, which depends on the value of

nseg and may be quite far from the intended position. Even if a section is connected to

an internal node, if nseg is then changed, e.g. to test for spatial accuracy, the attachment

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 5 November 27, 2004

could be repositioned to a different site (another reason to

increase nseg by an odd factor). This would affect the

electrotonic architecture of the model, causing spurious

changes in simulation results. Therefore the best policy is

to connect child sections only to the 0 or the 1 end of the

parent, and not to intermediate locations. Because of their

small size, dendritic spines are a possible exception to this

rule.

Checking the tree structure with topology()

The t opol ogy() function prints the tree structure using a kind of "typewriter art."

Each section appears on a separate line, starting with the root section. The root section is

shown with its 0 and 1 ends at the left and right, respectively, and marked by a | (vertical

bar). The remaining sections are printed with a ` (grave) at the end that is attached to the

parent, and a | at the other end. Each segment in every section is marked by a -

(hyphen).

For example the statements

cr eat e soma, dend[3]
soma f or i =0, 2 {

connect dend[i] (0) , 1
}

create a section named soma and an array of three sections named dend[0] , dend[1] ,

and dend[2] , and then attaches the 0 end of each dend to the 1 end of soma. If we now

type

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Note that sections attached to

internal locations will not be

repositioned if nseg is

increased by an odd factor.

Nonetheless, the best policy is

to attach only to the 0 or 1 end

of the parent section.

November 27, 2004 The NEURON Book: Chapter 5

t opol ogy()

at the oc> prompt, NEURON's interpreter will print

| - | soma(0- 1)
 ` | dend[0] (0- 1)
 ` | dend[1] (0- 1)
 ` | dend[2] (0- 1)

This confirms that soma is the root section of this tree, that the three dend[] sections are

attached to its 1 end, and that all sections have one segment.

Viewing topology with a Shape plot

For a graphical display of the topology of our model, we can execute the statements

obj r ef s
s = new Shape()

to create a Shape plot (Fig. 5.5). The labels in this figure have been added to identify the

sections and their orientation. The root section is soma, and the three child branches are

dend[0] - dend[3] . Each of the child sections are connected to the 1 end of soma, and

all sections are drawn from left (0 end) to right (1 end). If a section were attached to the 0

end of the root section, it would be drawn right to left. The rules that govern the

appearance of a model in a Shape plot are further discussed under 3-D specification

below and under Strange shapes? in Chapter 6.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 5 November 27, 2004

dend[0]

dend[2]

dend[1]

1

0

soma0 1

Figure 5.5. A Shape plot display of the topology of a model in which the 0 ends

of three child sections are attached to the 1 end of the root section.

How to specify geometry

A newly created section has certain default properties, as we can see by executing

oc>cr eat e axon
oc>f or al l psect i on()
axon { nseg=1 L=100 Ra=35. 4

/ * l ocat i on 0 at t ached t o cel l 0* /
/ * Fi r s t segment onl y * /
i nser t mor phol ogy { di am=500}
i nser t capaci t ance { cm=1}

}

where the units are [µm] for length L and diameter di am, [Ω cm] for cytoplasmic

resistivity Ra, and [µf/cm2] for specific membrane capacitance cm. Users will generally

want to change these values, except for cm and perhaps Ra.

Below we discuss the two ways to specify the physical dimensions of a section: the

"stylized method" and the "3-D method." Regardless of which method is used, NEURON

calculates the values of internal model parameters, such as average diameter, axial

resistance, and compartment area, that are assigned to each segment. This calculation

takes any nonuniformity of anatomical or biophysical properties into account.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Stylized specification

With the "stylized method" one assigns values directly to section length and diameter

with statements like

axon { L=1000 di am=1 }

This is appropriate if the notions of cable length and diameter are authoritative and three

dimensional shape is irrelevant.

Segment surface area ar ea and axial resistance r i are computed as if the section

were a sequence of right circular cylinders of length L / nseg, whose diameters are given

by the di am range variable at the center of each segment. Cylinder ends do not contribute

to surface area, and segment surface area is very close to the surface area of a truncated

cone as long as diameter does not change too much. Abrupt diameter changes should be

restricted to section boundaries, for reasons that are explained below (see Avoiding

artifacts). For plotting purposes, L and di am are used to automatically generate 3-D

information for a stylized straight cylinder.

One fact that is often useful when working with stylized models is that the surface

area of a cylinder with length equal to diameter is identical to that of a sphere of the same

diameter. Another fact to remember is that, when the surface area of a single

compartment model is 100 µm2, total transmembrane current over the entire surface of

the model in [nA] will be numerically equal to the membrane current density in

[mA/cm2]. This implies that the current delivered by a current clamp in [nA] will also be

numerically equal to the membrane current density in [mA/cm2].

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 5 November 27, 2004

3-D specification

The alternative to the stylized method is the 3-D method, in which one specifies a list

of (x, y, z) coordinates and corresponding diameters, e.g.

dend {
pt 3dadd(10, 0, 0, 5) / / x, y, z , di am
pt 3dadd(16, 10, 0, 3)
pt 3dadd(25, 14, - 3, 2)

}

NEURON then computes section length and diameter from these values. The 3-D method

is preferable if the model is based on quantitative morphometry, or if visualization is

important.

The anatomical data are kept in an internal list of (x, y, z, diam) "points," in which the

first point is associated with the end of the section that is connected to the parent--this is

not necessarily the 0 end--and the last point is associated with the opposite end. There

must be at least two points per section, and they should be ordered in terms of

monotonically increasing arc length. This 3-D information, or "pt3d list," is the

authoritative definition of the shape of the section and automatically determines section

length L, segment diameter di am, ar ea, and r i . Properly used, the 3-D method allows

substantial control over the appearance of a model in a Shape plot (see Strange

Shapes? in Chapter 6). However, side-effects can occur if geometry was originally

specified with the stylized method (see Avoiding artifacts below).

To prevent confusion, when using the 3-D method one should generally attach only

the 0 end of a child section to a parent. This will ensure that di am(x) (segment

diameter) as x ranges from 0 to 1 has the same sense as di am3d(i) (the actual

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

morphometric diameters) as i ranges from 0 to n3d() -1 (n3d() is the number of (x, y,

z, diam) points used to specify the geometry of the section). It can also prevent

unexpected distortions of the model appearance in a Shape plot (see The case of the

disappearing section in Chapter 6).

When 3-D specification is used, a section is treated as a sequence of frusta (truncated

cones), as in the example shown in Fig. 5.6. The morphometric data for this particular

neurite consist of four (x, y, z, diam) measurements (Fig. 5.6 A). These 3-D points define

the locations and diameters of the ends of the frusta (Fig. 5.6 B). The length L of the

section is the sum of the distances from one 3-D point to the next. The effective di am,

ar ea, and axial resistance r i of each segment are computed from this sequence of points

by trapezoidal integration along the centroid of the segment. This takes into account the

extra area introduced by diameter changes; even degenerate cones of 0 length can be

specified (i.e. two points with identical coordinates but different diameters), which add

surface area but not length to the section. No attempt is made to deal with the effects of

centroid curvature on surface area.

The number of 3-D points used to describe the shape of the section has nothing to do

with nseg and does not affect simulation speed. Thus if we represent the neurite of with

a section using nseg = 1, the entire section will have only one node, and that node will

be located midway along its length (x = 0.5 in Fig. 5.6 C). The membrane properties

associated with this node are computed by integrating over the entire surface area of the

section (0 ≤ x ≤ 1). The values of the axial resistors to either side of the node are

determined by integrating the cytoplasmic resistivity along the paths from the 0 and 1

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 5 November 27, 2004

ends of the section to its midpoint (dashed line in Fig. 5.6 C). Thus the left and right hand

axial resistances of Fig. 5.6 D are evaluated over the x intervals [0, 0.5] and [0.5, 1],

respectively.

Figure 5.7 shows what happens when nseg = 2. Now the section is broken into two

segments of equal length that correspond to x intervals [0, 0.5] and [0.5, 1]. The

membrane properties over these intervals are attached to the nodes at 0.25 and 0.75,

respectively. The three axial resistors Ri1, Ri2, and Ri3 are determined by integrating the

path resistance over the x intervals [0, 0.25], [0.25, 0.75], and [0.75, 1].

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Figure 5.6. A: cartoon of an unbranched neurite (thick lines). Quantitative morphometry

has generated successive diameter measurements (circles) centered at x, y, z coordinates

(crosses). B: Each adjacent pair of diameter measurements is treated as parallel faces of

a truncated cone or frustum. The central axis of the chain of solids is indicated by a thin

centerline. C: After straightening the centerline so the faces of adjacent frusta are flush

with each other. The scale beneath the figure shows the distance along the midline of the

section in terms of arc length, symbolized here by the variable x. The vertical dashed

line at x = 0.5 divides the section into two halves of equal length. D: Equivalent circuit

of the section when nseg = 1. The open rectangle includes all mechanisms for ionic

(non-capacitive) transmembrane currents. Reproduced from (Hines and Carnevale 1997).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 5 November 27, 2004

Figure 5.7. Representation of the neurite of Fig. 5.6 when nseg = 2. The equivalent

circuit now has two nodes. See text for details. Reproduced from (Hines and Carnevale

1997).

Avoiding artifacts

Beware of zero diameter

If diameter equals 0, axial resistance becomes essentially infinite, decoupling adjacent

segments. The diameter at the 0 and 1 ends of a section generally should equal the

diameter of the end of the connecting section.

A blatant attempt to set diameter to 0 using the stylized method, e.g. with a statement

such as

dend. di am(0. 3) = 0

will produce an error message like this

nr ni v: dend di amet er di am = 0. Set t i ng t o 1e- 6 i n dd. hoc near l i ne 16

While NEURON prevents the diameter from becoming 0, 10-6 µm is so narrow that axial

resistance in the affected region is, for modeling intents and purposes, infinite. Models

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

constructed with the stylized specification can be checked for narrow diameters by

executing

f or al l f or (x) i f (di am(x) <1) { pr i nt secname() , " ", x, " ", di am(x) }

which reports all locations at which di am falls below 1 µm. The numeric criterion in the

i f statement can be changed from 1 µm to whatever value is appropriate for the data in

question. However, this will not produce definitive results if the geometry has been

reinterpreted as 3-D data, in which case the 3-D data points need to be tested (see below).

The 3-D specification is more often a source of diameter problems. Morphometric

data files sometimes contain measurements with diameters that are extremely small or

even 0. This may occur because of operator error, or because the soma (or some other

structure) was treated as a sphere with initial and terminal diameters equal to 0. Such

problems can be difficult to track down because morphometric data files generally

contain hundreds, if not thousands, of measurements. Furthermore, the hoc interpreter

does not issue an error message when it encounters a pt 3dadd() with a diameter

argument of 0.

When 3-D data points exist, the value returned by di am(x) is the diameter of a right

cylinder that would have the same length and area as the segment that contains x. This

means that di am(x) may seem reasonable even though the 3-D data contain one or more

points with zero (or very small) diameter so that axial resistance blows up. Therefore it is

little use to check di am(x) when 3-D data exist. Instead, we must test the 3-D diameters

by executing

f or al l f or i =0, n3d() - 1 i f (di am3d(i) ==0) { pr i nt secname() , " " , i }

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 5 November 27, 2004

This uses f or al l to iterate over all sections, testing each 3-D data point, and printing the

name of the section and the index of each point at which diameter is found to be 0.

Stylized specification may be reinterpreted as 3-D specification

When a model is created using the stylized specification of geometry, the 3-D data

list is initially empty. If the def i ne_shape() procedure is then called, a number of 3-D

points is created equal to the number of segments plus the end areas. This happens

automatically if a Shape object is created, either with hoc statements or by using the

GUI to bring up a Shape plot or any of the GUI tools that show the shape of the model,

e.g. a PointProcessManager. As we mentioned above, when 3-D points exist, they

determine the calculation of L, di am, ar ea and r i . Therefore di am, ar ea, and r i can

change slightly merely due to Shape creation.

After this happens, when L and di am, are changed, there is first a change to the 3-D

points, and then L and di am are updated to reflect the values of these 3-D points. In

general, specifying a varying di am will not give exactly the same diameter values as in

the case where no 3-D information exists.

For example, this code

cr eat e a
access a
L=100
Ra=100
nseg = 3
di am=10
di am(0. 66: 1) =20: 20

defines a section with three segments, with di am = 10 µm in the segments centered at

0.16666667 and 0.5, and 20 µm in the segment centered at 0.83333333. Since the stylized

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

method was used to create this section, there will be no 3-D points. We can verify this by

typing n3d() and noting that the returned value is 0. We can also check di am and the

computed values of ar ea and r i with the statement

f or (x) pr i nt x* L, di am(x) , ar ea(x) , r i (x)

If we now create a Shape, e.g. by executing

obj r ef s
s = new Shape()

we will find that n3d() returns 5, i.e. there are now five 3-D points. The statement

f or i =0, n3d() - 1 pr i nt ar c3d(i) , di am3d(i)

(ar c3d(i) is the anatomical distance of the i th 3-D point from the 0 end of the section)

produces the output

0 10
16. 666666 10
50 10
83. 333336 20
100 20

which shows that the 3-D diameters have taken on the values that we had assigned using

the stylized method.

However, the values of di am, ar ea, and r i have been altered in the segments

adjacent to the diameter change (Fig. 5.8). This effect is smaller when nseg is larger. It is

caused by the fact that the 3-D points define a series of truncated cones rather than right

circular cylinders. The reported di am(x) is the average diameter over the corresponding

length of the 3-D model, and ar ea(x) is the integral of the 3-D surface; this is not

necessarily equal to the stylized area PI * di am(x) * L/ nseg, which ignores end area

associated with abrupt diameter changes. This latter difference may be small, as in this

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 5 November 27, 2004

case where ar ea(x) for the second and third segments is 1185 and 1974 µm2

respectively, compared to 1178 and 1963 µm2 for the stylized area (all values rounded to

the nearest µm2), but actual results depend on model geometry and whether these have a

significant effect on simulation results can only be judged on a case by case basis. What

is clear for all cases, however, is that abrupt diameter changes should only take place at

the boundaries of sections if we wish to view shape and also use the smallest possible

number of segments.

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20 diam (µm)

arc length
0 0.2 0.4 0.6 0.8 1

0

500

1000

1500

2000)area (µm
2

arc length
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5 ri (meg)Ω

arc length

Figure 5.8. di am, ar ea, and r i at the internal nodes of a 100 µm long section

with nseg = 3 and Ra = 100 Ω cm. Thin lines with + show the values

immediately after geomet r y was specified, when no 3-D points existed. Thick

lines with circles show the values after def i ne_shape() was executed,

creating a set of 3-D points and forcing recalculation of di am, ar ea, and r i .

How to specify biophysical properties

As we mentioned in How to specify geometry, the only biophysical attributes of a

new section are cytoplasmic resistivity Ra and specific membrane capacitance cm, whose

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

default values are 35.4 Ω cm and 1 µf/cm2, respectively. A new section has no membrane

conductances, pumps, or buffers. It is assumed to lie in an extracellular medium with zero

resistance or capacitance, and there are no synapses, gap junctions, or voltage or current

clamps. Anything other than the bare bones framework of Ra and cm must be added.

Distributed mechanisms

Many biophysical mechanisms that generate or modulate electrical and chemical

signals are distributed over the membrane or throughout the cytoplasm of a cell. In the

NEURON simulation environment, these are called distributed mechanisms. Examples of

distributed mechanisms include voltage-gated ion channels like those that generate the

Hodgkin-Huxley currents, active transport mechanisms like the sodium pump, ion

accumulation in a restricted space, and calcium buffers. Distributed mechanisms

associated with cell membrane are often called "density mechanisms" because they are

specified with density units, e.g. current per unit area, conductance per unit area, or pump

capacity per unit area (see Table 5.3).

Distributed mechanisms are assigned to a section with an i nser t statement, as in

soma i nser t hh

dend i nser t pas

These particular statements would add the hh (Hodgkin-Huxley) mechanism to soma and

the pas (passive) mechanism to dend.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 5 November 27, 2004

Point processes

Distributed mechanisms are not the most appropriate representation of all signal

sources. Localized membrane shunts (e.g. a hole in the membrane), synapses, and

electrodes are called point processes. They are best specified using absolute units, i.e.

microsiemens and nanoamperes, rather than the density units that are appropriate for

distributed mechanisms (see Table 5.3).

Table 5.3. Examples of units associated with distributed mechanisms

and point processes

Name Meaning Units

gna_hh conductance density of open Hodgkin-Huxley
sodium channels

[S/cm2]

i na net sodium current density (i.e. produced by all
mechanisms in a section that generate sodium
current)

[mA/cm2]

r s series resistance of an SECl amp [106 Ω]

gmax peak conductance of an Al phaSynapse [µS]

i total current delivered by an SECl amp or an
Al phaSynapse

[nA]

An object syntax

obj r ef varname
secname varname = new Classname(x)
varname. attribute = value

is used to manage the creation, insertion, attributes, and destruction of point processes.

Object oriented programming in NEURON is discussed thoroughly in Chapters 13 and

14; to illustrate the pertinent essentials for dealing with point processes, let us consider

the following code, which implements a current clamp attached to the middle of a section

called soma.

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

obj r ef st i m
soma st i m = new I Cl amp(0. 5)
st i m. amp = 0. 1
st i m. del = 1
st i m. dur = 0. 1

The first line declares that st i m is a special kind of variable called an obj r ef (object

reference), which we will use to refer to the current clamp object. The second line creates

a new instance of the I Cl amp object class, located at the middle of soma, and assigns

this to st i m. The next three lines specify that st i m will deliver a 0.1 nA current pulse

that begins at t = 1 ms and lasts for 0.1 ms.

When a point process is no longer referenced by any object reference, it is removed

from the section and destroyed. Consequently, redeclaring st i m with the statement

obj r ef st i m would destroy this I Cl amp, since no other object reference would

reference it.

The x position specified for a point process can have any value in the range [0,1]. If x

is specified to be 0 or 1, the point process will be located at the corresponding end of the

section. For specified locations 0 < x < 1, the actual position used by NEURON will be

the center of the segment that contains x. Thus, if dend has nseg = 5, the segment

centers (internal nodes) are located at x = 0.1, 0.3, 0.5, 0.7 and 0.9, so

obj r ef st i m1, s t i m1
dend st i m1 = new I Cl amp(0. 04)
dend st i m2 = new I Cl amp(0. 61)

would actually place st i m1 at 0.1 and st i m2 at 0.7. The error introduced by this "shift"

can be avoided by explicitly placing point processes at internal nodes, and restricting

changes of nseg to odd multiples. However, this may not be possible in models that are

based closely on real anatomy, because actual synaptic locations are unlikely to be

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 5 November 27, 2004

situated precisely at segment centers. To completely avoid nseg-dependent shifts of

point process locations, one can choose sections with lengths such that the point

processes are located at 0 or 1 ends.

The location of a point process can be changed without affecting its other attributes.

Thus dend st i m2. l oc(0) would move st i m2 to the 0 end of dend.

If a section's nseg is changed, the point processes on that section are relocated to the

centers of the new segments that contain the centers of the old segments to which the

point processes had been assigned. When a segment is destroyed, as by re-creating the

section, all of its point processes lose their attributes, including x location and which

section they belong to.

Many distributed mechanisms and point processes can be simultaneously present in

each segment. One important difference between distributed mechanisms and point

processes is that any number of the same kind of point process can exist at the same

location, whereas a distributed mechanism is either present or not present in a section.

For example, several Al phaSynapses might be attached to the soma, but the hh

mechanism would either be present or absent.

User-defined mechanisms

User-defined distributed mechanisms and point processes can be added to NEURON

with the model description language NMODL. This lets the user focus on specifying the

equations for a channel or ionic process without regard to its interactions with other

mechanisms. The NMODL translator constructs C code which properly and efficiently

computes the total current of each ionic species used, as well as the effect of that current

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

on ionic concentration, reversal potential, and membrane potential. This code is compiled

and linked into NEURON. NMODL is discussed extensively in Chapter 9 and 10, but it

is useful to review some of its advantages here.

1. Details of interfacing new mechanisms to NEURON are handled automatically--and

there are a great many such details. For instance,

� NEURON needs to know that model states are range variables, and which

model parameters can be assigned values and evaluated from the interpreter.

� Point processes need to be accessible via the interpreter's object syntax, and

density mechanisms need to be added to a section when the i nser t statement

is executed.

� If two or more channels use the same ion at the same place, the individual

current contributions must be added together to calculate a total ionic current.

2. Consistency of units is ensured.

3. Mechanisms described by kinetic schemes are written with a syntax in which the

reactions are clearly apparent. The translator provides tremendous leverage by generating

a large block of C code that calculates the analytic Jacobian and the state fluxes.

4. There is often a great increase in clarity since statements are at the model level instead

of the C programming level and are independent of the numerical method. For instance,

sets of differential and nonlinear simultaneous equations are written using an expression

syntax such as

x' = f (x, y, t)

~ g(x, y) = h(x, y)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 5 November 27, 2004

where the prime refers to the derivative with respect to time (multiple primes such as x' '

refer to higher derivatives) and the tilde introduces an algebraic equation. The algebraic

portion of such systems of equations is solved by Newton's method, and a variety of

methods are available for solving the differential equations (see Chapter 9).

5. Function tables can be generated automatically for efficient computation of

complicated expressions.

6. Default initialization behavior of a channel can be specified.

Working with range variables

Iterating over nodes

As we mentioned above in How NEURON separates anatomy and biophysics

from purely numerical issues, many anatomical and biophysical properties can vary

along the length of a section, and these are represented in NEURON by range variables.

The syntax

f or (var) stmt

is a convenient idiom for working with range variables. This statement assigns the

location of each node (in arc length, starting at 0 and ending at 1) to var and then

executes stmt. For example,

axon f or (x) pr i nt x* L, v(x)

will print the membrane potential as a function of physical distance along axon.

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Linear taper

If a range variable is a linear, or nearly linear, function of distance along a section, it

can be specified with the syntax

r angevar (xmin: xmax) = e1: e2

where the four italicized symbols are expressions. The position expressions must satisfy

the constraint 0 ≤ xmin ≤ xmax ≤ 1. The values of the property at xmin and xmax are e1

and e2, respectively, and linear interpolation is used to assign the values of the property

at the nodes that lie in the position range [xmin, xmax]. If the range variable is di am,

neither e1 nor e2 should be 0, or the corresponding axial resistance will be infinite. As

an example, suppose axon contained the Hodgkin-Huxley spike channels, and we wanted

the density of sodium channels to start at its normal level of 0.12 siemens/cm2 at the 0

end and fall linearly with distance until it becomes 0 at the other end. This could be done

with the statement

axon. gnabar _hh(0: 1) = 0. 12: 0

The actual conductance densities in the individual segments will depend on the value of

nseg, as shown in Table 5.4. This assignment must be executed after the desired value of

nseg has been specified, for reasons that are explained in the next few paragraphs.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 5 November 27, 2004

Table 5.4. Effect of nseg on linear variation of sodium channel density

gnabar_hh with distance.

nseg
Segment centers

(in units of arc length)
Channel density
[siemens/cm2]

1 0.5 0.06

2 0.25

0.75

0.09

0.03

3 0.1667

0.5

0.8333

0.1

0.06

0.02

5 0.1

0.3

0.5

0.7

0.9

0.108

0.084

0.06

0.036

0.012

How changing nseg affects range variables

If nseg is increased after range variables have been specified, all old segments are

relocated to their nearest new locations (no instance variables are modified and no

pointers to data in those segments become invalid), and new segments are allocated and

given mechanisms and values that are identical to the old segment in which the center of

the new segment is located. If range variables are not constant, then the hoc expressions

used to set them should be re-executed. To see why, let us return to our axon with a

linearly tapering gnabar _hh, specified by executing

nseg = 3
axon. gnabar _hh(0: 1) = 0. 12: 0

after which we check by executing

axon f or (x) pr i nt x , gnabar _hh(x)

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

which returns

0 0. 1
0. 16666667 0. 1
0. 5 0. 06
0. 83333333 0. 02
1 0. 02

as we expect from Table 5.4 (the values at the 0 and 1 ends are merely copied from the

nearest nodes, and don't really matter since the areas associated with the 0 and 1 ends

are 0). Now we triple the number of nodes and check gnabar _hh by executing

nseg * = 3
axon f or (x) pr i nt x , gnabar _hh(x)

and see

0 0. 1
0. 055555556 0. 1
0. 16666667 0. 1
0. 27777778 0. 1
0. 38888889 0. 1
0. 5 0. 06
0. 61111111 0. 06
0. 72222222 0. 06
0. 83333333 0. 02
0. 94444444 0. 02
1 0. 02

Even though we have nine internal nodes, the spatial gradient for gnabar _hh is just as

crude as before, with only three transitions along the length of our section. To fix this, we

must reassert

axon. gnabar _hh(0: 1) = 0. 12: 0

and when we now test the gradient we find

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 5 November 27, 2004

0 0. 11333333
0. 055555556 0. 11333333
0. 16666667 0. 1
0. 27777778 0. 086666667
0. 38888889 0. 073333333
0. 5 0. 06
0. 61111111 0. 046666667
0. 72222222 0. 033333333
0. 83333333 0. 02
0. 94444444 0. 0066666667
1 0. 0066666667

i.e. gnabar _hh is progressively smaller at each internal node of axon, which is what we

wanted all along.

What if we decrease nseg? All the new segments will in fact be the old segments

that are nearest to the new segments. Another way to think about this is to see what old

segments contain the new nodes, and those are the segments that will be preserved. This

is what makes it so useful to increase and decrease nseg by the same odd factor, e.g. 3.

So going from nseg = 9 back to nseg = 3 restores our original model with its original

parameter values, even if we don't bother to execute

axon. gnabar _hh(0: 1) = 0. 12: 0

again. If instead we reduced nseg from 9 to 5, the spatial profile of gnabar _hh would

be

0 0. 11333333
0. 1 0. 11333333
0. 3 0. 086666667
0. 5 0. 06
0. 7 0. 033333333
0. 9 0. 0066666667
1 0. 0066666667

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

which clearly differs from the result of executing

nseg = 5
axon. gnabar _hh(0: 1) = 0. 12: 0

(see Table 5.4).

Choosing a spatial grid

Designing the spatial grid for a computational model involves a tradeoff between

improving accuracy, on the one hand, and increasing storage requirements and runtime

on the other. The goal is to achieve sufficient accuracy while keeping the computational

burden as small as possible.

A consideration of intent and judgment

The question of how to achieve sufficient accuracy depends in part on what one

means by "sufficient." The answer depends both on the anatomical and biophysical

attributes of the conceptual model and the modeler's intent. Most treatments of

discretization tend to ignore intent, and judgment, its close cousin. Intent and judgment

are inherently tied closely to the particular interests of the individual investigator, so it is

difficult to make general pronouncements about them. However, they can be dominant

factors in the discretization of time and space, as the following two examples

demonstrate.

Consider a model of a small spherical cell with passive membrane that is subjected to

a depolarizing current pulse (Fig. 5.9). The spatial grid for this isopotential cell only

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 5 November 27, 2004

needs a single node, i.e. this is a situation in which the sole consideration to be weighed is

the discretization of time.

The middle and right panels in Fig. 5.9 show the analytic solution for membrane

potential Vm (dashed orange trace) along with numeric solutions that were computed

using several different values of ∆t (solid black trace). Clearly it is the numeric solution

computed with the smallest ∆t that best reflects the curvature of Vm in time. Solutions

computed with large ∆t lack the high frequency terms needed to follow the initial rapid

change of Vm (see Analytic solutions: continuous in time and space in Chapter 4).

However, with the advance of time, even the least accurate numeric solution soon

becomes indistinguishable from the analytic solution. Which of these solutions "best"

suits our needs depends on our intent. If it is essential to us that the solution faithfully

captures the smooth curve of the analytic solution, we would prefer to use the smallest ∆t,

perhaps even smaller than 10 ms. But if we are only interested in the final steady state

value of Vm, then ∆t = 40 ms is probably good enough.

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

5.64 µm

Injected
current

20 40 60 80 100
−70

−65

−60

−55

−50
 mV

0 ms 5 10 15
−70

−68

−66

−64

−62

−60
 mV

0 ms

20

40

Figure 5.9. A spherical cell (left) with a surface area of 100 µm2 (diameter =

5.64 µm) is subjected to a 1 pA depolarizing current that starts at t = 0 ms.

Resting potential is -70 mV, specific membrane capacitance and resistance are

Cm = 1 µf / cm2 and Rm = 20,000 Ω cm2, respectively (τm = 20 ms). The dashed

orange trace in the middle and right graphs is the analytic solution for Vm. The

solid black traces are the numeric solutions computed with time steps ∆t =

40 ms (thick trace, open circles), 20 ms (medium trace, ×), and 10 ms (thin

trace, diamond, right figure only). Modified from (Hines and Carnevale 2001).

Spatial discretization becomes important in models that are extensive enough for the

propagation of electrical or chemical signals to involve significant delay. We illustrate

this with a model of fast excitatory synaptic input onto a dendritic branch. The synapse in

this model is attached to the middle of an unbranched cylinder (Fig. 5.10). To prevent

possible confounding effects of active current kinetics and complex geometry, we assume

that the cylinder has passive membrane and is five DC length constants long. The

biophysical properties are within the range reported for mammalian central neurons

(Spruston and Johnston 1992). The time course of the synaptic conductance follows an

alpha function with time constant τs and reversal potential Es chosen to emulate an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 5 November 27, 2004

AMPA synapse (Kleppe and Robinson 1999), and gmax selected to produce a peak

depolarization of approximately 10 mV. We will compare the analytic solution for Vm in

this model with the numeric solution computed for a very coarse spatial grid (∆x = 1 λ).

The numeric solution uses a time step ∆t = 1 µs, which is more than two orders of

magnitude smaller than necessary to follow the EPSP waveform, so that differences from

the analytic solution are almost entirely attributable to the spatial grid.

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

presynaptic
terminal

Figure 5.10. Model of synaptic input onto a dendrite The dendrite is represented

by an unbranched cylinder (top) with diameter = 1 µm, length = 2500 µm, Ra =

180 Ω cm, Cm = 1 µf / cm2, and Rm = 16,000 Ω cm2 with a resting potential of

-70 mV. The DC length constant λDC of the cylinder is 500 µm, so its sealed

end terminations have little effect on the EPSP produced by a synapse located at

its midpoint. The dots are the locations at which the numeric solution would be

computed using a grid with intervals of 1 λDC, i.e. 250, 750, 1250, 1750, and

2250 µm. The synaptic conductance gs is governed by an alpha function

(bottom) with τs = 1ms, gmax = 10-9 siemens, and reversal potential Es = 0 mV.

Modified from (Hines and Carnevale 2001).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 5 November 27, 2004

10 20 30 40 50
−70

−68

−66

−64

−62

−60
 mV

0 ms

Figure 5.11. Time course of Vm at the synaptic location. The dashed orange line

is the analytic solution, and the solid black line is the numeric solution

computed with ∆t = 1 µs. Modified from (Hines and Carnevale 2001).

Compared to the analytic solution for Vm at the site of synaptic input (dashed orange

trace in Fig. 5.11), the numeric solution (solid black trace) rises and falls more slowly,

and has a peak depolarization that is substantially delayed and smaller. These differences

reflect the fact that solutions based on the coarse grid lack sufficient amplitude in the

high frequency terms that are needed to reproduce rapidly changing signals. Such errors

could lead to serious misinterpretations if our intent were to examine how synaptic input

might affect depolarization-activated currents with fast kinetics like IA, spike sodium

current, and transient ICa.

The graphs in Fig. 5.12 present the spatial profile of Vm along the dendrite at two

times selected from the rising and falling phases of the EPSP. These curves, which are

representative of the early and late response to synaptic input, show that the error of the

numeric solution is most pronounced in the part of the cell where Vm changes most

rapidly, i.e. in the near vicinity of the synapse. However, at greater distances the analytic

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

solution itself changes much more slowly because of low pass filtering produced by

cytoplasmic resistance and membrane capacitance. At these distances the error of the

numeric solution is surprisingly small, even though it was computed with a very crude

spatial grid. Furthermore, error decreases progressively as time advances and high

frequency terms become less important. This suggests that the coarse grid may be quite

sufficient if our real interests are in slow processes that take place at some distance from

the site of synaptic input.

500 1000 1500 2000 2500
−70

−68

−66

−64

−62
 mV t = 1.1 ms

0 µm

500 1000 1500 2000 2500
−70

−69

−68

−67

−66

−65
 mV t = 7.2 ms

0 µm

Figure 5.12. Vm vs. distance along the dendrite computed during the rising (left) and

falling (right) phases of the EPSP. The analytic and numeric solutions are shown with

dashed orange and solid black lines, respectively. The error of the numeric solution is

greatest in the region where Vm changes most rapidly, i.e. in the neighborhood of the

synapse.

Discretization guidelines

Various strategies have appeared in the literature as aids to the use of judgment in

choosing a spatial grid. One common practice is to keep the distance between adjacent

grid points smaller than some fraction (e.g. 5 - 10%) of the DC length constant λDC of an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 5 November 27, 2004

infinite cylinder with identical anatomical and biophysical properties (Mainen and

Sejnowski 1998; Segev and Burke 1998). This plausible approach has two chief

limitations. First, large changes in membrane resistance and λDC can be produced by

activation of voltage-dependent channels (e.g. Ih (Magee 1998; Stuart and Spruston

1998)), Ca2+-gated channels (Wessel et al. 1999), or synaptic inputs (Bernander et al.

1991; Destexhe and Pare 1999; Häusser and Clark 1997; Pare et al. 1998). The second

but more fundamental problem is that the spatial decay of transient signals is unrelated to

λDC. Cytoplasmic resistivity Ra and specific membrane capacitance Cm constitute a

spatially distributed low pass filter, so transient signals suffer greater distortion and

attenuation with distance than do slowly changing signals or DC. In other words, by

virtue of their high frequency components in time, transient signals also have high

frequency components in space. Just as high temporal frequencies demand a short time

step, high spatial frequencies demand a fine grid.

The d_lambda rule

As a more rational approach, we have suggested what we call the "d_lambda rule"

(Hines and Carnevale 2001), which predicates the spatial grid on the AC length constant

λf computed at a frequency f that is high enough for transmembrane current to be

primarily capacitive, yet still within the range of frequencies relevant to neuronal

function. Ionic and capacitive transmembrane currents are equal at the frequency fm =

1 / 2 π τm, so specific membrane resistance Rm has little effect on the propagation of

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

signals ≥ 5 fm. For instance, a membrane time constant of 30 ms corresponds to fm ~

5 Hz, which implies that Rm would be irrelevant to signal spread at frequencies ≥ 25 Hz.

Most cells of current interest have τm ≥ 8 ms (fm ~ 20 Hz), so we suggest that the distance

between adjacent nodes should be no larger than a user-specified fraction "d_lambda" of

λ100, the length constant at 100 Hz. This frequency is high enough for signal propagation

to be insensitive to shunting by ionic conductances, but it is not unreasonably high

because the rise time τr of fast EPSPs and spikes is ~ 1 ms, which corresponds to a

bandpass of 1
���

r

�
2 � ~400 Hz.

At frequencies where Rm can be ignored, the attenuation of signal amplitude is

described by

log

�
V 0

V x

���
2x � � f RaCm

d
Eq. 5.1

so the distance over which an e-fold attenuation occurs is	
f

�
1
2
 d� f RaCm

Eq. 5.2

where f is in Hz. For example, a dendrite with diameter = 1 µm, Ra = 180 Ω cm, Cm =

1 µf / cm2, and Rm = 16,000 Ω cm2 has λDC = 500 µm, but λ100 is only ~225 µm.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 5 November 27, 2004

In NEURON the d_lambda rule is implemented in the CellBuilder, which allows the

maximum anatomical distance between grid points

to be specified as a fraction of λ100 using an

adjustable parameter called d_l ambda. The

default value of d_l ambda is 0.1, which is more

than adequate for most purposes, but a smaller

value can be used if τm is shorter than 8 ms. For

increased flexibility, the CellBuilder also provides

two alternative strategies for establishing the

spatial grid: specifying nseg, the actual number of

grid points; specifying d_X, the maximum

anatomical distance between grid points in µm. The d_lambda and the d_X rules both

deliberately set nseg to an odd number, which guarantees that every branch will have a

node at its midpoint. These strategies can be applied to any section or set of sections,

each having its own rule and compartmentalization parameter. Barring special

circumstances e.g. localized high membrane conductance, it is usually sufficient to use

the d_lambda rule for the entire model. However, regardless of which strategy is selected,

it is always advisable to try a few exploratory runs with a finer grid to be sure that spatial

error is acceptable.

Of course the d_lambda rule can also be applied without having to use the GUI. The

following procedure

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Eq. 5.2 shows that the attenuation of

fast signals (e.g. fast PSPs, rapid steps

under voltage clamp, passively

conducted spikes) is governed by

cytoplasmic resistivity, specific

membrane capacitance, and neurite

diameter. Specific membrane resistance

and membrane time constant are

irrelevant. Therefore channel blockers

will not improve the fidelity of

recordings of fast signals, or the ability

to clamp fast active currents.

November 27, 2004 The NEURON Book: Chapter 5

pr oc geom_nseg() {
 soma ar ea(0. 5) / / make sur e di am r ef l ect s 3d poi nt s
 f or al l { nseg = i nt ((L/ (0. 1* l ambda_f (100)) +0. 9) / 2) * 2 + 1}
}

iterates over all sections to ensure that each section has an odd nseg that is large enough

to satisfy the d_lambda rule. This makes use of the function

f unc l ambda_f () { / / cur r ent l y accessed sect i on, $1 == f r equency
 r et ur n 1e5*sqr t (di am/ (4*PI *$1*Ra*cm))
}

which is included in the file

nr n- x. x / shar e/ l i b/ hoc/ st dl i b. hoc (UNIX/Linux)

or

c: \ nr nxx\ l i b\ hoc\ st dl i b. hoc (MSWindows)

(x. x and xx are used here to refer to the version number of NEURON). This file is

automatically loaded when

l oad_f i l e(" nr ngui . hoc")

is executed or the nr ngui script or icon is launched. Alternatively, st dl i b. hoc can be

loaded alone with the command

l oad_f i l e(" s t dl i b. hoc")

or else f unc l ambda_f () can be recreated by itself with hoc .

To see how the d_lambda rule works in practice, consider the model in Fig. 5.13,

which represents a granule cell from the dentate gyrus of the rat hippocampus. This

model is based on quantitative morphometric data provided by Dennis Turner (available

from ht t p: / / www. cns. sot on. ac. uk/ ~j chad/ cel l Ar chi ve/ cel l Ar chi ve. ht ml or

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

The NEURON Book: Chapter 5 November 27, 2004

ht t p: / / www. compneur o. or g/ CDROM/ nmor ph/ cel l Ar chi ve. ht ml), and the

biophysical parameters are from Spruston and Johnston (Spruston and Johnston 1992):

Rm = 40 k Ω cm2, Cm = 1 µf / cm2, and Ra = 200 Ω cm. An excitatory synapse attached

to the soma is an excitatory synapse whose conductance is governed by an alpha function

with τs = 1 ms, gmax = 2 · 10-9 S, and reversal potential Es = 0 mV.

The right side of Fig. 5.13 shows the simulated time course of Vm at the soma for

three different methods of specifying the spatial grid: one or three nodes in each branch,

and d_l ambda = 0.3. On the scale of this figure, solutions with d_l ambda ≤ 0.3 are

indistinguishable from each other, so d_l ambda = 0.3 serves as the standard for

accuracy. Plots generated with constant nseg per branch converged toward this trace as

nseg increased. Even the crudest spatial grid (nseg = 1) would suffice if the purpose of

the model were to evaluate effects of synaptic input on Vsoma well after the peak of the

EPSP (t > 7 ms). However a finer grid is clearly necessary if the maximum somatic

depolarization produced by the EPSP is of concern.

Additional refinements to the grid are needed if we want to know how the EPSP

spreads into other parts of the cell, e.g. along the path marked by orange in Fig. 5.14 left.

To compute the maximum depolarization produced by a somatic EPSP along this path, a

grid that has only 3 nodes per branch is quite sufficient (Fig. 5.14 center). If the timing of

this peak is important, e.g. for coincidence detection or activation of voltage-gated

currents, a finer grid must be used (Fig. 5.14 right).

Page 54 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

2 4 6 8 10
−70

−68

−66

−64

−62

nseg = 1
nseg = 3

d_lambda = 0.3

−60
 mV

0 ms

Figure 5.13. Left: Anatomically complex model of a granule cell from the

dentate gyrus of rat hippocampus. A fast excitatory synapse is attached to the

soma (location indicated by arrow and orange dot). See text for details. Right:

Time course of Vsoma computed using spatial grids with one or three nodes per

branch (thick blue and thin black traces for nseg = 1 and 3, respectively) or

specified with d_l ambda = 0.3 (dashed orange trace). Modified from (Hines

and Carnevale 2001).

The computational cost of these simulations is approximately proportional to the

number of nodes. Least burdensome, but also least accurate, were the simulations

generated with one node per branch, which involved a total of 28 nodes in the model.

Increasing the number of nodes per branch to 3 (total nodes in model = 84) improved

accuracy considerably, but obvious errors remained (Fig. 5.14 right) that disappeared

only after an additional tripling of the number of nodes per branch (total nodes = 252;

results not shown). The greatest accuracy with least sacrifice of efficiency was achieved

with the grid specified by d_l ambda = 0.3, which contained only 110 nodes.

As these figures suggest, the relative advantage of the d_lambda rule will be most

apparent when signal propagation throughout the entire model must be simulated to a

similar level of accuracy. If the focus is on a limited region, then a grid with fewer nodes

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

The NEURON Book: Chapter 5 November 27, 2004

and a simpler representation of electrically remote regions may be acceptable. Special

features of the model may also allow a simpler grid to be used. In principal neurons of

mammalian cortex, for example, proximal dendritic branches tend to have larger

diameters (Rall 1959; Hillman 1979) and shorter lengths (Cannon et al. 1999) than do

distal branches. Therefore models based on quantitative morphometry of such neurons

will have fewer nodes in proximal dendrites than in more distal dendrites if the grid is

specified by the d_lambda or d_X rule. Indeed, many proximal branches may have only

one or three nodes, regardless of which rule is applied, and in such a case the differences

between gridding strategies will be manifest only in the thinner and longer distal

branches. Such differences will have little effect on accuracy if signals in the vicinity of

the soma are the only concern.

Page 56 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

−300 100 300 500
−70

−68

−66

−64

−62

nseg = 1

nseg = 3
d_lambda = 0.3

−60
 mV

−100−500µm −300 −100 100 300 500
0

5

10

15
ms

−500µm

nseg = 1
nseg = 3

d_lambda = 0.3

Figure � .14. The EPSP evoked by activation of a synapse at the soma (arrow in left

panel) spread into the dendrites, producing a transient depolarization which grew smaller

and occurred later as distance from the soma increased. The center and right panels show

the magnitude and timing of this depolarization along the path marked by the dashed

orange line. Peak amplitude was quite accurate with nseg = 3 (thin black trace, center

panel), but noticeable error persisted in the time of peak depolarization for distances

between -300 and -150 µm (right panel, especially between). The dashed orange trace in

the center and right panels was obtained with d_l ambda = 0.3. Time step was 25 µs.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

The NEURON Book: Chapter 5 November 27, 2004

References

Bernander, Ö., Douglas, R.J., Martin, K.A.C., and Koch, C. Synaptic background activity

influences spatiotemporal integration in single pyramidal cells. Proc. Nat. Acad. Sci.

88:11569-11573, 1991.

Cannon, R.C., Wheal, H.V., and Turner, D.A. Dendrites of classes of hippocampal

neurons differ in structural complexity and branching patterns. J. Comp. Neurol.

413:619-633, 1999.

Crank, J. The Mathematics of Diffusion. 2 ed. London: Oxford University Press, 1979.

Destexhe, A. and Pare, D. Impact of network activity on the integrative properties of

neocortical pyramidal neurons in vivo. J. Neurophysiol. 81:1531-1547, 1999.

Häusser, M. and Clark, B.A. Tonic synaptic inhibition modulates neuronal output pattern

and spatiotemporal synaptic integration. Neuron 19:665-678, 1997.

Hillman, D.E. Neuronal shape parameters and substructures as a basis of neuronal form.

In: The Neurosciences: Fourth Study Program, edited by F.O. Schmitt and F.G. Worden.

Cambridge, MA: MIT Press, 1979, p. 477-498.

Hines, M.L. and Carnevale, N.T. The NEURON simulation environment. Neural

Computation 9:1179-1209, 1997.

Hines, M.L. and Carnevale, N.T. NEURON: a tool for neuroscientists. The

Neuroscientist 7:123-135, 2001.

Page 58 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Kleppe, I.C. and Robinson, H.P.C. Determining the activation time course of synaptic

AMPA receptors from openings of colocalized NMDA receptors. Biophys. J. 77:1418-

1427, 1999.

Magee, J.C. Dendritic hyperpolarization-activated currents modify the integrative

properties of hippocampal CA1 pyramidal neurons. J. Neurosci. 18:7613-7624, 1998.

Mainen, Z.F. and Sejnowski, T.J. Modeling active dendritic processes in pyramidal

neurons. In: Methods in Neuronal Modeling, edited by C. Koch and I. Segev. Cambridge,

MA: MIT Press, 1998, p. 171-209.

Pare, D., Shink, E., Gaudreau, H., Destexhe, A., and Lang, E.J. Impact of spontaneous

synaptic activity on the resting properties of cat neocortical pyramidal neurons in vivo.

J. Neurophysiol. 79:1450-1460, 1998.

Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Experimental

Neurology 1:491-527, 1959.

Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of

Physiology, vol. 1, part 1: The Nervous System, edited by E.R. Kandel. Bethesda, MD:

American Physiological Society, 1977, p. 39-98.

Spruston, N. and Johnston, D. Perforated patch-clamp analysis of the passive membrane

properties of three classes of hippocampal neurons. J. Neurophysiol. 67:508-529, 1992.

Stuart, G. and Spruston, N. Determinants of voltage attenuation in neocortical pyramidal

neuron dendrites. J. Neurosci. 18:3501-3510, 1998.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

The NEURON Book: Chapter 5 November 27, 2004

Wessel, R., Kristan, W.B., and Kleinfeld, D. Dendritic Ca2+-activated K+ conductances

regulate electrical signal propagation in an invertebrate neuron. J. Neurosci. 19:8319-

8326, 1999.

Page 60 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

Chapter 5 Index

%DELTA t 3

3-D specification of geometry 22, 24

3-D information 24, 30

arc3d() 31

calculation of L, diam, area, and ri 25, 29

diam3d() 24

checking 29

diameter 24

problems 29

n3d() 25, 31

number of 3-D points

effect on computational efficiency 25

vs. nseg 25

pt3dadd() 24

A

access 17

accuracy 2

vs. speed 43

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

The NEURON Book: Chapter 5 November 27, 2004

anatomical properties

separating biology from numerical issues 4

approximation

of a continuous system by a discrete system 2

area() 23

stylized vs. 3-D surface integral 31

attenuation

at high frequencies 51

axial resistance

infinite 28, 39

B

bandpass 51

biological properties vs. purely computational issues 4

biophysical properties

separating biology from numerical issues 4

specifying 32

branch

cell 5

branched architecture 3, 14

Page 62 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

C

cable

unbranched 5

channel

density 4

cm 7

default value 22

compartment

size 4

vs. biologically relevant structures 5, 10

vs. conceptual clarity 10

complexity 2

computational efficiency 3, 13, 55

conductance

absolute 34

density 33

connect 18

preserving spatial accuracy 19

continuous variable 1, 2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

The NEURON Book: Chapter 5 November 27, 2004

continuous variable

piecewise linear approximation 9, 12

create 18

current

absolute 34

capacitive 50

density 33

cytoplasmic resistivity 6

D

d_lambda 52

d_lambda rule 50

d_X 52

d_X rule 52

define_shape()

effect on diam, area, and ri 30

diam 7

checking 29

default value 22

specifying

Page 64 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

stylized specification 23

tapering 39

updating from 3-D data 30

diameter 7

abrupt change 31

zero or narrow diameter 28

disconnect() 19

discretization

guidelines 49

intent and judgment 2, 43

spatial 2, 4

temporal 2, 44

distance

physical distance along a section 38

distributed mechanism 33, 34, 36

distributed mechanism

vs. point process 36

E

electrotonic architecture

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

The NEURON Book: Chapter 5 November 27, 2004

spurious effect of changing nseg 20

equation

algebraic 38

differential 37

error message

diam = 0 28

no message for pt3dadd with zero diameter 29

F

for (x) 38

forall 16

forsec 16

frequency

spatial 50

temporal 50

function table 38

G

geometry 14

artifacts

stylized specification reinterpreted as 3-D specification 30

Page 66 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

zero diameter 28

good programming style

program organization 14

H

hoc

idiom

forall nseg *= 3 12

hoc syntax

flow control

break 16

continue 16

return 16

I

IClamp class 35

insert 33

J

Jacobian

analytic 37

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 67

The NEURON Book: Chapter 5 November 27, 2004

L

L 6

default value 22

specifying

stylized specification 23

updating from 3-D data 30

lambda_f() 53

length 6

length constant

AC 50

DC 49

LinearMechanism class 18

load_file() 53

M

mechanisms

user-defined 36

membrane capacitance 3

membrane current

capacitive 50

Page 68 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

ionic 50

membrane potential 7

membrane resistance 50

membrane time constant 51

and attenuation of fast signals 52

model

3-D 31

compartmental 4, 10

computational

implementation 14

conceptual 43

stylized 23

model properties

specifying 14

N

neurite 5, 25

NMODL 36

nseg 8

effect on spatial accuracy and resolution 9

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 69

The NEURON Book: Chapter 5 November 27, 2004

may reposition internally attached sections and point processes 20

repositions internally attached sections and point processes 35

vs. number of 3-D points 25

why triple nseg? 13

why use odd values? 12

numeric integration

stability 2

numerical error

roundoff 12

spatial 11

temporal

effect of spatial discretization 48

O

object reference 35

object reference

objref 35

P

point process 34

creating 34

Page 70 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

destroying 34

effect of nseg on location 35

inserting 34

loc() 36

preserving spatial accuracy 12

specifying attributes 34

vs. distributed mechanism 36

psection() 22

push_section() 16

Q

quantitative morphometric data 13, 24, 56

R

Ra 6

default value 22

range 6

range variable 6

effect of changing nseg 40-42

estimating by linear interpolation between nodes 12

inhomogeneous

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 71

The NEURON Book: Chapter 5 November 27, 2004

reassert after changing nseg 40

iterating over nodes 38

linear taper 39

rangevar(x) returns value at nearest internal node 8

ri

infinite 28, 39

rise time 51

run time 14

S

secname() 29

section 5

array 21

child 19

connect 0 end to parent 24

currently accessed

default section 17

dot notation 7, 9, 15

section stack 15

default section vs. root section 19

Page 72 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

equivalent circuit 27, 28

iterating over sections 30, 53

nodes 8

internal vs. terminal 8

locations 8

zero area 11

parent 19

root section 19

vs. default section 19

section variable 6

SectionRef class 16

segment 8

separating biology from numerical issues 4

Shape object

creating

effect on diam, area, and ri 30

Shape plot 21

creating

effect on diam, area, and ri 30

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 73

The NEURON Book: Chapter 5 November 27, 2004

signal

chemical 45

electrical 45

spatial accuracy 11

checking 12

second order 11

preserving 12, 19

spatial decay of fast signals 50

specific membrane capacitance 4, 7

specific membrane resistance 50

stdlib.hoc 53

stylized specification of geometry 22, 23

calculation of area and ri 23

reinterpretation as 3-D specification 30

syntax error

example 16

system

continuous 10

Page 74 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 5

T

topology 14

checking 20, 21

loops of sections 18

specifying 18

viewing 21

topology() 20

V

v 7

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 75

November 26, 2004 The NEURON Book: Chapter 6

Chapter 6

How to build and use models of individual cells

In Chapter 2 we remarked that a conceptual model is an absolute prerequisite for the

scientific application of computational modeling. But if a computational model is to be a

fair test of our conceptual model, we must take special care to establish a direct

correspondence between concept and implementation. To this end, the research use of

NEURON involves all of these steps:

1. Implement a computational model of the biological system

2. Instrument the model

3. Set up controls for running simulations

4. Save the model with instrumentation and run controls

5. Run simulation experiments

6. Analyze results

These steps are often applied iteratively. We first encountered them in Chapter 1, and we

will return to each of them repeatedly in the remainder of this book.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 6 November 26, 2004

GUI vs. hoc code: which to use, and when?

At the core of NEURON is an interpreter which is based on the hoc programming

language (Kernighan and Pike 1984). In NEURON, hoc has been extended by the

addition of many new features, some of which improve its general utility as a

programming language, while others are specific to the construction and use of models of

neurons and neural circuits in particular. One of these features is a graphical user

interface (GUI) which provides graphical tools for performing most common tasks. We

have already seen that many of these tools are especially useful for model development

and exploratory simulations (Chapter 1).

Prior to the advent of the GUI, the only way to use NEURON was by writing

programs in hoc. For many users, convenience is probably reason enough to use the

GUI. We should also mention that several of the GUI tools are quite powerful in their

own right, with functionality that would require significant effort for users to recreate by

writing their own hoc code. This is particularly true of the tools for optimization and

electrotonic analysis.

But sooner or later, even the most inveterate GUI user may encounter situations that

call for augmenting or replacing the default implementations provided by the GUI.

Traditional programming allows maximum control over model specification, simulation

control, and display and analysis of results. It is also appropriate for noninteractive

simulations, such as "production" runs that generate large amounts of data for later

analysis.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

So the answer to our question is: use the GUI and write hoc code, in whatever

combination gets the job done with the greatest conceptual clarity and the least human

effort. Each has its own advantages, and the most productive strategy for working with

NEURON is to combine them in a way that exploits their respective strengths. One

purpose of this book is to help you learn what these strengths are.

Hidden secrets of the GUI

There aren't any, really. All but one of the GUI tools are implemented in hoc , and all

of the hoc code is provided with NEURON (see nr n- x. x/ shar e/ nr n/ l i b/ hoc/ under

UNIX/Linux, c: \ nr nxx\ l i b\ hoc\ in

MSWindows). Thus the CellBuilder, the

Network Builder, and the Linear Circuit

Builder are all implemented in hoc, and

each of them works by executing hoc statements in a way that amounts to creating hoc

programs "on the fly." It can be instructive to examine the source code for these and

NEURON's other GUI tools. A recurring theme in many of them is a sequence of hoc

statements that construct a string, followed by a hoc statement that executes this string (if

it is a valid hoc statement) or uses it as an argument to some other hoc function or

procedure. We will return to this idea in Chapter 14: How to modify NEURON itself,

which shows how to create new GUI tools and add new functions to NEURON.

Anything that can be done with a GUI tool can be done directly with hoc . To

underscore this point, we will now use hoc statements to replicate the example that we

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The only GUI tool that is not implemented in hoc

is the Print & File Window Manager, which is

written in C. The source code for it is included

with the UNIX distribution of NEURON.

The NEURON Book: Chapter 6 November 26, 2004

built with the GUI in Chapter 1. Our

code follows the same broad outline as

before, specifying the model first, then

instrumenting it, and finally setting up

controls for running simulations. For

clarity of presentation, we will consider

this code in the same sequence: model

implementation, instrumentation, and simulation control.

Implementing a model with hoc

The properties of our conceptual model neuron are summarized in Fig. 6.1 and Tables

6.1 and 6.2. For the most part, the steps required to implement a computational model of

this cell with hoc statements parallel what we did to build the model with NEURON's

GUI; differences will be noted and discussed as they arise. In the following program

listings, single line comments begin with a pair of forward slashes / / and multiple line

comments begin with / * and are terminated by * / . For a discussion of hoc syntax, see

Chapter 12.

Fig. 6.1. The model neuron. The conductance change synapse can be located

anywhere on the cell.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

If you want to work along with this example, it

would be a good idea to create an empty directory

in which to save the file or files that you will

make. These will be plain text files, which are

also sometimes known as ASCII files. Begin by

using a text editor to create a file called

exampl e. hoc that will contain the code.

November 26, 2004 The NEURON Book: Chapter 6

Table 6.1. Model cell parameters

Length
µm

Diameter
µm

Biophysics

soma 30 30 HH gNa, gK, and gleak

apical dendr ite 600 1 passive with Rm = 5,000 Ω cm2, Epas = -65 mV

basilar dendr ite 200 2 same as apical dendrite

axon 1000 1 same as soma

Cm = 1 µf / cm2

cytoplasmic resistivity = 100 Ω cm

Temperature = 6.3 oC

Table 6.2. Synaptic mechanism parameters

gmax 0.05 µS

τs
0.1 ms

Es 0 mV

Topology

Our first task is to map the branched architecture of this conceptual model onto the

topology of the computational model. We want each unbranched neurite in the

conceptual model to be represented by a corresponding section in the computational

model, and this is done with a cr eat e statement (top of Listing 6.1). The connect

statements attach these sections to each other so that the conceptual and computational

models have the same shape. As we noted in Chapter 5, each section has a normalized

position parameter which ranges from 0 at one end to 1 at the other. The basi l ar and

axon sections arise from one end of the cell body while the api cal section arises from

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 6 November 26, 2004

the other, so they are attached by connect statements to the 0 and 1 ends of the soma,

respectively.

This model is simple enough that its geometry and biophysical properties can be

specified directly in hoc without having to resort to sophisticated strategies. Therefore

we will not bother with subsets of sections, but proceed immediately to geometry.

/ /
/ * model speci f i cat i on * /
/ /

/ / / / / / / t opol ogy / / / / / / / /

cr eat e soma, api cal , bas i l ar , axon
connect api cal (0) , soma(1)
connect basi l ar (0) , soma(0)
connect axon(0) , soma(0)

/ / / / / / / geomet r y / / / / / / / /

soma {
 L = 30
 di am = 30
 nseg = 1
}

api cal {
 L = 600
 di am = 1
 nseg = 23
}

basi l ar {
 L = 200
 di am = 2
 nseg = 5
}

axon {
 L = 1000
 di am = 1
 nseg = 37
}

/ / / / / / / bi ophysi cs / / / / / /

f or al l {
 Ra = 100
 cm = 1
}

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

soma {
 i nser t hh
}

api cal {
 i nser t pas
 g_pas = 0. 0002
 e_pas = - 65
}

basi l ar {
 i nser t pas
 g_pas = 0. 0002
 e_pas = - 65
}

axon {
 i nser t hh
}

Listing 6.1. The first part of exampl e. hoc specifies the anatomical and

biophysical attributes of our model.

Geometry

Each section of the model has its own length L, diameter di am, and discretization

parameter nseg. The statements inside the block soma { } pertain to the soma section,

etc. (the "stack of sections" syntax--see Which section do we mean? in Chapter 5).

Since the emphasis here is on elementary aspects of model specification with hoc , we

have assigned specific numeric values to nseg according to what we learned from prior

use of the CellBuilder (see Chapter 1). A more general approach would be to wait until L,

di am, and biophysical properties (Ra and cm) have been assigned, and then compute

values for nseg based on a fraction of the AC length constant at 100 Hz (see The

d_lambda rule in Chapter 5).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 6 November 26, 2004

Biophysics

The biophysical properties of each section must be set up individually because we

have not defined subsets of sections. Cytoplasmic resistivity Ra and specific membrane

capacitance cm are supposed to be uniform throughout the model, so we use a f or al l

statement to assign these values to each section.

The Hodgkin-Huxley mechanism hh and the passive mechanism pas are distributed

mechanisms and are specified with i nser t statements (see Distributed mechanisms in

Chapter 5). No further qualification is necessary for hh because our model cell uses its

default ionic equilibrium potentials and conductance densities. However, the parameters

of the pas mechanism in the basi l ar and api cal sections differ from their default

values, and so require explicit assignment statements.

Testing the model implementation

Testing is always important, especially when project development involves writing

code. If you are working along with this example, this would be an excellent time to save

what you have written to exampl e. hoc and use NEURON to test it. Then, if you're

using a Mac, just drag and drop exampl e. hoc onto nr ngui . Under MSWindows use

Windows Explorer (the file manager, not Internet Explorer) to go to the directory where

you saved exampl e. hoc and double click on the name of the file. Under UNIX or

Linux, type the command nr ni v exampl e. hoc - at the system prompt (we're

deliberately not typing nr ngui exampl e. hoc , to avoid having NEURON load its GUI

library).

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

This will launch NEURON, and NEURON's interpreter will then process the contents

of exampl e. hoc and generate a message that looks something like this:

NEURON - - Ver s i on 5. 6 2004- 5- 19 23: 5: 24 Mai n (81)
by John W. Moor e, Mi chael Hi nes, and Ted Car neval e
Duke and Yal e Uni ver si t y - - Copyr i ght 2001

oc>

The NEURON Main Menu toolbar will not appear under MSWindows, UNIX, or Linux.

This happens because NEURON did not load its GUI library, which contains the code

that implements the NEURON Main Menu. We're roughing it, remember? We trust that

Mac users will pretend they don't see the toolbar, because dropping a hoc file on the

nr ngui icon automatically loads the GUI library.

Since we aren't using the CellBuilder, there isn't see a nice graphical summary of the

model's properties. However a couple of hoc commands will quickly help you verify that

the model has been properly specified.

We can check the branched architecture of our model by typing t opol ogy() at the

oc> prompt (see Checking the tree structure with topology() in Chapter 5). This

confirms that soma is the root section (i.e. the section that has no parent; note that this is

not the same as the default section). It also shows that api cal is attached to the 1 end of

soma, and basi l ar and axon are connected to its 0 end.

oc>t opol ogy()

| - | soma(0- 1)
 ` - | api cal (0- 1)
 ` - - - - | basi l ar (0- 1)
 ` - | axon(0- 1)

1
oc>

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 6 November 26, 2004

The command f or al l psect i on() generates a printout of the geometry and

biophysical properties of each section. The printout is in the form of hoc statements that,

if executed, will recreate the model.

oc>f or al l psect i on()
soma { nseg=1 L=30 Ra=100

/ * l ocat i on 0 at t ached t o cel l 0* /
/ * Fi r st segment onl y * /
i nser t mor phol ogy { di am=30}
i nser t capaci t ance { cm=1}
i nser t hh { gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t na_i on { ena=50}
i nser t k_i on { ek=- 77}

}
api cal { nseg=23 L=600 Ra=100

soma connect api cal (0) , 1
/ * Fi r st segment onl y * /
i nser t capaci t ance { cm=1}
i nser t mor phol ogy { di am=1}
i nser t pas { g_pas=0. 0002 e_pas=- 65}

}
basi l ar { nseg=5 L=200 Ra=100

soma connect basi l ar (0) , 0
/ * Fi r st segment onl y * /
i nser t capaci t ance { cm=1}
i nser t mor phol ogy { di am=2}
i nser t pas { g_pas=0. 0002 e_pas=- 65}

}
axon { nseg=37 L=1000 Ra=100

soma connect axon (0) , 0
/ * Fi r st segment onl y * /
i nser t capaci t ance { cm=1}
i nser t mor phol ogy { di am=1}
i nser t hh { gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t na_i on { ena=50}
i nser t k_i on { ek=- 77}

}
oc>

After verifying that the model specification is correct, exit NEURON by typing

qui t () in the interpreter window.

An aside: how does our model implementation in hoc
compare with the output of the CellBuilder?

The hoc code we have just written is supposed to set up a model that has the same

anatomical and biophysical properties as the model that we created in Chapter 1 with the

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

CellBuilder. We can confirm that this is indeed the case by starting a fresh instance of

NEURON, using it to load the session file that we saved in Chapter 1, and then typing

t opol ogy() and f or al l psect i on() . But the CellBuilder can also create a file

containing hoc statements that, when executed, recreate the model cell. How do the

statements in this computer-generated file compare with the hoc code that we wrote for

the purpose of specifying this model?

To find out, let us retrieve the session file from Chapter 1, and then select the

Management page of the CellBuilder. Next we click on the Export button (Fig. 6.2), and

save all the topology, subsets, geometry, and membrane information to a file called

cel l . hoc . Executing the hoc statements in this file will recreate the model cell that we

specified with the CellBuilder.

It is instructive to briefly review the contents of cel l . hoc , which are presented in

Listing 6.2. At first glance this looks quite complicated, and its organization may seem a

bit strange--after all, cel l . hoc is a computer-generated file, and this might account for

its peculiarities. But let him who has never written an idiosyncratic line of code cast the

first stone! Actually, cel l . hoc is fairly easy to understand if, instead of attempting a

line-by-line analysis from top to bottom, we focus on the flow of program execution.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 6 November 26, 2004

Figure 6.2. The Management page of the CellBuilder. We have clicked on the

Export radio button, and are about to export the model's topology, subsets,

geometry, and membrane information to a hoc file that can be executed to

recreate the model cell.

pr oc cel l def () {
 t opol ()
 subset s()
 geom()
 bi ophys()
 geom_nseg()
}

cr eat e soma, api cal , basi l ar , axon

pr oc t opol () { l ocal i
 connect api cal (0) , soma(1)
 connect basi l ar (0) , soma(0)
 connect axon(0) , soma(0)
 basi c_shape()
}

pr oc basi c_shape() {
 soma { pt 3dcl ear () pt 3dadd(0, 0, 0, 1) pt 3dadd(15, 0, 0, 1) }
 api cal { pt 3dcl ear () pt 3dadd(15, 0, 0, 1) pt 3dadd(75, 0, 0, 1) }
 basi l ar { pt 3dcl ear () pt 3dadd(0, 0, 0, 1) pt 3dadd(- 29, 30, 0, 1) }
 axon { pt 3dcl ear () pt 3dadd(0, 0, 0, 1) pt 3dadd(- 74, 0, 0, 1) }
}

obj r ef al l , has_HH, no_HH

pr oc subset s() { l ocal i
 obj r ef al l , has_HH, no_HH
 al l = new Sect i onLi st ()
 soma al l . append()
 api cal al l . append()
 basi l ar al l . append()
 axon al l . append()

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

 has_HH = new Sect i onLi st ()
 soma has_HH. append()
 axon has_HH. append()

 no_HH = new Sect i onLi st ()
 api cal no_HH. append()
 basi l ar no_HH. append()
}

pr oc geom() {
 f or sec al l { }
 soma { L = 30 di am = 30 }
 api cal { L = 600 di am = 1 }
 basi l ar { L = 200 di am = 2 }
 axon { L = 1000 di am = 1 }
}

pr oc geom_nseg() {
 soma ar ea(. 5) / / make sur e di am r ef l ect s 3d poi nt s
 f or sec al l { nseg = i nt ((L/ (0. 1* l ambda_f (100)) +. 9) / 2) *2 + 1 }
}

pr oc bi ophys() {
 f or sec al l {
 Ra = 100
 cm = 1
 }
 f or sec has_HH {
 i nser t hh
 gnabar _hh = 0. 12
 gkbar _hh = 0. 036
 gl _hh = 0. 0003
 el _hh = - 54. 3
 }
 f or sec no_HH {
 i nser t pas
 g_pas = 0. 0002
 e_pas = - 65
 }
}

access soma

cel l def ()

Listing 6.2. The contents of cel l . hoc , a file generated by exporting data from

the CellBuilder that was used in Chapter 1 to implement the model specified in

Table 6.1 and 2 and shown in Fig. 6.1.

So we skip over the definition of pr oc cel l def () to find the first statement that is

executed:

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 6 November 26, 2004

cr eat e soma, api cal , basi l ar , axon

Nothing too obscure about this. Next we jump over the definitions of two more pr ocs

(the temptingly simple t opol () and the slightly puzzling basi c_shape()) before

encountering a declaration of three obj r ef s (see Chapter 13: Object oriented

programming)

obj r ef al l , has_HH, no_HH

that are clearly used by the immediately following pr oc subset s() (what does it do?

patience, all will be revealed . . .).

Finally at the end of the file we find a declaration of the default section, and then the

procedure cel l def () is called.

pr oc cel l def () {
 t opol ()
 subset s()
 geom()
 bi ophys()
 geom_nseg()
}

This is the master procedure of this file. It invokes other procedures whose names remind

us of that familiar sequence "topology, subsets, geometry, biophysics" before it ends with

the eponymic geom_nseg() . Using cel l def () as our guide, we can skim through the

rest of the procedures.

�
t opol () first connects the sections to form the branched architecture of our model,

and then it calls basi c_shape() . The latter uses pt 3dadd statements that are based

on the shape of the stick figure that we saw in the CellBuilder itself. This establishes

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

the orientations (angles) of sections, but the lengths and diameters will be superseded

by statements in geom() , which is executed later.

�
subset s() uses Sect i onLi s t s to implement the three subsets that we defined in

the CellBuilder (al l , has_HH, no_HH).

�
geom() specifies the actual physical dimensions of each of the sections.

�
bi ophys() establishes the biophysical properties of the sections.

�
geom_nseg() applies the discretization strategy we specified, which in this case is to

ensure that no segment is longer than 0.1 times the length constant at 100 Hz (see The

d_lambda rule in Chapter 5). This procedure is last to be executed because it needs

to have the geometry and biophysical properties of the sections.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 6 November 26, 2004

Instrumenting a model with hoc

The next part of exampl e. hoc contains

statements that set up a synaptic input and

create a graphical display of simulation results

(Listing 6.3). The synapse and the graph are

specific instances of the Al phaSynapse and

Gr aph classes, and are managed with object

syntax (see Chapter 13). The synapse is placed

at the middle of the soma and is assigned the

desired time constant, peak conductance, and

reversal potential. The graph will be used to

show the time course of soma. v(0. 5) , the

somatic membrane potential.

/ /
/ * i nst r ument at i on * /
/ /

/ / / / / synapt i c i nput / / / /

obj r ef syn
soma syn = new Al phaSynapse(0. 5)
syn. onset = 0. 5
syn. t au = 0. 1
syn. gmax = 0. 05
syn. e = 0

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The strategy for dealing with synapses

depends on the nature of the model. They

are treated as part of the instrumentation in

cellular and subcellular models, and there is

indeed a sense in which they can be

regarded as "physiological extensions" of

the stimulating apparatus. However,

synapses between cells in a network model

are clearly intrinsic to the biological

system. This difference is reflected in the

GUI tools for constructing models of

individual cells and networks.

November 26, 2004 The NEURON Book: Chapter 6

/ / / gr aphi cal di spl ay / / /

obj r ef g
g = new Gr aph()
g. si ze(0, 5, - 80, 40)
g. addvar (" soma. v(0. 5) " , 1, 1, 0. 6, 0. 9, 2)

Listing 6.3. The second part of exampl e. hoc specifies the instrumentation

used to stimulate and monitor our model.

Setting up simulation control with hoc

The code in the last part of exampl e. hoc controls

the execution of simulations. This code must

accomplish many tasks. It must define the size of the

time step and the duration of a simulation. It also has

to initialize the simulation, which means setting time

to 0, making membrane potential assume its proper

initial value(s) throughout the model, and ensuring that

all gating variables and ionic currents are consistent

with these conditions. Furthermore, it has to advance

the solution from beginning to end and plot the

simulation results on the graph. Finally, if interactive

use is important, initializing and running simulations

should be as easy as possible.

The code in Listing 6.4 accomplishes these goals for our simple example. Simulation

initialization and execution are generally performed by separate procedures, as shown

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

Setting up simulation control is a

recurring task in developing

computational models, and much

effort can be wasted trying to

reinvent the wheel. For didactic

purposes, in this example we

create our own simulation control

code de novo. However, it is

always far more efficient to use the

powerful, customizable functions

and procedures that are built into

NEURON's standard run system

(see Chapter 7).

The NEURON Book: Chapter 6 November 26, 2004

here; the sole purpose of the final procedure is to provide the minor convenience that

simulations can be initialized and executed by merely typing the command go() at the

oc> prompt.

The first three statements in Listing 6.4 specify the default values for the time step,

simulation duration, and initial membrane potential. However, initialization doesn't

actually happen until you invoke the i ni t i al i ze() procedure, which contains

statements that set time, membrane potential, gating variables and ionic currents to their

proper initial values. The main computational loop that executes the simulation (whi l e

(t <t s t op) { }) is in the i nt egr at e() procedure, with additional statements that

make the plot of somatic membrane potential appear in the graph.

/ /
/ * s i mul at i on cont r ol * /
/ /

dt = 0. 025
t st op = 5
v_i ni t = - 65

pr oc i ni t i al i ze() {
t = 0
f i ni t i al i ze(v_i ni t)
f cur r ent ()

}

pr oc i nt egr at e() {
g. begi n()
whi l e (t <t st op) {

f advance()
g. pl ot (t)

}
g. f l ush()

}

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

pr oc go() {
i ni t i al i ze()
i nt egr at e()

}

Listing 6.4. The final part of exampl e. hoc provides for initialization and

execution of simulations.

Testing simulation control

Use NEURON to execute exampl e. hoc (a graph should appear) and then type the

command go() (this should launch a simulation, and a trace will appear in the graph).

Change the value of v_i ni t to -60mV and repeat the simulation (at the oc> prompt type

v_i ni t =- 60, then type go()). When you are finished, type qui t () in the interpreter

window to exit NEURON.

Evaluating and using the model

Now that we have a working model, we are almost ready to put it to practical use. We

have already checked that its sections are properly connected, and that we have correctly

specified their biophysical properties. Although we based the number of segments on

nseg generated by the CellBuilder using the d_lambda rule, we have not really tested

discretization in space or time, so some exploratory simulations to evaluate the spatial

and temporal grid are advisable (see Chapter 4 and Choosing a spatial grid in

Chapter 5). Once we are satisfied with its accuracy, we may be interested in improving

simulation speed, saving graphical and numerical results, automating simulations and

data collection, curve fitting and model optimization. These are somewhat advanced

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 6 November 26, 2004

topics that we will examine later in this book. The remainder of this chapter is concerned

with practical strategies for working with models and fixing common problems.

Combining hoc and the GUI

The GUI tools are a relatively "recent" addition to NEURON (recent is a relative term

in a fast-moving field--would you believe 1995?) so many published models have been

implemented entirely in hoc . Also, many long-time NEURON users continue to work

quite productively by developing their models, instrumentation, and simulation control

exclusively with hoc . Often the resulting software is elegantly designed and implemented

and serves its original purpose quite well, but applying it to new research questions can

be quite difficult if significant revision is required.

Some of this difficulty can be avoided by generic good programming practices such

as modular design, in particular striving to keep the specifications of the model,

instrumentation, and simulation control separate from each other (see Elementary

project management below). There is also a large class of problems that would require

significant programming effort if one starts from scratch, but which can be solved with a

few clicks of the mouse by taking advantage of existing GUI tools. But what if you don't

see the NEURON Main Menu toolbar, or (as often happens when you first start to work

with a "legacy" model) you do see it but many of the GUI tools don't seem to work?

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

No NEURON Main Menu toolbar?

This is actually the easiest problem to solve. At the oc>

prompt, type the command l oad_f i l e(" nr ngui . hoc") and

the toolbar should quickly appear. If you add this statement to the very beginning of the

hoc file, you'll never have to bother with it again.

The toolbar will always appear if you use nr ngui to load a hoc file. On the Mac this

is what happens when you drag and drop a hoc file onto the nr ngui icon. Under

MSWindows you would have to start NEURON by clicking on its desktop nr ngui icon

(or on the nr ngui item in the Start menu's NEURON program group), and then use

NEURON Main Menu / File / load hoc to open the the hoc file. UNIX/Linux users can

just type nr ngui filename at the system prompt.

However, even if you see the toolbar, many of the GUI tools will not work if the hoc

code didn't define a default section.

Default section? We ain't got no default section!

No badges, either. But to make full use of the GUI tools, you do need a default

section. To see what happens if there isn't one, let's add a second synapse to the

instrumentation of our example as if we were modeling feedforward inhibition. We could

do this by writing hoc statements that define another point process, but this time let's use

the GUI (see 4. Instrument the model. Signal sources in Chapter 1).

First, change exampl e. hoc by adding the statement

l oad_f i l e(" nr ngui . hoc")

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

nr ngui also loads the

standard run library

The NEURON Book: Chapter 6 November 26, 2004

at the very beginning of the file. Now when NEURON executes the commands in

exampl e. hoc , the first thing that happens is the GUI

library is loaded and the NEURON Main Menu toolbar

appears.

But NEURON Main Menu / Tools / Point Processes / Managers / Point Manager

doesn't work. Instead of a PointProcessManager we get an error message that there is

"no accessed section" (Fig. 6.2). What went wrong, and how do we fix it?

Fig. 6.2. A useful error message.

Many of the GUI tools, such as voltage graphs, shape plots, and point processes, must

refer to a particular section at the moment they are spawned. This is because sections

share property names, such as L and v . Remember the statement we used to create a point

process in exampl e. hoc:

soma syn = new Al phaSynapse(0. 5)

This placed the newly created synapse at the 0.5 location on a particular section: the

soma. But we're not writing hoc statements now; we're using a graphical tool (the

NEURON Main Menu) to create another graphical tool that we will use to attach a point

process to a section, and the NEURON Main Menu has no way to guess which section

we're thinking about.

The way to fix this problem is to add the statement

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

UNIX/Linux users can go back to

typing nr ngui exampl e. hoc .

November 26, 2004 The NEURON Book: Chapter 6

access soma

to our model description, right after the cr eat e

statement. The access statement defines the default

section (see Which section do we mean? in

Chapter 5). If we assign membrane properties or attach

a point process to a model, the default section is

affected unless we specify otherwise. And if we use the GUI to create a plot of voltage

vs. time, v at the middle of the default section is automatically included in the list of

things that are plotted.

So click on the "Continue" button to dismiss the error message,

quit NEURON, add the access soma statement to

exampl e. hoc , and try again. This time it works. Configure the

PointProcessManager to be an AlphaSynapse with onset =

0.5 ms, tau = 0.3 ms, gmax = 0.04 µS, and e = -70 mV and type

go() to run a simulation. Run a couple more simulations with tau = 1 ms and 3 ms. Then

exit NEURON.

Strange Shapes?

The barbed wire model

In Chapter 1 we mentioned that the 3-D method for specifying geometry can be used

to control the appearance of a model in a Shape plot. The benefits of the 3-D method for

models based on detailed morphometric data are readily appreciated: the direct

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

If there are many sections, which

one should be the default section?

A good rule of thumb is to pick a

conceptually privileged section

that will get most of the use. The

soma is generally a good choice.

Scientific question:

can you explain the

effect of the

inhibitory synapse's

tau on cell firing?

The NEURON Book: Chapter 6 November 26, 2004

correspondence between the anatomy of the cell as seen under a microscope, and its

representation in a Shape plot, can assist conceptual clarity when specifying model

properties and understanding simulation results. Perhaps less obvious, but no less real, is

the utility of the 3-D method for dealing with more abstract models, whose geometry is

easy enough to specify in terms of L and di am. We hinted at this in the walkthrough of

the hoc code exported by the CellBuilder, but a few examples will prove its value and at

the same time help prevent misapplication and misunderstanding of this approach.

Suppose our conceptual model is a cell with an apical dendrite that gives rise to 10

oblique branches along its length. For the sake of visual variety, we will have the lengths

of the obliques increase systematically with distance from the soma. Listing 6.5 presents

an implementation of such a model using L and di am to specify geometry. The apical

trunk is represented by the proximal section api cal and the sequence of progressively

more distal sections ap[0] - ap[NDEND- 1] . With our mind's eye, aided perhaps by dim

recollection of Ramon y Cajal's marvelous drawings, we can visualize the apical trunk

stretching away from the soma in a more or less straight line, with the obliques coming

off at an angle to one side.

/ / / / / / / t opol ogy / / / / / / / /

NDEND = 10

cr eat e soma, api cal , dend[NDEND] , obl i que[NDEND]
access soma

connect api cal (0) , soma(1)
connect ap[0] (0) , api cal (1)
connect obl i que[0] (0) , api cal (1)

f or i =1, NDEND- 1 {
 connect ap[i] (0) , ap[i - 1] (1)
 connect obl i que[i] (0) , dend[i - 1] (1)
}

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

/ / / / / / / geomet r y / / / / / / / /

soma { L = 30 di am = 30 }

api cal { L = 3 di am = 5 }

f or i =0, NDEND- 1 {
 ap[i] { L = 15 di am = 2 }
 obl i que[i] { L = 15+5* i di am = 1 }
}

Listing 6.5. Implementation of an abstract model that has a moderate degree of

dendritic branching using L and di am to specify geometry.

But executing this code and bringing up a Shape plot (e.g. by NEURON Main Menu /

Graph / Shape plot) produces the results shown in Figure 6.3. So much for our mind's

eye. Where did all the curvature of the apical trunk come from?

This violence to our imagination stems from the fact that stylized specification of

model geometry says nothing about the orientation of sections. At every branch point,

NEURON's internal routine for rendering shapes makes its own decision, and in doing so

it follows a simple rule: make a fork with one child pointing to the left and the other to

the right by the same amount relative to the orientation of the parent. Models with more

complex branching patterns can look even stranger; if the detailed architecture of a real

neuron is translated to simple hoc statements that assert nothing more than connectivity,

length, and diameter, the resulting Shape may resemble a tangle of barbed wire.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 6 November 26, 2004

Fig. 6.3. Shape plot rendering of the model produced by the code in Listing 6.5.

To help indicate the location of the soma section, Shape Style: Show Diam was

enabled.

To gain control of the graphical appearance of our model, we must specify its

geometry with the 3-D method. This is illustrated in Listing 6.6, where we have

meticulously used absolute (x,y,z) coordinates, based on the actual location of each

section, as arguments for the pt3dadd() statements. Now when we bring up a Shape plot,

we get what we wanted: a nice, straight apical trunk with oblique branches coming off to

one side (Fig. 6.4).

/ / / / / / / geomet r y / / / / / / / /

f or al l pt 3dc l ear ()

soma {
 pt 3dadd(0, 0, 0, 30)
 pt 3dadd(30, 0, 0, 30)
}

api cal {
 pt 3dadd(30, 0, 0, 5)
 pt 3dadd(60, 0, 0, 5)
}

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

f or i =0, NDEND- 1 {
 ap[i] {
 pt 3dadd(60+i * 15, 0, 0, 2)
 pt 3dadd(60+(i +1) * 15, 0, 0, 2)
 }
 obl i que[i] {
 pt 3dadd(60+i * 15, 0, 0, 1)
 pt 3dadd(60+i * 15, - 15- 5* i , 0, 1)
 }
}

Listing 6.6. Specification of model geometry using the 3-D method. This

assumes the same model topology as shown in Listing 6.5.

Fig. 6.4. Shape plot rendering of the model when the geometry is specified

using the 3-D method shown in Listing 6.6.

Although we scrupulously used absolute (x,y,z) coordinates for each of the sections,

we could have saved some effort by taking advantage of the fact that the root section is

treated as the origin of the cell with respect to 3-D position. When any section's 3-D

shape or length changes, the 3-D information of all child sections is translated to

correspond to the new position. Thus, if the soma is the root section, we can move an

entire cell to another location just by changing the location of the soma. Another useful

implication of this feature allows us to simplify our model specification: the only

pt 3dadd() statements that must use absolute coordinates are those that belong to the

root section. We can use relative coordinates for all child sections, instead of absolute

(x,y,z) coordinates, as long as they result in proper length and orientation (see

Listing 6.7).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 6 November 26, 2004

/ / / / / / / geomet r y / / / / / / / /

f or al l pt 3dc l ear ()

soma {
 pt 3dadd(0, 0, 0, 30)
 pt 3dadd(30, 0, 0, 30)
}

api cal {
 pt 3dadd(0, 0, 0, 5)
 pt 3dadd(30, 0, 0, 5)
}

f or i =0, NDEND- 1 {
 ap[i] {
 pt 3dadd(0, 0, 0, 2)
 pt 3dadd(15, 0, 0, 2)
 }
 obl i que[i] {
 pt 3dadd(0, 0, 0, 1)
 pt 3dadd(0, - 15- 5* i , 0, 1)
 }
}

Listing 6.7. A simpler 3-D specification of model geometry that relies on the

absolute coordinates of the root section and relative coordinates of all child

sections. Compare the (x,y,z) coordinates in the pt 3dadd() statements for

api cal , ap, and obl i que with those in Listing 6.6.

The case of the disappearing section

In Chapter 5 we mentioned that it is generally a good idea to attach the 0 end of a

child section to its parent, in order to avoid confusion. For an example of one particularly

vexing problem that can arise when this recommendation is ignored, consider Listing 6.8.

The access dend[0] statement and the arguments to the pt 3dadd() statements

suggest that the programmer's conceptual model had the sections arranged in the left to

right sequence dend[0] - dend[1] - dend[2] . Note that the 1 end of dend[0] is

connected to the 0 end of dend[1] , and the 1 end of dend[1] is connected to the 0 end

of dend[2] . This means that dend[2] , which is not connected to anything, is the root

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

section. From a purely computational standpoint this is perfectly fine, and if we simulate

the effect of a current step applied to the 0 end of dend[0] , there will be an orderly

spread of charge and potential along each section from its 0 end to its 1 end, with the

largest membrane potential shift in dend[0] and the smallest in dend[2] .

/ / / / / / / t opol ogy / / / / / / / /

NDEND = 3

cr eat e dend[NDEND]
access dend[0]

connect dend[0] (1) , dend[1] (0)
connect dend[1] (1) , dend[2] (0)

/ / / / / / / geomet r y / / / / / / / /

f or al l pt 3dc l ear ()

dend[0] {
 pt 3dadd(0, 0, 0, 1)
 pt 3dadd(100, 0, 0, 1)
}

dend[1] {
 pt 3dadd(100, 0, 0, 1)
 pt 3dadd(200, 0, 0, 1)
}

dend[2] {
 pt 3dadd(200, 0, 0, 1)
 pt 3dadd(300, 0, 0, 1)
}

Listing 6.8. The programmer's intent seems to be for dend[0] , dend[1] , and

dend[2] to line up from left to right. However, the connect statements make

dend[2] the root section, and thereby hangs a tale.

However, we're in for a surprise when we bring up a PointProcessManager

(NEURON Main Menu / Tools / Point Processes / Managers / Point Manager) and try to

place an I Cl amp at different locations in this model. No matter where we click, we can

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 6 November 26, 2004

only put the I Cl amp on dend[0] or dend[2] (Fig. 6.5). Try as we might to find it,

there just doesn't seem to be any dend[1] !

But dend[1] really does exist, and we can easily prove this by invoking the

t opol ogy() function, which generates this diagram:

| - | dend[2] (0- 1)
 ` | dend[1] (1- 0)
 ` | dend[0] (1- 0)

This not only confirms the existence of dend[1] , but also shows that dend[2] is the

root section, with the 1 end of dend[1] connected to its to the 0 end, and the 1 end of

dend[0] connected to the 0 end of dend[1] . Exactly as we expected, and just as

specified by the code in Listing 6.8.

SelectPointProcess

Show

IClamp[0]

at: dend[0](0.5)

PointProcessManager

SelectPointProcess

Show

IClamp[0]

at: dend[2](0.5)

PointProcessManager

Fig. 6.5. The code in Listing 6.8 produces a model that seems not to have a

dend[1] --or at least, we can't find dend[1] when we try to use a

PointProcessManager to attach an I Cl amp to it.

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

But isn't something terribly wrong with the appearance of our model in the Shape

plot? Not at all. Although we might not like it, the model looks exactly as it should, given

the statements in Listing 6.8.

Here's why. As we mentioned above in The barbed wire model, the location of the

root section determines the placement of all other sections. The root section is dend[2] ,

and the pt 3dadd() statements in Listing 6.8 place its 0 end at (200, 0, 0) and its 1 end at

(300, 0, 0) (Fig. 6.6).

Since dend[1] is attached to the 0 end of dend[2] , the first 3-D data point of dend[1]

is mapped to (200, 0, 0) (see 3-D specification in Chapter 5). According to the

pt 3dadd() statements for dend[1] , its last 3-D data point lies 100 µm to the right of its

first 3-D point. This means that the 1 end of dend[1] is at (200, 0, 0) and its 0 end is at

(300, 0, 0) (Fig. 6.6)--precisely the locations of the left and right ends of dend[2] ! So

dend[1] and dend[2] will appear as the same line in the Shape plot. When we try to

select one of these sections by clicking on this line, the section we get will depend on the

inner workings of NEURON's GUI library. It just happens that, for the particular hoc

statements in Listing 6.8, we can only select points on dend[2] . This is as if dend[1] is

hidden from view and shielded from our mouse cursor.

Finally we consider dend[0] , whose 1 end is connected to the 0 end of dend[1] .

Thus its first 3-D data point is drawn at (300, 0, 0), and, following its pt 3dadd()

statements, its last 3-D data point lies 100 µm to the right, i.e. at (400, 0, 0). Thus

dend[0] runs from (400, 0, 0) (its 0 end) to (300, 0, 0) (its 1 end), which is just to the

right of dend[2] and the hidden dend[1] (Fig. 6.6).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 6 November 26, 2004

So the mystery is solved. All three sections are present, but two are on top of each

other.

The first lesson to take from this sad tale is the usefulness of t opol ogy() as a

means for diagnosing problems with model architecture. The second lesson is the

importance of following our recommendation to avoid confusion by connecting the 0 end

of a child section to its parent. The strange appearance of the model in the Shape plot

happened entirely because this advice was not followed. There are probably occasions in

which it makes excellent sense to violate this simple rule; please be sure to let us know if

you find one.

(200,0,0) (300,0,0) (400,0,0)

dend[2] runs
from here

(its 0 end)

from here
dend[1] runs

(its 1 end)

to here
(its 1 end)

to here
(its 0 end)

to here
(its 0 end)

from here
(its 1 end)

dend[0] runs

.

.

.

Fig. 6.6. Deciphering the pt 3dadd() statements in Listing 6.8 leads us to

realize that we only see two sections in the Shape plot because two of them

(dend[1] and dend[2]) are drawn in the same place. This figure shows the

(x,y,z) coordinates of the sections and indicates their 0 and 1 ends.

Graphs don't work?

If there is no default section, new graphs created with the GUI won't work properly.

You've already seen how to declare the default section, so everything should be OK,

right? Let's see for ourselves.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

Make sure that exampl e. hoc starts with l oad_f i l e(" nr ngui . hoc") and

contains an access soma statement, and then use NEURON to execute it. Then follow

the steps shown in Fig. 1.27 (see Signal monitors in Chapter 1) to create a space plot

that will show membrane potential along the length of the cell. Now type go() . What

happens?

The graph of soma. v(0. 5) shows an action potential, but the trace in the space plot

remains a flat line. Is there something wrong with the space plot, or does the problem lie

elsewhere?

To find out, use NEURON Main Menu / Tools / RunControl to bring up a RunControl

window. Click on the RunControl's Init & Run button. Result: this time it's the space plot

that works, and the graph of soma. v(0. 5) that doesn't (Init & Run should have erased

the trace in the latter and drawn a new one).

So there are actually two problems. The simulation control code in our hoc file can't

update new graphs that we create with the GUI, and the GUI's own simulation control

code can't update the "old" graph that is created by our hoc file. Of the many possible

ways to deal with these problems, one is ridiculously easy and another requires a little

effort (but only a very little).

The ridiculously easy solution is to use the GUI to make a new graph that shows the

same variables, and ignore or throw away the old graph. In this example, resorting to

NEURON Main Menu / Graph / Voltage axis gets us a new graph. Since the soma is the

default section, the v(. 5) that appears automatically in our new graph is really

soma. v(0. 5) .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 6 November 26, 2004

What if a lot of programming went into one or more of the old graphs, so the GUI

tools offer nothing equivalent? This calls for the solution that requires a little effort:

specifically, we add a single line of hoc code for each old graph that needs to be fixed. In

this example we would revise the code that defines the old graph by adding the line

shown here in bold:

/ / / gr aphi cal di spl ay / / /

obj r ef g
g = new Gr aph()
addplot(g, 0)
g. si ze(0, 5, - 80, 40)
g. addvar (" soma. v(0. 5) " , 1, 1, 0. 6, 0. 9, 2)

Listing 6.9. Fixing an old graph so it works with NEURON's standard run

system.

This takes advantage of NEURON's standard run system, a set of functions and

procedures that orchestrate the execution of

simulations (see Chapter 7). The statement

addpl ot (g, 0) adds g to a list of graphs

that the standard run system automatically

updates during the course of a simulation.

Also, the x-axis of our graph will be adjusted

automatically when we change t s t op (Tstop in the RunControl panel). NEURON's GUI

relies heavily on the standard run system, and every time we click on the RunControl's

Init & Run button we are actually invoking routines that are built into the standard run

system.

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The standard run system has many powerful

features and can be used in any simulation,

with or without the GUI. The statement

l oad_f i l e(" st dr un. hoc") loads the

hoc code that implements the standard run

system, without loading the GUI.

November 26, 2004 The NEURON Book: Chapter 6

Does this mean that we have to abandon the simulation control code in our hoc

program, and does it matter if we do? The control code in exampl e. hoc performs a

"plain vanilla" initialization and simulation execution, so abandoning it in favor of the

standard run system only makes things better by providing additional functionality. But

what if we want a customized initialization or some unusual flow of simulation

execution? As we shall see in Chapter 7, the standard run system was designed and

implemented so that only minor changes are required to accommodate most special

needs.

Conflicts between hoc code and GUI tools

Many of the GUI tools specify properties of the model or the interface, and this leads

to the possibility of conflicts that cause a mismatch between what you think is in the

computer, and what actually is in the computer. For example, suppose you use the

CellBuilder to construct a model cell with a section called dend that has di am = 1 µm,

L = 300 µm, and passive membrane, and you turn Continuous create ON. Then typing

dend psect i on() at the oc> prompt will produce something like this

oc>dend psect i on()
dend { nseg=11 L=300 Ra=80

. . .
i nser t pas { g_pas=0. 001 e_pas=- 70}

}

(a few lines were omitted for clarity), which confirms the presence of the pas

mechanism.

A bit later, you decide to make dend active and get rid of its pas mechanism. You

could do this with the CellBuilder, but let's say you find it quicker just to type

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 6 November 26, 2004

oc>dend { uni nser t pas i nser t hh}

and then confirm the result of your action with another psect i on()

oc>dend psect i on()
dend { nseg=11 L=300 Ra=80

. . .
i nser t hh { gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t na_i on { ena=50}
i nser t k_i on { ek=- 77}

}

So far, so good.

But check the Biophysics page of the CellBuilder, and you will see that the change

you accomplished with hoc did not track back into the GUI tool, which still shows dend

as having pas but not hh. This is particularly treacherous, because it is all too easy to

become confused about what is the actual specification of the model. If these new

biophysical properties lead to particularly interesting simulation results, you might save

"everything" to a session file, thinking that you would be able to reproduce those results

in the future--but the session file would only contain the state of the GUI tools.

Completely absent would be any reflection of the fact that you had executed your own

hoc statement to override the CellBuilder's model specification.

And still more surprises are in store. Using the CellBuilder, with Continuous create

still ON, change dendritic diameter to 2 µm. Now use psect i on() to check the

properties of dend

oc>dend psect i on()
dend { nseg=7 L=300 Ra=80

. . .
i nser t hh { gnabar _hh=0. 12 gkbar _hh=0. 036 gl _hh=0. 0003 el _hh=- 54. 3}
i nser t na_i on { ena=50}
i nser t k_i on { ek=- 77}
i nser t pas { g_pas=0. 001 e_pas=- 70}

}

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

and you see that both pas and hh are present, despite the previous use of uni nser t to

get rid of the pas mechanism.

Similar conflicts can arise between hoc statements and other GUI tools (e.g. the

PointProcessManager) All of these problems have a

common source: changes you make at the hoc level

are not propagated to the GUI tools, so if you then

make any changes with the GUI tools, it is likely that

all the changes you made with hoc statements will be lost. The lesson here is to exercise

great caution when combining GUI tools and hoc statements, in order to avoid

introducing potentially confusing conflicts.

Elementary project management

The example used in this chapter is simple so all of its code fits in a single, small file

that can be quickly understood. Nonetheless, we were careful to organize exampl e. hoc

in a way that separates specification of the model per se from the specification of the

interface, i.e. the instrumentation and control procedures for running simulations. This

separation maximizes clarity and reduces effort, and it should begin while the model is

still in the conceptual stage.

Designing a model starts by answering the questions: what anatomical features are

necessary, and what biophysical properties should be included? The answers to these

questions govern key decisions about what what kinds of stimuli to apply, what kinds of

measurements to make, and how to display, record, and analyze these measurements.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

Conflicts may also occur between

the CellBuilder and older GUI tools

for managing section properties.

The NEURON Book: Chapter 6 November 26, 2004

When it is finally time to implement the computational model, it is a good idea to try to

keep these questions separate. This is the way NEURON's graphical tools are organized,

and this is the way models specified with hoc should be organized.

� First you create a model, specifying its topology, geometry, and biophysics, either

with the CellBuilder or with hoc code. This is a representation of selected aspects of a

biological system, and you might think of it as a virtual experimental preparation.

� Then you instrument that model. This is analogous to applying stimulating and

recording electrodes and other apparatus to a real neuron or neural circuit in the

laboratory.

� Finally, you set up controls for running simulations.

Instrumentation and simulation controls are the user interface for exercising the

model. Metaphorically speaking, they amount to a virtual experimental rig. In a wet lab,

noone would ever confuse a brain slice with the microscope or instrumentation rack. The

physical and conceptual distinction between biological preparation and experimental rig

them is an inescapable fact and has a strong bearing on the and execution of

experiments. NEURON lets you carry this separation over into modeling. Why confound

the code that defines the properties of a model cell with the code that generates a stimulus

or governs the sequence of events in a simulation?

One way to help separate model specification from user interface is to put the code

that defines them into separate files. One file, which we might call cel l . hoc , would

contain the statements that specify the properties of the model: its topology, geometry,

and biophysics. The code that defines point processes, graphs, other instrumentation, and

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

simulation controls would go into a second file that we might call r i g. hoc . Finally, we

would use a third file for purely administrative purposes, so that a single command will

make NEURON execute the other files in proper sequence. This file, which we might call

i ni t . hoc , would contain only the statements shown in Listing 6.10. Executing

i ni t . hoc with NEURON will make NEURON load its GUI and standard run libraries,

bring up a NEURON Main Menu toolbar, execute the statements in cel l . hoc to

reconstitute the model cell, and finally execute the statements in r i g. hoc to reconstitute

our user interface for exercising the model.

l oad_f i l e(" nr ngui . hoc")
l oad_f i l e(" cel l . hoc")
l oad_f i l e(" r i g. hoc")

Listing 6.10. Contents of i ni t . hoc .

For instance, we could recast exampl e. hoc in this manner by putting its model

specification component into cel l . hoc , while the instrumentation and simulation

control components would become r i g. hoc . This would allow us to reuse the same

model specification with different instrumentation configurations r i g1. hoc , r i g2. hoc,

etc.. To make it easy to select which rig is used, we could create a corresponding series of

i ni t files (i ni t 1. hoc , i ni t 2. hoc , etc.) that differ only in the argument to the third

l oad_f i l e() statement. This strategy is not limited to hoc files, but can also be used to

retrieve cells and/or interfaces that have been constructed with the GUI and saved to

session (ses) files.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 6 November 26, 2004

Iterative program development

A productive strategy for program development in NEURON is to revise and

reinterpret hoc code and/or GUI tools repeatedly during the same session. Bugs afflict all

nontrivial programs, and the process of making incremental changes, saving them to

intermediate hoc or ses files, and testing at each step, reduces the difficulty of trying to

diagnose and eliminate them. In this way it is possible begin with a program skeleton that

consists of one or two hoc files with a handful of l oad_f i l e() statements and function

stubs, and quickly refine it until everything works properly. However, two caveats do

apply.

First, a variable cannot be declared with a new type during the same session. In other

words, "once a scalar, always a scalar" (or double, or string, or object reference).

Attempting to redeclare a variable will produce an error message, e.g.

oc>x = 3
f i r st i nst ance of x
oc>obj r ef x
/ usr / l ocal / nr n/ i 686/ bi n/ nr ni v: x al r eady decl ar ed near l i ne 2
obj r ef x
 ^
oc>

Trying to redefine a double, string, or object reference as something else will likewise

fail. This is generally of little consequence, since it is rarely absolutely necessary to

change the type assigned to a particular variable name. When this does happen, you just

have to exit NEURON, make your changes to the hoc code, and restart.

The second caveat is that, once the hoc interpreter has parsed the code in a template

(see Chapter 13: Object-oriented programming), the class that it defines is fixed for

that session. This means that any changes to a template require exiting NEURON and

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

restarting. The result is some inconvenience when developing and testing new classes,

but this is still easier than having to recompile and link a program in C or C++.

References

Kernighan, B.W. and Pike, R. Appendix 2: Hoc manual. In: The UNIX Programming

Environment. Englewood Cliffs, NJ: Prentice-Hall, 1984, p. 329-333.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 6 November 26, 2004

Chapter 6 Index

3-D specification of geometry 23

coordinates

absolute vs. relative 26, 27

A

access 23

B

biophysical properties

specifying 8

C

CellBuilder

hoc output

exported cell 11

CellBuilder GUI

Continuous create 35, 36

Management page

Export 11

computational model

implementing with hoc 4

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

conceptual clarity 3, 24

connect 5

create 5

D

diam 7

distributed mechanism 8

E

error message

no accessed section 22

G

good programming style

iterative development 40

modular programming 20

program organization 37

separate model specification from user interface 38

GUI

combining with hoc 20

conflicts with hoc or other GUI tools35

tools

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 6 November 26, 2004

are implemented in hoc 3

work by constructing hoc programs 3

vs. hoc 2

H

hoc 2

can do anything that a GUI tool can 3

combining with GUI 20

conflicts with GUI 35

idiom

forall psection() 10

load_file("nrngui.hoc") 21

implementing a computational model 4

vs. GUI 2

hoc syntax

comments 4

variables

cannot change type 40

I

initialization 17

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

custom 35

insert 8

instrumentation 37

L

L 7

M

model

computational

essential steps 1

correspondence between conceptual and computational 1, 5

testing 19

model specification 37

as virtual experimental preparation 38

N

NEURON

starting with a specific hoc file 8

NEURON Main Menu

creating 21, 39

nrngui 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 6 November 26, 2004

loads GUI and standard run library 21

nrniv 8

nseg 7

P

plain text file 4

PointProcessManager

creating 29

project management 37

Q

quantitative morphometric data 23

R

RunControl

creating 33

RunControl GUI

Init & Run 34

Tstop 34

S

section

child

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

connect 0 end to parent 28

currently accessed

default section 23

orientation 15, 25, 27

root section 9

is 3-D origin of cell 27, 31

vs. default. section 9

SectionList class 15

Shape plot

creating 25

Shape plot GUI

Shape Style

Show Diam 26

simulation control 17, 37

standard run system 34

addplot() 34

tstop 34

stylized specification of geometry 7

strange shapes 23

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 6 November 26, 2004

synapse

as instrumentation 16

T

template

cannot be redefined 40

topology

checking 9, 32

specifying 5

topology, subsets, geometry, biophysics 14

topology() 32

troubleshooting

disappearing section 28

Graphs don't work 32

legacy code 20

no default section 21

no NEURON Main Menu toolbar 21

U

uninsert 37

user interface 37

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 26, 2004 The NEURON Book: Chapter 6

as virtual experimental rig 38

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

November 27, 2004 The NEURON Book: Chapter 7

Chapter 7

How to control simulations

Simulation control with the GUI

The RunControl panel (Fig. 7.1 right) has several buttons and field editors (boxes that

contain numbers) that provide a basic set of controls for initializing, starting, and

stopping simulations. The actions listed in Table 7.1 are "defaults," i.e. the standard

behavior of the tool. These actions are all customizable, because the RunControl works

by calling procedures that are defined in hoc (see below) so you can always create a new

procedure with the same name that substitutes for the default code.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 7 November 27, 2004

Fig. 7.1. Left: NEURON Main Menu / Tools / RunControl brings up a panel with

controls for running simulations. Right: The RunControl panel allows a great

deal of control over the execution of simulations. See text for details.

In learning to use the RunControl panel it may help to keep in mind that adjacent

controls have related functions. The three buttons at the top (Init, Init & Run, and Stop)

perform the most common operations: initializing, starting, and stopping simulations. The

next three (Continue til (ms), Continue for (ms), and Single Step) are particularly helpful

for exploratory dissection of the time sequence of events in dynamically complex

simulations.

Graphs created from the NEURON Main Menu respond appropriately to all of these

controls. Init erases unsaved traces from graphs whose x axis shows time, and makes all

other graphs (e.g. variables vs. anatomical location, phase plane plots) show initial

values, whereas Init & Run, Continue til, Continue for, and Single Step cause graphs to be

updated at intervals governed by Points plotted/ms and Quiet.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

Table 7.1. Functions of the RunControl panel

Button Action

Init (mV) Sets time to 0, changes Vm throughout the model to the value displayed in the

adjacent field editor, initializes ionic concentrations, and sets biophysical

mechanisms (e.g. ionic conductances, pumps) to their corresponding steady state

values.

Init & Run Same as the Init button, but then launches a simulation that runs until t equals

Tstop (see below). Graphs constructed from the NEURON Main Menu are updated

at a rate specified by Points plotted/ms and Quiet (see below).

Stop Stops a simulation at the end of a step.

Continue til (ms) Continues a simulation until t ≥ the value displayed in the adjacent field editor.

Graphs are updated according to Points plotted/ms (see below).

Continue for (ms) Continues a simulation for the amount of time displayed in the adjacent field

editor. Graphs are updated according to Points plotted/ms (see below).

Single Step Continues a simulation for one step and plots. A step is 1 / (Points plotted/ms)

milliseconds and consists of 1 / (dt · Points plotted/ms) calls to fadvance().

t (ms) No action. The adjacent numeric field shows model time during the course of a

simulation.

Tstop (ms) No action. Adjacent field is used to specify stop time for Init & Run.

dt (ms) No action. Adjacent field shows the fundamental integration time step used by

fadvance(). Values entered into this field editor are automatically rounded

down so that an integral multiple of fadvances make up a Single Step.

Points plotted/ms No action. Adjacent field is used to specify the number of times per millisecond at

which graphs are updated. Notice that reducing dt does not by itself increase the

number of points plotted. If 1 / (Points plotted/ms) is not an integral multiple of dt,

then dt is rounded down to the nearest integral fraction of 1 / (Points plotted/ms).

Quiet When checked, turns off graph updates during a simulation. This can speed things

up considerably, e.g. when using the Multiple Run Fitter in the presence of a shape

movie plot under MSWindows.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 7 November 27, 2004

Real Time (s) No action. Adjacent field shows a running display of computation time ("run

time"), with a resolution of 1 second.

The standard run system

The Init & Run button of the RunControl panel is probably the user's first contact with

the standard run system. The standard run system is implemented in the file

nrn-x.x/share/lib/hoc/stdrun.hoc (UNIX/Linux)

or

c:\nrnxx\lib\hoc\stdrun.hoc (MSWindows)

which is interpreted with a number of other files when

load_file("nrngui.hoc")

is executed or the nrngui script or icon is launched. This system is a considerable

elaboration over the minimal "oscilloscope level" simulation

proc run() {
finitialize(-65)
fcurrent()
while (t < 5) {

fadvance()
}

}

which integrates a cell specification from t = 0 to t = 5 ms. The elaborations consist of

various parameters and hooks for starting and stopping the simulation and obtaining

information during the simulation run. Tools that involve the analysis of simulation

results, e.g. optimization tools such as the Multiple Run Fitter, assume the existence of a

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

run() procedure to carry out their evaluation of the difference between simulation result

and data.

Understanding a few aspects of the standard run system is necessary in order to be

able to write functions or objects that can work in the presence of this framework, or at

least do not vitiate it. It is generally much easier to work with and reuse components of

this system than attempt to recreate a great deal of existing functionality. Most users have

come to count on existing features that allow plotting of any variable during a run, or

easy switching between integration methods.

NEURON's standard run system was designed with

the realization that research requirements are quite

varied, so no generic implementation will suffice in all

cases. Therefore an attempt was made to divide the run

process into as many elements as seemed reasonable in

order to make it easy for the user to replace any one of them. In most cases a replacement

procedure requires only one or two specific code statements directed toward maintaining

its standard function. The standard run system has proven to be usable without changes in

a wide variety of situations, with the exception of the init() procedure for initialization

(this is discussed extensively in Chapter 8). Nevertheless, certain problems can only be

overcome by writing hoc code, or even low level C code, so it is helpful to have a tour of

the sequence of events that leads to an actual time step advance. Some details of the

following discussion may change because methods are constantly being revised to

improve performance, but the broad outline of program organization and execution will

remain the same--especially in areas that are most likely to require customization.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

Be sure to load replacements of

standard functions after the

standard library. Otherwise the

library version will overwrite your

version instead of the other way

around.

The NEURON Book: Chapter 7 November 27, 2004

An outline of the standard run system

The chain of execution follows the outline

run()

stdinit()

init()

finitialize()

continuerun() or steprun()

step()

advance()

fadvance()

Each of these routines is very compact except for continuerun(), which employs

rarely used graphical interface functions to optimize both simulation speed and graph line

drawing so that the lines seem to be drawn in real time as the simulation progresses. Let's

start with fadvance() and work up from there.

fadvance()

For now it suffices that fadvance() integrates all equations of the system from t to

t+dt and then replaces the value of t by t+dt; we will examine the details of this later.

The value of dt is either set by the user when the default fixed step integration method is

used, or chosen by the integrator if the variable step method is used.

advance()

The advance() routine

proc advance() {
fadvance()

}

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

provides the hook for doing any desired calculations before and/or after each time step.

With the default fixed step method, anything is allowed. That is, we may change any state

or any parameter, including dt. Each advance takes place as though it starts from a new

initial condition without any previous history. Things are not so easy with the variable

time step methods. Although it is safe to evaluate any variable and save it in an array or

write it to a file, changing a parameter or state is not allowed unless we execute

cvode.re_init() after the change. This is because CVODE saves state and derivative

information from previous steps and assumes that all coefficients and states are

differentiable up to its current order of accuracy. Changing a parameter or state

constitutes a new set of equations, which constitutes a new problem. The only ways that

time-varying parameters may be simulated with variable step methods is in the context of

a model description or by using the interpolated form of Vector.play() (see Time-

dependent PARAMETER changes in Chapter 9).

step()

advance() is called by the step() procedure, which is implemented as

proc step() {local i
if (using_cvode_) {

advance()
} else for i=1,nstep_steprun {

advance()
}
Plot()

}

The idea behind this function is that numerical accuracy may require a smaller time step

than needed for plotting. That is, the interval between plots (call it Dt) is an integral

multiple of the underlying fadvance() time step dt. This integral multiple is calculated

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 7 November 27, 2004

in a setdt() function which reduces dt if necessary

to ensure that the Dt steps lie on a dt boundary. The

RunControl panel has a field editor labeled Points

plotted/ms which displays the value of the variable

steps_per_ms. This value, along with dt, is used

to calculate nstep_steprun and perhaps modify dt

whenever either changes by calling setdt(). One

can see that when CVODE is active, a step is just a

single advance. At the end of a step, the Plot() procedure iterates over all the Graphs

in the various plot lists that need to be updated during a simulation run. The purpose of

these lists is detailed later in this chapter (see Incorporating Graphs and new objects

into the plotting system).

steprun() and continuerun()

The step() procedure is called by the continuerun() and steprun()

procedures. steprun() is

proc steprun() {
step()
flushPlot()

}

which implements the action for the Single Step button of the RunControl. It ensures that

all the plot lists are flushed so that any deferred graph updates are performed.

continuerun() is called directly as an action by the Continue til and Continue for

buttons in the RunControl. The actions are continuerun(runStopAt) and

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Adding an object that can carry out

certain specific methods to one of

the graphLists can be an effective

way to perform special tasks during

a simulation. One advantage over

replacing proc step() is that

objects can automatically add

themselves to, and remove

themselves from, these lists.

November 27, 2004 The NEURON Book: Chapter 7

continuerun(t+runStopIn) respectively. continuerun() is quite complex, and it

is doubtful that anyone will want to replace it with something more complicated. It takes

a single argument which is the time at which the integration should stop.

Before every step(), continuerun() checks to see if the stoprun variable is

nonzero; if so it immediately breaks out of its loop. continuerun() sets stoprun to 0

on entry; stoprun is set nonzero if the user presses the Stop button on the RunControl.

stoprun is a global variable in C so it can be checked by any C or C++ class that can

carry out multiple runs and needs to properly clean up and return, e.g. optimization

routines such as the praxis optimizer. In designing any class that manages a family of

runs, one must decide what to do when the user presses Stop. If stoprun becomes

nonzero but the class ignores it, the current simulation run will end and the next run in the

family will start.

continuerun() uses the stopwatch to count the seconds in a variable called

realtime while it is executing, and this value is displayed in the Real Time field editor.

The resolution of the stopwatch is one second, and after each second the plots are flushed

with a special method that avoids redrawing the portions of lines that are already plotted,

all field editors are updated if the values they are watching have changed, and any

outstanding events are handled (otherwise pressing the Stop button would have no

effect). Actually, to give more rapid response to events, the doEvents() function is

called at every step for the first two seconds and less often after that to avoid overhead if

steps are very fast.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 7 November 27, 2004

When continuerun() has reached

its stopping time, a full flush of all the

plots is done. Plots are flushed at

intermediate times only if the variable

stdrun_quiet is 0; this variable is

toggled by the Quiet checkbox in the

RunControl. Drawing plots on the screen

is expensive and considerable speedup

can often be seen if plotting is deferred to

the end of a run. However, it often seems

worth the penalty to view the progress of

a simulation.

run()

The run() procedure

proc run() {
stdinit()
continuerun(tstop)

}

is invoked as an action by the Init & Run button to initialize the system and integrate up to

tstop, i.e. the value shown in the Tstop field editor of the RunControl. The initialization

process is discussed at length in Chapter 8, but we should note that stdinit()

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

"On one side hung a very large oil-painting so

thoroughly besmoked, and every way defaced,

that in the unequal cross-lights by which you

viewed it, it was only by diligent study and a

series of systematic visits to it, and careful inquiry

of the neighbors, that you could any way arrive at

an understanding of its purpose. Such

unaccountable masses of shades and shadows, that

at first you almost thought some ambitious young

artist, in the time of the New England hags, had

endeavored to delineate chaos bewitched. But by

dint of much and earnest contemplation, and oft

repeated ponderings, and especially by throwing

open the little window towards the back of the

entry, you at last come to the conclusion that such

an idea, however wild, might not be altogether

unwarranted."

November 27, 2004 The NEURON Book: Chapter 7

proc stdinit() {
realtime=0
startsw()
setdt()
init()
initPlot()

}

calls init()

proc init() {
finitialize(v_init)
fcurrent()

}

which is generally the only function in the system that needs to be replaced in order to

implement complex initialization strategies.

Details of fadvance()

The fadvance() function is implemented in nrn.../src/nrnoc/fadvance.c.

In one form or another, fadvance() has

always been the workhorse of the

NEURON simulator, dating back to before

NEURON's progenitor CABLE and even

prior to the hoc interpreter, when all PDP8

FOCAL (FOrmula CALculator) functions

had to begin with the letter f. One could

easily do without an finitialize()

function, since the interpreter overhead for

computing steady states is small compared

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

"From the chocks it hangs in a slight festoon over

the bows, and is then passed inside the boat

again; and some ten or twenty fathoms (called

box-line) being coiled upon the box in the bows,

it continues its way to the gunwale still a little

further aft, and is then attached to the short-warp

--the rope which is immediately connected with

the harpoon; but previous to that connexion, the

short-warp goes through sundry mystifications

too tedious to detail."

The NEURON Book: Chapter 7 November 27, 2004

to the computational effort of taking tstop/dt steps to do a simulation. But fast

integration is most naturally carried out in compiled code, which is on the order of a

hundred times faster than the interpreter.

Extending NEURON's numerical methods and simulation domain has been an

incremental process carried out over several years. It may help to understand the current

structure of fadvance() if we first consider how it evolved. The order of additions was

CVODE (variable order, variable time step integrator), NetCon (event delivery system),

LinearMechanism (overlay of algebraic equations onto the Jacobian), and DASPK

(differential algebraic solver). Each major increase in functionality reused as much of the

existing functions and program structure as possible, but a few functions needed small

changes so they could support both the old and new methods. These increases in

functionality also had to be usable with the least amount of effort on the part of the user.

For example, turning variable time step integration on or off can be done by clicking on a

checkbox in the NEURON Main Menu / Tools / VariableStepControl panel.

Our dissection of fadvance() follows its evolution by

� reviewing the details of what happens during classical fixed time step integration, i.e.

the fully implicit (backward Euler) and Crank-Nicholson methods. Topics examined

include the strategies that account for NEURON's reputation for speed:

1. exploiting the tree topology of the branched nerve equations. Tree topologies

require exactly the same number of add/multiply/divide operations as a single

unbranched cable.

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

2. using a staggered time step to avoid Newton iterations of HH-like nonlinear

channels. This gives the second order Crank-Nicholson method the same

performance per time step as the first order implicit method.

3. using rate tables involving the value of dt. This optimizes the analytic integration

of channel states by trivial assignment statements like m=m+mexp*(minf-m).

� discussing the variable time step, variable order ordinary differential equation solvers.

� walking through the operation of the local variable time step method to learn how it

works and how it handles discrete events.

Many of these items are closely related to each other, so we must occasionally mention

later additions to complete the discussion of earlier ones.

The fixed step methods: backward Euler and Crank-Nicholson

It is easiest to understand the reasons for the particular sequence of actions if we

focus on the second order correct Crank-Nicholson method (CVODE is inactive and the

global variable secondorder has the value of 2). Assume that, on entry to fadvance(),

the value of t is tentry, the voltages are second order correct at tentry, and the gating

states are second order correct at tentry + dt/2. The last assumption may seem odd, but

we will see how it helps accelerate integration.

When the Crank-Nicholson method is chosen, the purpose of fadvance() is to

integrate the voltages and states such that, on exit from fadvance(),

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 7 November 27, 2004

t = tentry + dt (call this texit)

v and concentrations are second order correct at texit

gating states are second order correct at texit + dt/2

and as a side effect

ionic currents are second order correct at texit - dt/2

Notice that these exit conditions satisfy the entry conditions for a subsequent call to

fadvance().

One might object that the entry assertions are not satisfied at t = 0 since the gating

states are second order correct at time 0, not time dt/2. We'll discuss this in detail,

however second order correctness refers to the integrated error over a specific time

interval Dt as more and more dt steps are used. The local error over a single dt step for

second order correctness is proportional to dt3 and for first order correctness it is dt2. So

as long as dstate/dt = 0 at t = 0, as it must be in the steady state, the error associated with

using state(t = 0) as the value of state(t = dt/2) is itself proportional to dt2 and is a once-

only error which does not accumulate for each dt time step. If non-steady state

initializations are performed, then the gating states should be adjusted to their values

according to state = state + dstate/dt · dt/2.

For the default backward Euler and Crank-Nicholson methods, the sequence of

operations carried out by fadvance() is

1. Check to see if any voltages or other variables that are sources for NetCon objects

have reached threshold. Deliver any discrete events whose delivery time is earlier

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

than tentry+dt/2. With fixed step methods, events necessarily lie on time step

boundaries, so this certainly delivers all events outstanding at time tentry.

The function that carries this out (NetCvode::deliver_net_events() in

nrn.../src/nrncvode/netcvode.cpp) first appends the value of state at

tentry to the corresponding Vector according to the list defined by

cvode.record(&state, vec, tvec) statements. This list is most useful with

the local variable step method; indeed, this is the only meaningful way at this time to

retrieve results from a simulation that uses local variable time steps, since t values on

return from a sequence of fadvance() calls are not monotonic and only a small

fraction of states (the states in only one cell) is integrated on a single fadvance() (see

Local time step integration with discrete events below). Of course,

cvode.record() also works with the fixed step methods.

As of version 5.4, Vectors that are played or recorded at specific times are handled

as a sequence of discrete events.

2. When Vector.play() is treated as an interpolated (continuous) function, values are

interpolated at time = tentry+dt/2. The syntax Vector.play(&var), which has no

specific time Vector or declared play interval, cannot be used by variable step

methods and is therefore deprecated. However, in case you find it in old code, we

mention that Vector.play(&var) makes var receive its value from the next Vector

element; thus the first fadvance() after finitialize() will assign Vector.x[1]

to var.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 7 November 27, 2004

3. The matrix equation for voltage is set up with the global variable t = tentry+dt/2.

This is done by calling the function setup_tree_matrix() in

nrn.../src/nrnoc/treeset.c. Prior to version 5, NEURON was limited, as the

names of this function and file imply, to coupled voltage equations with the topology

of a tree, i.e. each voltage node had at most one parent node. This is not only well-

matched to neuronal structure, but also has the attractive property that solution of

linear equations with this structure by Gaussian elimination takes exactly the same

number of arithmetic operations as if the equations had the topology of an

unbranched cable with the same number of nodes. It is the tree structure which makes

the simulation time proportional to the number of voltage nodes. Speed suffers when

the topology is not equivalent to a tree, e.g. when gap junctions, linear circuits, or the

extracellular mechanism is present. Completely general graph structures have a worst

case Gaussian elimination time which is proportional to the cube of the number of

voltage nodes.

The purpose of the setup_tree_matrix() function is to create the algebraic

equation for each node. In abstract terms we are setting the problem up as a matrix

equation in the form

M v
�
tentry ��� t ��� r.h.s. Eq. 7.1a

("r.h.s." = right hand side) for the backward Euler method, or

M v
�
tentry � �

t

2
��� r.h.s. Eq. 7.1b

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

for the Crank-Nicholson method. Tree structures are very similar to tridiagonal cable

equations. For unbranched cables the most straightforward description of the spatially

discrete cable equation has a row structure

bi vi � 1 � d i vi � ai vi
�

1 � r.h.s.i
Eq. 7.2

and each coefficient and variable in the row is kept in a node structure (b, d, and a are

the subdiagonal ("below"), diagonal, and supradiagonal ("above") elements of M).

Generalization to a tree preserves the association of b, d, v, and r.h.s. in the node

equation. The only change is that Node.a (see next paragraph) refers to the matrix

element in the parent node equation.

Setup of the matrix equations begins by first checking a flag to see if any

diameters or section lengths have changed, and if so, recalculating the two connection

coefficients between a node and its parent. These connection coefficients are both

stored in the node. Node[i].b is the resistance between node i and its parent

divided by the area of the node. Node[i].a is the same thing but divided by the area

of the parent node. Next, the d and r.h.s. elements of all nodes are set to zero in

preparation for incrementally adding conductance and current contributions to them.

The a and b elements of the matrix generally do not change during a simulation.

Fortunately, they are not destroyed during Gaussian elimination and so only need to

be computed when the morphology changes.

At this point the membrane current and conductance contributions to the node

equations are added to r.h.s. and d respectively. This is done by calling the nrn_cur

functions of every mechanism in every node (pointers to these functions are kept in

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 7 November 27, 2004

the memb_func[type].current structure). These functions are the model

description translation of the BREAKPOINT block. The most common usage of the

BREAKPOINT block in a model description is to calculate channel currents from the

values of STATE variables and membrane potential v (see Chapter 9). In the

translation of a BREAKPOINT block, the SOLVE statement information, which tells

how to integrate the STATE variables, is segregated into a nrn_state function (see

step 6 below), and the remaining statements are used to construct a nrn_current

function which takes voltage as an argument. The nrn_current function is called

twice by the nrn_cur function, once with an argument of v + 0.001 and then with an

argument of v, in order to calculate the numerical derivative di/dv as well as the

current. The nrn_cur function then adds the di/dv value to the diagonal element

Node.d (i.e. the diagonal element of the Jacobian) and the value of -i to the right

hand side element Node.rhs. The form of this expression follows from the current

conservation equation evaluated at t + ∆t

C � vi

� t �
dii

dvi
� vi

�
�

j

� v j
� � vi

areai r ij
� � ii

�
vi

�
t � � �

�

j

v j
� vi

areai r ij

Eq. 7.3

where

ii

�
vi

�
t � � t � � � ii

�
vi

�
t � � � � vi

dii

dv i

Eq. 7.4

All terms that are proportional to ∆v go into the matrix (left) side of Eq. 7.1, and all

constant terms or product terms of v(t) go into the right hand side. If ∆vj refers to the

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

parent of node i, the coefficient 1/areai rij is the ith node's b element (see Eq. 7.2); if

∆vj refers to a child, the coefficient is the child node's a element.

4. The nrn_solve() function in nrn.../src/nrnoc/solve.c is called to solve the

voltage node equations. Normally these equations are tree-structured, which allows

use of triangularization and back substitution functions that are specifically crafted to

minimize pointer arithmetic overhead by taking advantage of the details of our Node

structure in nrn.../src/nrnoc/section.h. This step executes approximately

twice as fast as the more general sparse matrix Gaussian elimination package

necessary for non-tree structures. However this has less significance than it appears

since Gaussian elimination of tree structures takes much less than half the time

required to set up equations containing channel currents. On exit from nrn_solve()

the r.h.s. field of the Node structures contains the values of ∆v.

If secondorder is 2 then the

currents are updated with a call to

second_order_current, which uses

di_ion/dv along with ∆v to compute

the second order correct ionic currents at

tentry+dt/2. Therefore when fadvance() returns and t is tentry + dt, the

ionic currents are second order correct at t - dt/2. Note that individual currents

associated with particular channel mechanisms and available to the interpreter as

ASSIGNED variables are not updated to be second order correct. That is, individual

model description current variables are approximated by g(texit - dt/2)*(v

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

Nowadays, voltage clamp models are best

implemented as linear mechanisms. Voltage

and current states in such a model are

computed simultaneously with the membrane

potential, so the issues associated with

staggered time steps do not arise.

The NEURON Book: Chapter 7 November 27, 2004

(texit-dt) - erev). Without special attention to this problem, model

descriptions of voltage clamp currents that are appropriate for the internal use made

of them during fadvance() would be complete nonsense when plotted, since they

do not take into account the large change between v(texit-dt) and v(texit).

For this reason, particularly stiff models, such as voltage clamps, are careful to

recalculate the current variable within the block called by the BREAKPOINT's SOLVE

statement (see step 6 below), which occurs when the voltage values are at texit.

For fixed step methods, one should always compare plots of individual model

current and conductance variables with their time courses computed with smaller dt.

In some cases it may be useful for plotting to introduce a FUNCTION into the channel

model which uses the present values of t, v, and STATEs to return the consistent first

order values of those currents. Equivalently, one could call fcurrent() on return

from fadvance() (fcurrent() carries out step 3) to reevaluate the currents and

conductances at the present values of t, v, and STATEs.

With the variable step methods (see below), all variables have their appropriate

values at texit. One of the most significant benefits of the variable time step

methods is the ease of plotting current and conductance variables at the accuracy of

the underlying computation.

5. The voltages are updated using the equation v = v + r.h.s. for the backward Euler

method and v = v + 2 r.h.s. for the Crank-Nicholson method. The global variable t is

set to tentry + dt.

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

6. nonvint() is called, which integrates all states EXCEPT the voltages. This is done

by executing the nrn_state function for every mechanism in every segment of

every section (pointers to these functions are kept in the memb_func[type].state

structure). These functions are the model description translation of the SOLVE

statement in the BREAKPOINT block. Since v is now at tentry + dt, or the midpoint

of the integration interval from tentry + dt + dt/2, second order correct integration

schemes that treat v as a constant in the integration interval remain second order

correct. Specifically, the analytic integration of Hodgkin-Huxley-like channel gating

states, e.g.

m
�
t � �

t

2
� � m

�
t � � t

2
�

�
�
1 � e��� t � tau � v � t ��� � � m �

�
v
�
t � � � m

�
t � � t

2
� �

Eq. 7.5

where v(t) is assumed constant, is second order correct for smooth functions of v. It

should be remembered, however, that the calculation of m is only first order correct

with the fixed step method (i.e. backward Euler) since the value of v itself is only first

order correct.

When fixed step methods were used exclusively, it was common practice to factor

the integration statement into the form

m = m + mexp(v)*(minf(v)-m)

where mexp and minf were calculated with fast interpolated table lookup. However,

since the mexp table is dependent on the value of dt, this no longer works with

variable step methods. Of course, minf and mtau could still be stored in tables, but

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 7 November 27, 2004

the speedup is marginal, and in these days of fast floating point processors, minf and

mtau have to be quite complicated to justify the use of tables.

7. All variables that are recorded due to Vector.record(&variable) statements

(i.e. without an associated sampling interval or Vector of recording times) are stored

in the Vector elements associated with time tentry + dt. Starting with version 5.4,

sampling times specified by a sampling interval or Vector of recording times are

handled by the discrete event system.

Adaptive integrators

Our chief aim here is to see how adaptive integration operates in the context of a

simulation, and in particular how it fits in with the event delivery system. Mathematical

aspects of adaptive integration are discussed more thoroughly in Chapter 4.

Adaptive integrators adjust the time step and order of integration so that the local

error for each state is less than a user-specified tolerance. For a given dt they are three

times slower than the fixed step methods, because calculating the local error involves a

lot of overhead and it is no longer is possible to use dt-dependent rate tables or avoid

Newton iterations. However, the time step can be so large during interspike intervals that

total run time is often almost an order of magnitude faster than with fixed step methods

yielding the same accuracy. From the user's perspective, a potentially more important

advantage of adaptive integration is that it eliminates the need for trial and error

adjustments of dt in order to achieve satisfactory accuracy; instead, one merely specifies

the local step accuracy and the integrator does the rest.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

In models that involve asynchronous events, adaptive integration can improve

simulation accuracy by guaranteeing that all events occur at their specified times (see

below), rather than being forced to a dt step boundary as they do with fixed time step

methods. Furthermore, all variables are computed at the same model time, so there is no

need to wonder whether to plot a variable at t, t+dt/2, or t-dt/2 (see step 4 under The

fixed step methods: backward Euler and Crank-Nicholson above).

Adaptive integration was first added to NEURON starting with CVODE (Cohen and

Hindmarsh 1994; 1996) for global time steps in version 4.0, and this was extended to

local time steps in version 4.1. The original CVODE required modifications in order to

work with models that involved at_time() events, which were used to implement

abrupt changes of a parameter or a state. A strategy for dealing with an event that occurs

at tevent is to stop integration at tevent, change the parameters or states that are modified by

the event, calculate a new initial condition at tevent, and then resume integration.

However, the CVODE integrator had no provision for stopping at a specified time, so it

needed custom revisions. DASPK (Brown et al. 1994), which was subsequently added to

deal with models in which some states are determined by algebraic equations (e.g.

extracellular fields or linear circuit elements), had a specifiable stop time beyond which

the integrator would not proceed, so it had a very different way of handling at_time().

It would have been nice if DASPK could simply have replaced CVODE, but DASPK did

not directly support the interpolation operation needed by the local step method, and it

has even more overhead per step than CVODE. Therefore a significant amount of code

was required to provide the logical machinery that would make all these different pieces

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 7 November 27, 2004

of the NEURON simulation environment work properly with each other, while at the

same time allowing users to easily switch between the various integrators. The later

addition of an delivery system to NEURON greatly increased the complexity of the code

that ties all these pieces together.

This complexity has been much reduced in the most recent releases of NEURON by

replacing CVODE and DASPK with CVODES and IDA of the SUNDIALS package

(available from http://www.llnl.gov/CASC/sundials/). CVODES (Hindmarsh and

Serban 2002) is similar to CVODE but accepts a tstop beyond which the solution will

not proceed, and IDA (Hindmarsh and Taylor 1999) is a new Initial value Differential

Algebraic solver version of DASPK which now does support the interpolation operation.

However, for historical reasons the class that is used to manage adaptive integration in

NEURON is called CVode, and in this book we often use the term "CVODE" as a generic

reference to any of NEURON's adaptive integrators.

The normal CVODE integration step consists of a prediction followed by a

correction. Generating the prediction involves an evaluation of f(y, t) (see Eq. 4.28a and

4.29a) which consumes most of the computational effort in an integration step. When

CVODE returns, all STATEs have the correct values at the new time, but the ASSIGNED

variables (which include currents) still have their "predicted" values. Correcting the

ASSIGNED variables requires another evaluation of f(y, t), but this nearly doubles the

total computational overhead per integration step. For many purposes the uncorrected

values are sufficiently accurate, and tightening the error tolerance takes care of most

cases when it is not. Future releases of NEURON will apply the correction by default but

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

may offer users the option of disabling the ASSIGNED variable correction with the extra

call to f(y, t) after a CVODE step.

Now we are ready to see how the solution proceeds when adaptive integration is used.

We start with local variable step integration, and then briefly consider global step

integration.

Local time step integration with discrete events

In local time step integration, an independent CVODE method is created for each

cell, and the solution for each cell moves forward at its own pace. As with fixed time step

integration, at the hoc level one repeatedly calls fadvance() to make the simulation

progress in time. However, at any point in the simulation the cells are all at different

times, managed by their individual CVODE instances, so fadvance() is not very useful

as a means for governing the plotting or recording of data; instead, special CVODE-

specific procedures are employed.

It is also not very useful to think about the process of integration in terms of

fadvance() calls. For a much better understanding of what is going on, we will focus

on the sequence of elementary actions, or "microsteps," that are applied to individual

cells. There are three kinds of microsteps, and they are called initialize, advance, and

interpolate because of how they affect each cell's time--but more about this shortly.

When local time steps are used, there is a queue of event times and a queue of cell

times. The event times are the times at which events are to be delivered, and the cell

times are the current times of each cell in the model. Executing a simulation consists of

repeatedly checking these queues and dealing with whichever is earliest: the earliest

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 7 November 27, 2004

event or the earliest cell. If there is a tie, the event is handled first. Handling an event

removes the event from the event queue, but when a cell is handled the cell is just put

back into the cell queue with a new time.

Each cell has three variables, called t0, t_, and tn, that are related to the progress of

the simulation in time. t_ is the current time of the cell and determines its position in the

cell queue; the significance of t0 and tn will become clear in the next few paragraphs.

Handling a cell involves carrying out a microstep, which leaves these variables in one of

the configurations shown in Figure 7.2. For the purpose of illustration, we assume that

before the microstep is taken, the cell starts with t0, t_, and tn as depicted in the top

row of this figure.

1. Initialize: reset the integrator at time t and then return. Before an initialization, the

user may assign any values whatever to the states and parameters. Those values,

along with the equations, define a new initial value problem. After initialization t0,

t_, and tn are all equal to t.

2. Advance: perform a normal integration step to some new time t and then return. This

involves computing values for the STATEs and ASSIGNED variables at some new time

t, updating t0 to the old tn, and making t_ and tn equal to the new t.

3. Interpolate: return just before the time tevent of the next event. On exit from

fadvance(), t_ lies between t0 and tn with a value equal to tevent. STATE values

at t_ are calculated from their values at tn, t0, and prior solution points according to

CVODE's interpolation formulas (this is much less costly than a numeric integration

step). If an integration step carries tn past the time of an event, or if a new event

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

arrives with tevent < t_, interpolation will be applied so that t_ retreats to tevent.

However, a cell can't retreat to a time earlier than its t0. If there are multiple cells,

the largest t0 is the "least event time," i.e. the time before which no cell can retreat.

interpolate

t0 tnt_

advance

t0
tn
t_

tn

t0
t_

initialize

t0 tnt_

Before microstep

After microstep

Fig. 7.2. After a microstep, the relative positions of t0 (black open circle), t_

(blue dot), and tn (red filled circle) in time depends on whether the microstep

performed an initialization, a normal integration step, or an interpolation to just

before the next event. The small grey circle after initialize and advance marks

the former location of t0. Time increases toward the right in each row.

Note that the STATE and ASSIGNED values at t_ and tn are "tentative" because an

event may arrive in the [t0, tn] interval that requires a new initialization and forces the

solution into a new trajectory. The values at t0 are "real" in the sense that a cell cannot

retreat to a time earlier than its own t0.

If multiple events occur at the same time, they are all handled. If more than one of

these requires an initialization, the initialization is deferred until after all simultaneous

events are handled. Thus if there are 4 events at the same time and 3 of them require

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 7 November 27, 2004

initialization, each event will be handled but there will be only one initialization, which is

performed after all four have been handled.

To make this more concrete, let's walk through a hypothetical simulation of a small

network model using the local variable time step method. This model has two neurons

called 1 and 2. A NetCon delivers events to an excitatory synapse on cell 1, and cell 1

projects via another NetCon to a synapse on cell 2. In the following discussion the "step"

number refers to how many microsteps have been taken, the "action" is what kind of

microstep it was, and the "outcome" is a diagram that shows the relative positions in time

of events and each cell's t0, t_, and tn.

Step, action, and outcome Comments
0. Initialize the model

1

2

1 1 2
This is done by finitialize(). Notice that t0 =

t_ = tn = t = 0 ms. Also three events are placed in

the event queue, two for cell 1 and one for cell 2, at

the indicated times.

There are no events at t = 0 ms . . .

1. Advance cell 1

1

2

1 1 2
 . . . so the first microstep advances one of the cells.

For the sake of illustration, we'll say it advances cell

1. This makes 2 the earliest cell.

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

2. Advance cell 2

1

2

1 1 2
Cell 2's t_ and tn move past the earliest event, but

that's OK because the event isn't for cell 2. Cell 1 is

now earliest.

3. Advance cell 1

1

2

1 1 2
Cell 1's t_ and tn move to a new time. Notice how

t0 follows behind tn, jumping from its original

location (marked by the small "ghost" circle) to the

prior location of tn. But also notice that t_ has

moved past an event for cell 1.

4. Interpolate cell 1

1

2

1 1 2
Cell 1's t_ retreats to the event time, and its STATEs

at t_ are calculated by interpolation. We are ready

to handle the event.

Handle the event

1

2

1 2
Handling the event removes it from the event queue.

Cell 1 is still earliest. Let's say the event we just

handled didn't do anything to cell 1 that forces

initialization . . .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 7 November 27, 2004

5. Interpolate cell 1

1

2

1 2
 . . . so cell 1's trajectory isn't affected. There are no

events between its current time t_ and tn, so t_

can be moved right up to tn, as shown here.

Technically speaking this is an "interpolation" even

though no real calculations are involved.

The earliest cell is now cell 2.

6. Advance cell 2

1

2

1 2

7. Advance cell 1

1

2

1 2
We have seen this before.

8. Interpolate cell 1

1

2

1 2
It is now time to deal with the event . . .

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

Handle the event

1

2

2
 . . . which removes it from the queue.

And it's also time to introduce a little excitement.

Unlike the first event, which didn't affect cell 1's

trajectory, we'll stipulate that this one was delivered

to the excitatory synaptic mechanism on cell 1 by a

NetCon with a strong positive weight, causing an

abrupt change in one of the that mechanism's

parameters. This means the next microstep has to

initialize cell 1.

9. Initialize cell 1

1

2

2
Notice that cell 1's t0, t_ and tn are exactly at the

handled event time.

10. Advance cell 1

1

2

2
The strong synaptic input drives cell 1 toward firing

threshold. Since its membrane potential is changing

rapidly, satisfying the error criterion requires short

advances.

11. Advance cell 1

1

2

2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 7 November 27, 2004

Cell 1 generates a spike event . . .

1

2

2
That last advance took cell 1 over the threshold of

the NetCon that monitors its membrane potential.

 . . . which is inserted into the event queue

1

2

2 2
The spike event will be delivered to the synapse on

cell 2 at the new time indicated in this figure.

Cell 1 is the earliest cell now . . .

12. Advance cell 1

1

2

2 2
 . . . and again. But it has moved past the spike event

for cell 2, so that becomes the next thing to deal

with.

13. Interpolate cell 2

1

2

2 2
Cell 2 retreats to the time of its event.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

Handle the event

1

2

2
The event disappears from the event queue.

14. Initialize cell 2

1

2

2
The event caused an abrupt change in a variable in

cell 2's synapse, requiring initialization.

From the user's standpoint, this is all easier done than said, thanks to the behind-the-

scenes coordination of adaptive integration and discrete events in NEURON.

Since the values calculated at t_ and tn are only tentative, the solution trajectory for

any cell is defined by its sequence of t0s paired with the variables that were computed at

those times. The CVode class's record() method captures the stream of t0s into one

vector and the values of a user-specified range variable into another vector. Currently,

plotting of trajectories is controlled at the hoc level in the run() procedure on return

from fadvance(). To allow normal plotting of variables with local variable time steps,

in the next version of NEURON each variable that is plotted will be associated with a

specific cell so that it can be plotted when t0 for that cell advances.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 7 November 27, 2004

Global time step integration with discrete events

Global time step integration uses only one CVODE method for the entire model, so in

a sense it is just a degenerate case of what happens with local time steps. More

particularly, in the local variable step method a call to fadvance() produces a

microstep, but in the global step method calling fadvance() results in one or more

microsteps arranged so that time increases monotonically. In fact, the global step method

is analogous to fixed step integration in that fadvance() returns before an initializing

event, after an initialization, and after a regular integration. Furthermore, on return from

fadvance() there is never an outstanding event earlier than time t, and t_ is always

identical to t. Since time increases monotonically, and all cells are at the same time,

recording and plotting variables with the global step method is much more

straightforward than with local time steps.

Incorporating Graphs and new objects

into the plotting system

Objects that need to be notified at every step of a simulation are appended to one of

six lists. The first four lists are referenced by graphList[n_graph_lists] and their

normal contents are Graph objects that plot variables requested by each Graph's

addexpr or addvar statement. Variables are plotted as line drawings in which the

abscissa is related to t and the ordinate is the magnitude of the variable. Graphs are

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

added to these four lists when one of the buttons of the NEURON Main Menu / Graph

menu titled Voltage axis, Current axis, State axis, and Phase Plane is pressed.

For each variable is plotted vs.
graphList[0] t
graphList[1] t-0.5*dt
graphList[2] t+0.5*dt
graphList[3] an arbitrary function of t called an x-expression

The most useful of these lists is graphList[0], which is recommended for all line

drawings. graphList[1] and [2] are useful only to provide second order correct plots

of ionic currents and state variables, respectively, when the Crank-Nicholson method has

been selected through the variable secondorder=2. The offset is meaningless when the

default first order method is used (secondorder=1) because first order accuracy holds

at all instants in the interval [t-0.5*dt, t+0.5*dt]. When the variable time step

methods are chosen, all variables are computed at the same t so the offset is 0 and the

[1] and [2] graphList lists are identical to graphList[0].

The remaining two lists whose object elements are notified at every step are called

flush_list and fast_flush_list. The first is for Graphs that plot Vectors that

may change every time step. These do the Vector movies and Space Plots requested

from a Shape plot. The fast_flush_list is for Shape Plots or Hinton plots in which

it is not necessary to redraw an entire cell or pattern because only a few rectangles change

color during each step.

Plots are initialized by a call from stdinit() to initPlot(). The initPlot()

procedure first removes any objects in the graph or flush lists for which there is no view

on the screen by checking the return value of the view_count() method of the objects,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 7 November 27, 2004

and then calls the begin() method for all objects in the graphLists. Finally, it calls

the Plot() and flushPlot() procedures to plot things properly at t=0.

The Plot() procedure is called at the end of each step. Plot() calls plot(t) for

the graphList objects (actually the previously discussed offsets may be used for

graphList[1] and [2]). If stdrun_quiet is 0, Plot() also calls begin() and

flush() methods for items in the flush_list so that any Vector plots are updated.

Lastly it calls the fast_flush() method for each item in the fast_flush_list so

that any color changes are seen on the screen.

During continuerun(), the fast_flushPlot() procedure is called once at every

second of simulation time and the flushPlot() procedure is called at the end.

fast_flushPlot() calls the fast_flush() method for each item in the four

graphLists. This special call is very efficient for time plots because it erases and

redraws only the portion of the lines that accumulated since the last fast_flush.

Otherwise, damaging a small part of a line entails damaging the entire bounding box of

the line, which implies damaging all the lines that intersect the bounding box, which ends

up damaging the entire canvas and consequently requires erasing and redrawing

everything on the canvas. flushPlot() calls the flush() method for each item in all

six lists, which ends up redrawing everything in every canvas. While this is expensive,

the screen accurately reflects exactly the internal data structures of the lines and shapes.

A Graph object constructed by the user with

objref g
g = new Graph()

can be added to the standard run system with

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

graphList[0].append(g)

or perhaps even better with

addplot(g, 0)

since the latter will also set the abscissa to range from 0 to tstop (and the vertical axis

from -1 to 1). Also, since the methods called on a graphList are begin(), plot(t),

view_count(), fast_flush(), flush(), and size(x0, x1, y0, y1), any object

that implements these functions, even as stubs, can be appended to graphList[0] in

order to carry out calculations during a run. The SpikePlot of the NetGUI tool is

implemented in just this way. This is an example of how the hoc interpreter provides a

poor man's version of polymorphism; more information about object-oriented

programming in hoc is presented in Chapter 13.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 7 November 27, 2004

References

Brown, P.N., Hindmarsh, A.C., and Petzold, L.R. Using Krylov methods in the solution

of large-scale differential-algebraic systems. SIAM Journal of Scientific Computing

15:1467-1488, 1994.

Cohen, S.D. and Hindmarsh, A.C. CVODE User Guide. Livermore, CA: Lawrence

Livermore National Laboratory, 1994.

Cohen, S.D. and Hindmarsh, A.C. CVODE, a stiff/nonstiff ODE solver in C. Computers

in Physics 10:138-143, 1996.

Hindmarsh, A.C. and Serban, R. User documentation for CVODES, an ODE solver with

sensitivity analysis capabilities: Lawrence Livermore National Laboratory, 2002.

Hindmarsh, A.C. and Taylor, A.G. User documentation for IDA, a differential-algebraic

equation solver for sequential and parallel computers: Lawrence Livermore National

Laboratory, 1999.

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

Chapter 7 Index

A

ASSIGNED variable

accuracy 19, 24

B

backward Euler method 12, 13

BREAKPOINT block

SOLVE 18, 20, 21

translation of 18, 21

C

CABLE 11

computational efficiency 9, 36

computational efficiency

tree topology 12, 16, 19

Crank-Nicholson method 12, 13

local error 14

second order correct plots 35

staggered time steps 13, 19

CVODE 23

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 7 November 27, 2004

and model descriptions

at_time() 23

as generic term for adaptive integration 24

CVode class 24

re_init() 7

record() 15, 33

CVODES 24

D

DASPK 23

diameter

change flag 17

E

equation

current balance 16, 17, 19

extracellular mechanism

computational efficiency 16

F

fadvance.c 11

FOCAL 11

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

function table 21

G

gap junction

computational efficiency 16

Gaussian elimination 16, 17, 19

Graph class

addexpr() 34

addvar() 34

begin() 36, 37

flush() 36, 37

plot() 36, 37

size() 37

view_count() 35, 37

H

Hinton plot 35

hoc

idiom

load_file("nrngui.hoc") 4

I

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 7 November 27, 2004

IDA 24

initialization

finitialize() 6, 11, 28

init() 5, 6, 11

initPlot() 11, 35

non-steady state 14

stdinit() 6, 10, 35

J

Jacobian

computing di/dv elements 18

L

L

change flag 17

linear circuit

computational efficiency 16

M

membrane current

ionic

accuracy 19

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

N

NetCon

and standard run system 14

netcvode.cpp 15

NetGUI

SpikePlot

implementation 37

NEURON Main Menu GUI

Graph

Current axis 35

Phase Plane 35

State axis 35

Voltage axis 35

Tools

VariableStepControl 12

numeric integration

adaptive

advance microstep 26

initialize microstep 26

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 7 November 27, 2004

interpolate microstep 26

interpolation formulas 26

local time step 15

analytic integration of channel states 13, 21

fixed time step

event aggregation to time step boundaries 15, 23

numerical error

integrated 14

local 22

O

object-oriented programming

polymorphism 37

P

PARAMETER variable

time-dependent 7

R

run time 4, 22

RunControl

creating 2

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

RunControl GUI

Continue for 2, 3, 8

Continue til 2, 3, 8

dt 3

Init 2, 3

Init & Run 2-4, 10

Points plotted/ms 2, 3, 8

Quiet 2, 3, 10

Real Time 4, 9

Single Step 2, 3, 8

Stop 2, 3, 9

t 3

Tstop 3, 10

S

secondorder 19, 35

section.h 19

Shape plot 35

Shape Plot 35

solve.c 19

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 7 November 27, 2004

Space Plot 35

standard run system

addplot() 37

advance() 6, 7

continuerun() 6, 8, 10, 36

CVODE 12

DASPK 12

doEvents() 9

event delivery system 12

adaptive integration and 22, 33

cell time queue 25

event time queue 25

fadvance() 3, 6, 11

fixed time step 13

global time step integration 34

local time step integration 15, 25

fast_flushPlot() 36

fcurrent() 11, 20

flushPlot() 8, 36

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

Plot() 8, 36

plotting system 34

fast_flush_list 35

flush_list 35

graphLists 34

incorporating Graphs and objects 36

notifying Graphs and objects 34

special uses 8

realtime 9, 11

run() 5, 6, 10, 33

setdt() 8, 11

stdrun_quiet 10, 36

step 3, 8

step() 6-8

step()

under CVODE 8

steprun() 6, 8

stoprun 9

tstop 10, 37

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 7 November 27, 2004

STATE variable 18

stdrun.hoc 4

SUNDIALS 24

system

stiff 20

T

treeset.c 16

V

v 18

variable

abrupt change of 7, 23

Vector

movie 35

Vector class

play()

at specific times 15

with interpolation 7, 15

record() 22

record()

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 27, 2004 The NEURON Book: Chapter 7

at specific times 15

voltage clamp

current

accuracy 20

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

November 28, 2004 The NEURON Book: Chapter 8

Chapter 8

How to initialize simulations

In most cases, initialization basically means the assignment of values at time t = 0 for

membrane potential, gating states, and ionic concentrations at every spatial position in the

model. A model is properly initialized when clicking on the Init & Run button produces

exactly the same results, regardless of previous simulation history. Of course we assume

that model parameters have not changed between runs, and that any random number

generator has been re-initialized with the same seed so that it produces the same sequence

of "random" numbers. Models described by kinetic schemes require that each of the

reactant states be initialized to some concentration. If linear circuits are involved, initial

values must be assigned to voltages across capacitors and the internal states of

operational amplifiers. For networks and other models that use the event delivery system,

initialization also includes specifying which events are in transit to their destinations at

time 0 (i.e. events generated, at least conceptually, at t ≤ 0 for delivery at t ≥ 0). Complex

models often have complex recording and analysis methods, perhaps involving counters

and vectors, and these may also need to be initialized.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 8 November 28, 2004

State variables and STATE variables

In rough mathematical terms, if a system consists of n first order differential

equations, then initialization consists in specifying the starting values of n variables. For

the Hodgkin-Huxley membrane patch (only one compartment), these equations have the

form

dv
dt
� f 1

�
m,h ,n ,v � Eq. 8.1a-d

dm
dt
� f 2

�
m,v �

dh
dt
� f 3

�
h ,v �

dn
dt
� f 4

�
n ,v �

so that, knowing the value of each variable at time t, we can specify the slope of each

variable at time t. We have already seen (Chapter 7) that integration of these equations is

an iterative process in which the purpose of an individual integration step (f advance())

is to carry the system from time t to time t + ∆t using more or less sophisticated equations

of the form

v
�
t ��� t � � v

�
t ����� t

dv
�
t * �

dt
Eq. 8.2

m
�
t ��� t � � m

�
t ����� t

dm
�
t * �

dt

. . .

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

where the sophistication is in the choice of a value of t* somewhere between t and t + ∆t.

However, regardless of the integration method, the iterative process cannot begin without

choosing starting values for v, m, h, and n. This choice is arbitrary over the domain of the

variables (-∞ < v < ∞ , 0 ≤ m ≤ 1, . . .), but once the initial v, m, h, and n are chosen, all

auxiliary variables (e.g. conductances, currents, d/dt terms) at that instant of time are

determined, and the equations determine the trajectories of each variable forever after.

The actual evaluation of these auxiliary variables is normally done with assignment

statements, such as

gna = gnabar * m* m* m* h
i na = gna* (v - ena)

This is why the model description language NMODL designates gna and i na as

ASSI GNED variables, as opposed to the gating variables m, h, and n, which are the

dependent variables in differential equations and are therefore termed STATE variables.

Unfortunately, over time an abuse of notation has evolved so that STATE refers to any

variable that is an unknown quantity in a set of equations, and ASSI GNED refers to any

variable that is not a STATE or a PARAMETER (PARAMETERs can be meaningfully set by

the user as constants throughout the simulation, e.g. gnabar). Currently, within a single

model description, STATE just specifies which variables are the dependent variables of

KI NETI C schemes, algebraic equations in LI NEAR and NONLI NEAR blocks, or

differential equations in DERI VATI VE blocks. Generally the number of STATEs in a

model description is equal to the number of equations. Thus, locally in a model

description, the membrane potential v is never a dependent variable (the model

description contains no equation that solves for its value) and it cannot be regarded as a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 8 November 28, 2004

user-specified value. Instead, it is declared in model descriptions as an ASSI GNED

variable, even though it is obviously a state variable at the level of the entire simulation.

This abuse of terminology also occurs in linear circuits, where the potential at every node

is an unknown to be solved and therefore a STATE. However, a resistive network does

not add any differential equation to the system (although it adds algebraic equations), so

those additional dependent variables do not strictly need to be initialized.

While STATE variables may be assigned any values whatever during initialization, in

practice only a few general categories of custom initialization are used. Some of these are

analogous to experimental methods for preparing a system for stimulation, e.g. letting the

system rest without experimental perturbation, or using a voltage clamp or constant

injected current to hold the system at a defined membrane potential--the idea is that the

system should reach an unchanging steady state independent of previous history. It is

from this steady state that the simulation begins at time t = 0. When there is no steady

state, as for oscillating or chaotic systems, whatever initialization is ultimately chosen

will need to be saved in order to be able to reproduce the simulation. More complicated

initializations involve finding parameters that meet certain conditions, such as what value

of some parameter or set of parameters yields a steady state with a desired potential.

Some initial conditions may not be physically realizable by any possible manipulations of

membrane potential. For example, with the hh model the h gating state has a steady state

of 1 at large hyperpolarized potentials and the n gating state has a steady state of 1 at

large depolarized potentials. It would therefore be impossible to reach a condition of h =

1 and n = 1 by controlling only voltage.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Basic initialization in NEURON: finitialize()

Basic initialization in NEURON is accomplished with the f i ni t i al i ze() function,

which is defined in nr n- x. x / sr c/ nr noc/ f advance. c (UNIX/Linux). This carries

out several actions.

1. t is set to 0 and the event queue is cleared (undelivered events from the previous run

are thrown away).

2. Variables that receive a random stream (the list defined by Random. pl ay()

statements) are set to values picked from the appropriate random distributions.

3. All internal structures that depend on topology and geometry are updated, and chosen

solvers are made ready.

4. The controller for Vect or . pl ay() variables is initialized. The controller makes use

of the event delivery system for Vect or . pl ay() specifications that define transfer

times for a step function in terms of dt or a time Vect or .

Events at time t = 0 (e.g. appropriate Vect or . pl ay() events) are delivered.

5. If f i ni t i al i ze() was called with an argument v_i ni t , the membrane potential v

in every compartment is set to the value v_i ni t with a statement equivalent to

f or al l f or (x) v(x) = v_i ni t

6. The I NI TI AL block of every inserted mechanism in every segment of every section is

called. This includes point processes as well as distributed mechanisms (see INITIAL

blocks in NMODL later in this chapter). The order in which mechanisms are

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 8 November 28, 2004

initialized depends on whether any mechanism has a USEI ON statement or WRI TEs an

ion concentration.

Ion initialization is performed first, including calculation of equilibrium potentials.

Then mechanisms that WRI TE an ion concentration are initialized; this necessitates

recalculation of the equilibrium potentials for any affected ions. Finally, all other

mechanism I NI TI AL blocks are called.

Apart from these constraints, the call order of user-defined mechanisms is currently

defined by the alphabetic list of mod file names or the order of the mod file arguments

to nr ni vmodl (or mknr ndl l). However one should avoid sequence-dependent

I NI TI AL blocks. Thus if the I NI TI AL block of one mechanism needs the values of

variables another mechanism, the latter should be assigned before f i ni t i al i ze() is

executed.

If extracellular mechanisms exist, their vext states are initialized to 0 before any other

mechanism is initialized. Therefore, for every mechanism that computes an

ELECTRODE_CURRENT, v_i ni t refers to both the internal potential and the

membrane potential.

I NI TI AL blocks are discussed in further detail below.

7. Li near Mechani sm states, if any, are initialized.

8. Network connections are initialized. This means that the I NI TI AL block inside any

NET_RECEI VE block that is a target of a Net Con object is called to initialize the states

of the Net Con object.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

9. The I NI TI AL blocks may have initiated net _send events whose delay is 0. These

events are delivered to the corresponding NET_RECEI VE blocks.

10. If fixed step integration is being used, all mechanism BREAKPOINT blocks are

called (essentially equivalent to a call to f cur r ent ()) in order to initialize all

assigned variables (conductances and currents) based on the initial STATE and

membrane voltage.

If any variable time step method is active, then those integrators are initialized. In this

case, if you desire to change any state variable (here "state variable" means variables

associated with differential equations, such as gating states, membrane potential,

chemical kinetic states, or ion concentrations in accumulation models) after

f i ni t i al i ze() is called, you must then call cvode. r e_i ni t () to notify the

variable step methods that their copy of the initial states needs to be updated. Note that

initialization of the differential algebraic solver IDA consists of two very short (dt =

10-6 ms) backward Euler time steps in order to ensure the validity of f
�
y ' , y � � 0 .

11. Vect or recording of variables using the list defined by cvode. r ecor d(&st at e,

vect or) statements is initialized. As discussed in Chapter 7 under The fixed step

methods: backward Euler and Crank-Nicholson, cvode. r ecor d() is the only

good way of keeping the proper association between local step state value and local t .

12. Vect or s that record a variable, and are in the list defined by Vect or . r ecor d()

statements, record the value in Vect or . x[0] , if t = 0 is a requested time for

recording.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 8 November 28, 2004

Default initialization in the standard run system:

stdinit() and init()

The standard run system's default initialization takes effect when you enter a new

value for v_i ni t into the field editor next to the RunControl panel's Init button, or when

you press either RunControl panel's Init or Init & Run button. These buttons do not call the

i ni t () procedure directly but instead execute a procedure called st di ni t () which has

the implementation

pr oc st di ni t () {
 r eal t i me=0 / / " r un t i me" i n seconds
 st ar t sw() / / i ni t i al i ze r un t i me st opwat ch
 set dt ()
 i ni t ()
 i ni t Pl ot ()
}

set dt () ensures (by reducing dt , if necessary) that the points plotted fall on time step

boundaries, i.e. that 1/ (s t eps_per _ms* dt) is an integer. The i ni t Pl ot () procedure

begins each plotted line at t = 0 with the proper y value.

The default i ni t () procedure itself is

pr oc i ni t () {
 f i ni t i al i ze(v_i ni t)
 / / User - speci f i ed cust omi zat i ons go her e.
 / / I f t hi s i nval i dat es t he i ni t i al i zat i on of
 / / var i abl e t i me st ep i nt egr at i on and vect or r ecor di ng,
 / / uncomment t he f ol l owi ng code.
 / *
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
 * /
}

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Custom initialization is generally accomplished by inserting additional statements after

the call to f i ni t i al i ze() . These statements often have the effect of changing one or

more state variables, i.e. variables associated with differential equations, such as gating

states, membrane potential, chemical kinetic states, or ion concentrations in accumulation

models. This invalidates the initialization of the variable time step integrator, making it

necessary to call cvode. r e_i ni t () to notify the variable step integrator that its copy of

the initial states needs to be updated. If instead fixed step integration is being used,

f cur r ent () should be called to make the values of conductances and currents

consistent with the new states. Changing state variables after calling f i ni t i al i ze()

can also cause incorrect values to be stored as the first element of recorded vectors.

Adding f r ecor d_i ni t () to the end of i ni t () prevents this.

INITIAL blocks in NMODL

I NI TI AL blocks for channel models generally set the gating states to their steady

state values with respect to the present value of v. Hodgkin-Huxley style models do this

easily and explicitly by calculating the voltage sensitive alpha and beta rates for each

gating state and using the two state formula for the steady state, e.g.

PROCEDURE r at es(v(mv)) {
 mi nf = al pha(v) / (al pha(v) + bet a(v))
 . . .
}

and then

I NI TI AL {
 r at es(v)
 m = mi nf
 . . .
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 8 November 28, 2004

When channel models are described by kinetic schemes, it is common to calculate the

steady states with the idiom

I NI TI AL {
 SOLVE scheme STEADYSTATE spar se
}

where scheme is the name of a KI NETI C block. To place this in an almost complete

setting, consider this implementation of a three state potassium channel with two closed

states and an open state:

NEURON {
 USEI ON k READ ek WRI TE i k
}

STATE { c1 c2 o }

I NI TI AL {
 SOLVE scheme STEADYSTATE spar se
}

BREAKPOI NT {
 SOLVE scheme METHOD spar se
 i k = gbar * o* (v - ek)
}

KI NETI C scheme {
 r at es(v) : cal cul at e t he 4 k r at es.
 ~ c1 <- > c2 (k12, k21)
 ~ c2 <- > o (k2o, ko2)
}

(the r at es() procedure and some minor variable declarations are omitted for clarity).

As mentioned earlier in Default initialization in the standard run system: stdinit()

and init(), when initialization has been customized so that states are changed after

f i ni t i al i ze() has been called, it is generally useful to call the f cur r ent () function

to make the values of all conductances and currents consistent with the newly initialized

states. In particular this will call the BREAKPOI NT block (twice, in order to compute the

Jacobian (di/dv) elements for the voltage matrix equation) for all mechanisms in all

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

segments, and on return the ionic currents such as i na, i k , and i ca will equal the

corresponding net ionic currents through each segment.

Default vs. explicit initialization of STATEs

In model descriptions, a default initialization of the STATEs of the model occurs just

prior to the execution of the I NI TI AL block. However, this default initialization is rarely

useful, and one should always explicitly implement an I NI TI AL block. If the name of a

STATE variable is st at e, then there is also an implicitly declared parameter called

st at e0. The default value of st at e0 is specified either in the PARAMETER block

PARAMETER {
 st at e0 = 1
}

or implicitly in the STATE declaration with the syntax

STATE {
 st at e START 1
}

If a specific value for st at e0 is not declared by the user, st at e0 will be assigned a

default value of 0. st at e0 is not accessible from the interpreter unless it is explicitly

mentioned in the GLOBAL or RANGE list of the NEURON block. For example,

NEURON {
 GLOBAL m0
 RANGE h0
}

specifies that every m will be set to the single global m0 value during initialization, while

h will be set to the possibly spatially-varying h0 values. Clarity will be served if, in using

the st at e0 idiom, you explicitly use an I NI TI AL block of the form

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 8 November 28, 2004

I NI TI AL {
 m = m0
 h = h0
 n = n0
}

Ion concentrations and equilibrium potentials

Each ion type is managed by its own separate ion mechanism, which keeps track of

the total membrane current carried by the ion, its internal and external concentrations,

and its equilibrium potential. The name of this mechanism is formed by appending the

suffix _i on to the name of the ion specified in the USEI ON statement. Thus if cai and

cao are integrated by a model that declares

USEI ON ca READ i ca WRI TE cai , cao

there would also be an automatically created

mechanism called ca_i on, with associated

variables i ca, cai , cao, and eca. The

initial values of cai and cao are set

globally to the values of cai 0_ca_i on and

cao0_ca_i on, respectively (see

Initializing concentrations in hoc below).

Prior to version 4.1, model descriptions

could not initialize concentrations, or at

least it was very cumbersome to do so. Instead, the automatically created ion mechanism

would initialize the ionic concentration adjacent to the membrane according to global

variables. The reason that model mechanisms were not allowed to specify ion variables

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Since calcium currents, concentrations, and

equilibrium potentials are managed by the

ca_i on mechanism, one might reasonably ask

why we can refer to the short names i ca, cai ,

cao and eca, rather than the longer forms that

include the suffix _i on, i.e. i ca_ca_i on etc..

The answer is that there is unlikely to be any

mistake about the meaning of i ca, cai , . . . so

we might as well take advantage of the

convenience of using these short names.

November 28, 2004 The NEURON Book: Chapter 8

(or other potentially shared variables such as cel s i us) was that confusion could result if

more that one mechanism at the same location tried to assign different values to the same

variable. The unintended consequence of this policy is confusion of a different kind,

which happens when a model declares an ion variable, such as ena, to be a PARAMETER

and attempts to assign a value to it. The attempted assignment has no effect, other than to

generate a warning message. Consider the mechanism

NEURON {
 SUFFI X t est
 USEI ON na READ ena
}

PARAMETER {
 ena = 25 (mV)
}

When this model is translated by nr ni vmodl (or mknr ndl l) we see

$ nr ni vmodl t es t . mod
Tr ans l at i ng t es t . mod i nt o t est . c
War ni ng: Def aul t 25 of PARAMETER ena wi l l be i gnor ed and set by NEURON.

and use of the model in NEURON shows that the value of ena is that defined by the

na_i on mechanism itself, instead of what was asserted in the t est model.

$ nr ngui
 . . .
Addi t i onal mechani sms f r om f i l es
 t est . mod
 . . .
oc>cr eat e soma
oc>access soma
oc>i nser t t est
oc>ena
 50

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 8 November 28, 2004

If we add the initialization

I NI TI AL {
 pr i nt f (" ena was %g\ n" , ena)
 ena = 30
 pr i nt f (" we t hi nk we changed i t t o %g\ n" , ena)
}

to t est . mod, we quickly discover that ena remains unchanged.

oc>f i ni t i al i ze(- 65)
ena was 50
we t hi nk we changed i t t o 30
 1
oc>ena
 50

It is perhaps not a good idea to invite diners into the kitchen, but the reason for this

can be seen from the careful hiding of the ion variables by making local copies of them in

the C code generated by the nocmodl translator. Translation of the I NI TI AL block into a

model-specific i ni t model function is an almost verbatim copy, except for some trivial

boiler plate. However, f i ni t i al i ze() calls this indirectly via the model-generic

nr n_i ni t function, which can be seen in all its gory detail in the C file output from

nocmodl t est . mod :

/ * /
st at i c nr n_i ni t (_count , _nodes, _dat a, _pdat a, _t ype_i gnor e)
 i nt _count , _t ype_i gnor e; Node* * _nodes; doubl e* * _dat a; Dat um* * _pdat a;
{ i nt _i x; doubl e _v;
 _p = _dat a; _ppvar = _pdat a;

#i f _CRAY
#pr agma _CRI i vdep
#endi f
 f or (_i x = 0; _i x < _count ; ++_i x) {
 _v = _nodes[_i x] - >_v;
 v = _v;
 ena = _i on_ena;
 i ni t model (_i x) ;
 }
}
/ * /

It suffices merely to call attention to the statement

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

ena = _i on_ena;

which shows the difference between the local copy of ena and the pointer to the ion

variable itself. The model description can touch only the local copy and is unable to

change the value referenced by _i on_ena. Some old model descriptions circumvented

this hiding by using the actual reference to the ion mechanism variables in the I NI TI AL

block (from a knowledge of the translation implementation), but that was always

considered an absolutely last resort.

This hands-off policy for ion variables has recently been relaxed for the case of

models that WRI TE ion concentrations, but only if the concentration is declared to be a

STATE and the concentration is initialized explicitly in an I NI TI AL block. It is

meaningless for more than one model at the same location to specify the same

concentrations, and an error is generated if multiple models WRI TE the same

concentration variable at the same location.

If we try this mechanism

NEURON {
 SUFFI X t est 2
 USEI ON na WRI TE nai
 RANGE nai 0
}

PARAMETER {
 nai 0 = 20 (mi l l i / l i t er)
}

STATE {
 nai (mi l l i / l i t er)
}

I NI TI AL {
 nai = nai 0
}

we get this result

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 8 November 28, 2004

oc>cr eat e soma
oc>access soma
oc>i nser t t est 2
oc>nai
 10
oc>f i ni t i al i ze(- 65)
 1
oc>nai
 20
oc>nai 0_t est 2 = 30
oc>f i ni t i al i ze(- 65)
 1
oc>nai
 30

If the I NI TI AL block is not present, the nai 0_t est 2 starting value will have no effect.

Initializing concentrations in hoc

The best way to initialize concentrations depends on the design and intended use of

the model. One must ask whether the concentration is supposed to start at the same value

in all sections where the mechanism has been inserted, or should it be nonuniform from

the outset?

Take the case of a mechanism that WRI TEs an ion concentration. Such a mechanism

has an associated global variable that can be used to initialize the concentration to the

same value in each section where the mechanism exists. These global variables have

default values for [Na], [K] and [Ca] that are broadly "reasonable" but probably incorrect

for any particular case. The default concentrations for ion names created by the user are

1 mM; these should be assigned correct values in hoc . A subsequent call to

f i ni t i al i ze() will use this to initialize ionic concentrations.

The name of the global variable is formed from the name of the ion that the

mechanism uses and the concentration that it WRI TEs. For example, suppose we have a

mechanism kext that implements extracellular potassium accumulation as described by

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Frankenhaeuser and Hodgkin (Frankenhaeuser and Hodgkin 1956). The kext

mechanism WRI TEs ko, so the corresponding global variable is ko0_k_i on. The

sequence of instructions

ko0_k_i on = 10 / / seawat er , 4 x def aul t val ue (2. 5)
ki 0_k_i on = 4* 54. 4 / / 4 x def aul t val ue, pr eser ves ek
f i ni t i al i ze(v_i ni t) / / v_i ni t i s t he st ar t i ng Vm

will set ko to 10 mM and ki to 217.6 mM in every segment that has the kext

mechanism.

What if one or more sections of the model are supposed to have different initial

concentrations? For these particular sections we can use the i on_st y l e() function to

assert that the global variable is not to be used to initialize the concentration for this

particular ion. A complete discussion of i on_st y l e() , its arguments, and its actions is

contained in NEURON's help system, but we will consider one specific example here.

Let's say we have inserted kext into section dend. Then the numeric arguments in the

statement

dend i on_st y l e(" k_i on" , 3, 2, 1, 1, 0)

would have the following effects on the kext mechanism in the dend section (in

sequence): treat ko as a STATE variable; treat ek as an ASSI GNED variable; on call to

f i ni t i al i ze() use the Nernst equation to compute ek from the concentrations;

compute ek from the concentrations on every call to f advance() ; do not use

ko0_k_i on or ki 0_k_i on to set the initial values of ko and ki . The proper

initialization is to set ko and ki explicitly for this section, e.g.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 8 November 28, 2004

ko0_k_i on = 10 / / al l sect i ons st ar t wi t h ko = 10 mM
dend { ko = 5 k i = 2* 54. 4} / / . . . except dend
f i ni t i al i ze(v_i ni t)

Examples of custom initializations

Initializing to a particular resting potential

Perhaps the most trivial custom initialization is to force the initialized voltage to be

the resting potential. Returning our consideration to initialization of the HH membrane

compartment,

f i ni t i al i ze(- 65)

will indeed set the voltage to -65 mV, and m, h, and n will be in steady state relative to

that voltage. However, this must be considered analogous to a voltage clamp initialization

since the sum of all the currents may not be 0 at this potential, i.e. -65 mV may not be the

resting potential. For this reason it is common to adjust the equilibrium potential of the

leak current so that the resting potential is precisely -65 mV.

This can be done with a user-defined i ni t ()

procedure based on the idea that total membrane

current at steady state must be 0. For our single

compartment HH model, this means that

0 = i na + i k + gl _hh* (v - el _hh)

so our custom i ni t () is

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Remember to load user-defined

versions of functions or

procedures that are part of the

standard system, such as i ni t () ,

after loading stdrun.hoc.

Otherwise, the user-defined

version will be overwritten.

November 28, 2004 The NEURON Book: Chapter 8

pr oc i ni t () {
 f i ni t i al i ze(- 65)
 el _hh = (i na + i k + gl _hh* v) / gl _hh
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

The cvode. r e_i ni t () call is not essential here since states have not been changed, but

it is still good practice since it will update the calculation of all the dstate/dt (note that

now dv/dt should be 0 as a consequence of the change in el _hh) as well as internally

make a call to f cur r ent () (necessary because changing el _hh requires recalculation

of i l _hh).

Calculating the value of leak equilibrium potential in order to realize a specific

resting potential is not fail-safe in the sense that the resultant value of el _hh may be very

large and out of its physiological range--after all, gl _hh may be a very small quantity. It

may sometimes be better to introduce a constant current mechanism and set its value so

that

0 = i na + i k + i ca + i _const ant

holds at the desired resting potential. An example of such a mechanism is

: const ant cur r ent f or cust om i ni t i al i zat i on

NEURON {
 SUFFI X const ant
 NONSPECI FI C_CURRENT i
 RANGE i , i c
}

UNI TS {
 (mA) = (mi l l i amp)
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 8 November 28, 2004

PARAMETER {
 i c = 0 (mA/ cm2)
}

ASSI GNED {
 i (mA/ cm2)
}

BREAKPOI NT {
 i = i c
}

and the corresponding custom i ni t () would be

pr oc i ni t () {
 f i ni t i al i ze(- 65)
 i c_const ant = - (i na + i k + i l _hh)
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

Before moving on to the next example, we should mention that testing is required to

verify that the system is stable at the desired v_i ni t , i.e. that the system returns to

v_i ni t after small perturbations.

Initializing to steady state

In Chapter 4 we mentioned that NEURON's default integrator uses the backward

Euler method, which can find the steady state of a linear system in a single step if the

integration step size is large compared to the longest system time constant. Backward

Euler can also find the steady state of many nonlinear systems, but it may be necessary to

perform several iterations with large dt . An i ni t () that takes advantage of this fact is

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

pr oc i ni t () { l ocal dt sav, t emp
 f i ni t i al i ze(v_i ni t)
 t = - 1e10
 dt sav = dt
 dt = 1e9
 / / i f cvode i s on, t ur n i t of f t o do l ar ge f i xed st ep
 t emp = cvode. act i ve()
 i f (t emp! =0) { cvode. act i ve(0) }
 whi l e (t <- 1e9) {
 f advance()
 }
 / / r est or e cvode i f necessar y
 i f (t emp! =0) { cvode. act i ve(1) }
 dt = dt sav
 t = 0
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

This first performs a preliminary "voltage clamp" initialization to v_i ni t . Then it sets

time to a very large negative value (to prevent triggering point processes and other

events) and integrates over several steps with a large fixed dt so that the system can

reach steady state. The procedure wraps up by returning dt to its original value, setting t

back to 0, and, if necessary, reactivating the variable step integrator. The last few

statements are the familiar re-initialization of cvode or invocation of f cur r ent () ,

followed by initialization of vector recording.

This initialization strategy generally works well, but there are circumstances in which

it may fail. Active transport mechanisms can be troublesome with fixed time step

integration if dt is large, because even a small pump rate may produce a negative

concentration. To see a more mundane example of instability with large dt , construct a

single compartment model that has the hh mechanism. With the default hh parameters,

and in the absence of any injected current, this is quite stable even for huge values of dt

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 8 November 28, 2004

(e.g. 105 ms). Now reduce gnabar _hh to 0, increase dt to 100 ms, and watch what

happens over the course of 5000 ms. The result is an oscillation whose peak-to-peak

amplitude gradually increases to ~ 10 mV. It would be all to easy to miss such

oscillations when using steady state initialization with large steps. This underscores the

need for careful testing of any initialization strategy, since in a sense all of them work

"behind the scenes."

Initializing to a desired state

Suppose the end of some run is to serve as the initial condition for subsequent runs;

this is a particularly useful strategy for dealing with models that oscillate or otherwise

lack a "resting" state. We can save all the states with

obj r ef svst at e, f
svst at e = new SaveSt at e()
svst at e. save()

The binary state information can be saved for use in later neuron sessions with

f = new Fi l e(" s t at es. dat ")
svst at e. f wr i t e(f)

and future sessions can read the file into the SaveSt at e object with

obj r ef svst at e, f
svst at e = new SaveSt at e()
f = new Fi l e(" s t at es. dat ")
svst at e. f r ead(f)

Whether or not the state information comes from a svst at e. save() in this session

or was read from a file, we only have to make a minor change to i ni t () in order to use

that information to initialize the system.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

pr oc i ni t () {
 f i ni t i al i ze(v_i ni t)
 svst at e. r est or e()
 t = 0 / / t i s one of t he " s t at es"
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

Now every simulation will start from the state that

we saved earlier.

Initializing by changing model parameters

Occasionally the aim is to bring a model to an initial condition that it would never

reach on its own. This can be a particular challenge if the model involves several

interacting nonlinear processes, making it difficult or impossible to know in advance

what values the states should have. Such problems can sometimes be circumvented by

changing the parameters of the model so that initialization reaches the desired state, and

then restoring the original parameters of the model.

As a specific example, consider a conceptual model of the regulation of the calcium

concentration in a thin intracellular compartment ("shell") adjacent to the cell membrane

(Fig. 8.1). Calcium (Ca+2) can enter or leave the shell in one of three ways: by diffusion

between the shell and the core of the cell, by active transport via a membrane-bound

pump, or as a result of non-pump calcium current ICa (i.e. transmembrane calcium flux

not produced by the pump). For the sake of simplicity, we will assume that Cacore and

Cao ([Ca+2] in the core and extracellular solution) are constant. However, the problems

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

This might be called a "groundhog

day initialization," after the movie in

which the protagonist awakened to

the same day over and over again.

The NEURON Book: Chapter 8 November 28, 2004

that we encounter, and the manner in which we solve them, would be the same even if

Cacore and Cao were allowed to vary.

ICa

Pump

Diffusion

core

shell

Fig. 8.1. Schematic diagram of a model of regulation of [Ca+2] in a thin shell

just inside the cell membrane.

Our goals are to:

1. initialize the internal calcium concentration next to the membrane [Ca+2]shell

(hereafter called Cashell) to a desired value and then plot Cashell and the pump

current ICapump
 as functions of time

2. plot the starting value of ICapump
 as a function of the initial Cashell

To achieve these goals, we must be able to set the initial value of Cashell to whatever level

we want and ensure that the pump reaches its corresponding steady state.

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Details of the mechanism

The kinetic scheme that describes this mechanism of calcium regulation is

diffusion Cacore

�
�

1
���

1
���

Cashell
Eq. 8.3a

active transport Cashell

�
Pump

�
�
k2

k1

CaPump Eq. 8.3b and c

CaPump
�
�
k4

k3

Cao
�

Pump

calcium current Cashell
�1 � 2Fvol �

ICa Eq. 8.3d

where τ is the time constant for equilibration of Ca+2 between the shell and the core, F is

Faraday's constant, and vol is the volume of the shell.

The NMODL code that implements this mechanism is

NEURON {
 SUFFI X capmp
 USEI ON ca READ cao, i ca, cai WRI TE cai , i ca
 RANGE t au, wi dt h, cacor e, i ca, pump0
}

UNI TS {
 (um) = (mi cr on)
 (mol ar) = (1/ l i t er)
 (mM) = (mi l l i mol ar)
 (uM) = (mi cr omol ar)
 (mA) = (mi l l i amp)
 (mol) = (1)
 FARADAY = (f ar aday) (coul omb)
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 8 November 28, 2004

PARAMETER {
 wi dt h = 0. 1 (um)
 t au = 1 (ms) : cor r esponds t o D = 2e- 7 cm2/ s
 : D f or Ca i n wat er i s 6e- 6 cm2/ s, i . e. 30x f ast er
 k1 = 5e8 (/ mM- s)
 k2 = 0. 25e6 (/ s)
 k3 = 0. 5e3 (/ s)
 k4 = 5e0 (/ mM- s)
 cacor e = 0. 1 (uM)
 pump0 = 3e- 14 (mol / cm2)
}

ASSI GNED {
 cao (mM) : on t he or der of 10 mM
 cai (mM) : on t he or der of 0. 001 mM
 i ca (mA/ cm2)
 i ca_pmp (mA/ cm2)
 i ca_pmp_l ast (mA/ cm2)
}

STATE {
 cashel l (uM) <1e- 6>
 pump (mol / cm2) <1e- 16>
 capump (mol / cm2) <1e- 16>
}

I NI TI AL {
 i ca = 0
 i ca_pmp = 0
 i ca_pmp_l ast = 0
 SOLVE pmp STEADYSTATE spar se
}

BREAKPOI NT {
 SOLVE pmp METHOD spar se
 i ca_pmp_l ast = i ca_pmp
 i ca = i ca_pmp
}

KI NETI C pmp {
 : vol ume/ uni t sur f ace ar ea has di mensi ons of um
 : ar ea/ uni t sur f ace ar ea i s di mensi onl ess
 COMPARTMENT wi dt h { cashel l }
 COMPARTMENT (1e13) { pump capump}
 COMPARTMENT 1(um) { cacor e}
 COMPARTMENT (1e3) * 1(um) { cao}
 CONSERVE pump + capump = (1e13) * pump0
 ~ cacor e <- > cashel l (wi dt h/ t au, wi dt h/ t au)
 ~ cashel l + pump <- > capump ((1e7) * k1, (1e10) * k2)
 ~ capump <- > cao + pump ((1e10) * k3, (1e10) * k4)
 i ca_pmp = (1e- 7) * 2* FARADAY* (f _f l ux - b_f l ux)

 : i ca_pmp i s t he " new" val ue, but cashel l must be
 : comput ed usi ng t he " ol d" val ue, i . e. i ca_pmp_l ast
 ~ cashel l << (- (i ca - i ca_pmp_l ast) / (2* FARADAY) * (1e7))

 cai = (0. 001) * cashel l
}

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Initializing the mechanism

For the sake of convenience we will assume that our model cell has only one section

called soma, and that soma is the default section. Also suppose that we have already

assigned the desired value of Cashell to a parameter we will call ca_i ni t , e.g. with a

statement of the form ca_i ni t = somevalue. Our problem is how to ensure that

initialization makes cashel l _capmp take on the value of ca_i ni t .

As a naive first stab at this problem, we might try changing the i ni t () procedure

like this

pr oc i ni t () {
 cashel l _capmp = ca_i ni t
 f i ni t i al i ze(v_i ni t)
}

i.e. inserting a line that sets the desired value of Cashell before calling f i ni t i al i ze() .

To see whether this has the desired effect, we need only to run a simulation and examine

the time course of Cashell and the pump current ICa
pump

. This quickly shows that, no

matter what value we first assign to cashel l _capmp, f i ni t i al i ze() drives Cashell

and ICapump
 to the same steady state levels (Fig. 8.2). We might have anticipated this

result, because it is what steady state initialization is supposed to do. If Cashell is too high,

the excess calcium will diffuse into the core or be pumped out of the cell until Cashell

returns to the steady state value. On the other hand, if Cashell is too low, calcium will

diffuse into the shell from the core, and the pump will slow or may even reverse, until

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 8 November 28, 2004

Cashell comes back to the steady state value. Thus, regardless of how we perturb Cashell,

steady state initialization always brings the model back to the same condition.

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20
ms

cashell_capmp
Mµ

0

5e−05

1e−04

0.00015

0.0002

0 5 10 15 20
ms

ica

mA/cm2

Fig. 8.2. Default initialization after setting cashel l _capmp to 0.1 µM leaves

Cashell (left) and ICapump
 (right) at their steady state levels of ~ 0.034 µM and

~ 1.3 × 10-4 mA/cm2, respectively.

For our second attempt we try calling f i ni t i al i ze() first, and then setting the

desired value of Cashell.

pr oc i ni t () {
 f i ni t i al i ze(v_i ni t)
 cashel l _capmp = ca_i ni t
 / / we' ve changed a s t at e, so t he f ol l owi ng ar e needed
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

This is partly successful, in that it does affect Cashell and ICa
pump

, but plots of these

variables seem to start from the wrong initial conditions. For example, if we try

ca_i ni t = 0.1 µM, the plot of cashel l _capmp appears to start with a value of

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

~ 0.044 µM instead. Using the Graph menu's Color/Brush to change the color and

thickness of the plots of cashel l _capmp and i ca, we discover the presence of early,

fast transients that overlie the y axis (Fig. 8.3 top). Thus cashel l _capmp really does

start at the right initial value, but in less than 5 microseconds it drops by ~ 56%. So we

have solved one mystery only to uncover another: what causes these fast transients?

Some reflection brings the realization that, although we changed the concentration in

the shell, we did not properly initialize the pump. Consequently, as soon as we launch a

simulation, Ca+2 starts binding to the pump, and this is responsible for the precipitous

drop of Cashell. At the same time, the rate of active transport begins to rise, which is

reflected in the increase of ICa
pump

. These changes produce the "pump transients" in

Cashell and ICa
pump

, which can be quite large as Fig. 8.3 shows.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 8 November 28, 2004

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20
ms

cashell_capmp
Mµ

0

5e−05

1e−04

0.00015

0.0002

0 5 10 15 20
ms

mA/cm2
ica

0

0.02

0.04

0.06

0.08

0.1

0 0.0025 0.005 0.0075 0.01
ms

cashell_capmp
Mµ

0

5e−05

1e−04

0.00015

0.0002

0 0.0025 0.005 0.0075 0.01
ms

mA/cm2
ica

Fig. 8.3. Time course of Cashell (left) and ICa
pump

 (right) following an

initialization that increased Cashell abruptly after calling i ni t () . The traces in

the top figures were thickened to make the early fast transients easier to see.

The time scale of the bottom figures has been expanded to reveal the details of

these fast transients. The final steady state levels of Cashell and ICa
pump

 are the

same as in Fig. 8.2.

A strategy that does what we want is to change the value of cacor e_capmp to

ca_i ni t and make τ very fast before calling f i ni t i al i ze() , then wrap up by

restoring the values of cacor e_capmp and τ. This amounts to changing the model in

order to achieve the desired initialization. One example of such a custom i ni t () is

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

pr oc i ni t () { l ocal savcor e, savt au
 / / make cacor e equal t o ca_i ni t
 savcor e = cacor e_capmp
 cacor e_capmp = ca_i ni t
 / / i ni t i al i ze cashel l t o cacor e
 savt au = t au_capmp
 t au_capmp = 1e- 6 / / so cashel l t r acks cacor e c l osel y
 f i ni t i al i ze(v_i ni t)
 / / r est or e cacor e and t au
 cacor e_capmp = savcor e
 t au_capmp = savt au
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

This code ensures that the difference between Cashell and Cacore becomes vanishingly

small, and at the same time allows the pump to initialize properly (Fig. 8.4).

0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

20
ms

cashell_capmp
Mµ

0 5 10 15
0

0.0001

0.0002

0.0003

0.0004

0.0005

20
ms

ica

mA/cm
2

Fig. 8.4. Following proper initialization, plots of Cashell (left) and ICa
pump

 (right)

begin at the correct values and do not display the early fast transient that

appeared in Fig. 8.3.

Now we can plot the starting value of ICa
pump

 as a function of the initial Cashell.

Figure 8.5 shows a Grapher configured to do this. To make this a semilog plot, we used

an independent variable x to sweep ca_i ni t from 10-4 to 102 µM in 30 logarithmically

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 8 November 28, 2004

equally spaced intervals. For each value of x the Grapher calculated the corresponding

value of ca_i ni t as 10x, called our custom i ni t () , and plotted the resulting i ca_capmp

vs. l og10(cashel l _capmp) , i.e. log10(Cashell). Note that l og10(cashel l _capmp)

ranges from -4 to 2, which means that Cashell ranges from 10-4 to 102 µM, i.e. exactly the

same range of concentrations as ca_i ni t . This confirms the ability of our custom i ni t () to

set cashel l _capmp to the desired values.

Plot Erase All

Indep Begin -4

Indep End 2

Steps 30

Independent Var x

X-expr log10(cashell_capmp)

Generator ca_init=10^x init()

-4 -2 0 2
0

0.001

0.002

0.003

-4 -2 0 2
0

0.001

0.002

0.003
ica_capmp

mA/cm2

Grapher

Fig. 8.5. A Grapher used to plot of ICa
pump

 vs. initial Cashell. The Graph menu's

Change Text was used to add the mA/ cm2 label.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

References

Frankenhaeuser, B. and Hodgkin, A.L. The after-effects of impulses in the giant nerve

fibers of Loligo. J. Physiol. 131:341-376, 1956.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 8 November 28, 2004

Chapter 8 Index

A

active transport 23

initialization 29-31

initialization

pump transient 29

kinetic scheme 25

ASSIGNED variable 3, 17

ASSIGNED variable

initialization 7

C

calcium

current 23

effect on concentration 25

pump 23

constant current mechanism 19

CVode class

re_init() 7, 9, 19

record() 7

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

D

DERIVATIVE block

dependent variable

is a STATE variable 3

diffusion 23

kinetic scheme 25

E

ELECTRODE_CURRENT 6

equilibrium potential

computation 6, 17

event

net_send 7

extracellular mechanism

vext 6

F

fadvance.c 5

I

IDA

initialization 7

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 8 November 28, 2004

INITIAL block 5, 9, 11

INITIAL block

sequence-dependent 6

SOLVE

STEADYSTATE sparse 10

initialization

analysis 1

basic 5

categories

overview of custom initialization 4, 9

to a desired state 22

to a particular resting potential 18

to steady state 20

channel model 9

Hodgkin-Huxley style 9

kinetic scheme 10

criterion for proper initialization 1

default 8

extracellular mechanism 6

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

finitialize() 5-7

frecord_init() 9

init() 8

custom 18, 20, 22, 30

initPlot() 8

internal data structures dependent on topology and geometry 5

ion 6, 12, 14-17

kinetic scheme 1

linear circuit 1, 6

network 1, 6

random number generator 1

Random.play() 5

recording 1

startsw() 8

stdinit() 8

strategies

changing a state variable 7, 9

changing an equilibrium potential 18

changing model parameters 23

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 8 November 28, 2004

groundhog day 23

injecting a constant current 19

jumping back to move forward 21

t 5

v_init 5, 6, 8

Vector.play() 5

ion accumulation 23

initialization 24

kinetic scheme 25

ion mechanism

_ion suffix 12

automatically created 12

default concentration

for user-created ion names 16

name 16

specification in hoc 16, 17

initialization 16

ion_style() 17

J

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

Jacobian

computing di/dv elements 10

K

KINETIC block

dependent variable

is a STATE variable 3

L

LINEAR block

dependent variable

is a STATE variable 3

M

mechanisms

initialization sequence 5

user-defined

initialization sequence 6

membrane potential

initialization 5, 6, 9

N

NET_RECEIVE block

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 8 November 28, 2004

INITIAL block 6

NEURON block

GLOBAL 11

RANGE 11

USEION

effect on initialization sequence 6

WRITE xi (writing an intracellular concentration) 15

WRITE xo (writing an extracellular concentration) 15

NMODL

translator

mknrndll 6, 13

nocmodl 14

nrnivmodl 6, 13

NONLINEAR block

dependent variable

is a STATE variable 3

numeric integration

adaptive

initialization 7

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 8

fixed time step

initialization 7

P

PARAMETER 3

PARAMETER block

default value of state0 11

S

SaveState class

fread() 22

fwrite() 22

restore() 23

save() 22

standard run system

event delivery system

initialization 1, 5, 7

fadvance() 2

10.fcurrent() 7

in initialization 9, 10, 19

realtime 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 8 November 28, 2004

setdt() 8

STATE block

START 11

state variable

as an ASSIGNED variable 4

STATE variable 3

initialization

default vs. explicit 11

state0 11

vs. state variable 3

V

Vector class

12.record() 7

initialization 7

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Chapter 9

How to expand NEURON's library of mechanisms

Neuronal function involves the interaction of electrical and chemical signals that are

distributed in time and space. The mechanisms that generate these signals and regulate

their interactions are marked by a wide diversity of properties, differing across neuronal

cell class, developmental stage, and species (e.g. chapter 7 in (Johnston and Wu 1995);

also see (McCormick 1998)). To be useful in research, a simulation environment must

provide a flexible and powerful means for incorporating new biophysical mechanisms in

models. It must also help the user remain focused on the model instead of programming.

Such a means is provided to NEURON by NMODL, a high level language that was

originally implemented for NEURON by Michael Hines and later extended by him and

Upinder Bhalla to generate code suitable for linking with GENESIS (Wilson and Bower

1989). This chapter shows how to use NMODL to represent biophysical mechanisms by

presenting a sequence of increasingly complex examples.

Overview of NMODL

A brief overview of how NMODL is used will clarify its rationale. First one writes a

text file (a "mod file") that describes a mechanism as a set of nonlinear algebraic

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 9 November 28, 2004

equations, differential equations, or kinetic reaction schemes. The description employs a

syntax that closely resembles familiar mathematical and chemical notation. This text is

passed to a translator that converts each statement into many statements in C,

automatically generating code that handles details such as mass balance for each ionic

species and producing code suitable for each of NEURON's integration methods. The

output of the translator is then compiled for computational efficiency. This achieves

tremendous conceptual leverage and savings of effort, not only because the high level

mechanism specification is much easier to understand and far more compact than the

equivalent C code, but also because it spares the user from having to bother with low

level programming issues like how to "interface" the code with other mechanisms and

with NEURON itself.

NMODL is a descendant of the MOdel Description Language (MODL (Kohn et al.

1994)), which was developed at Duke University by the National Biomedical Simulation

Resource project for the purpose of building models that would be exercised by the

Simulation Control Program (SCoP (Kootsey et al. 1986)). NMODL has the same basic

syntax and style of organizing model source code into named blocks as MODL. Variable

declaration blocks, such as PARAMETER, STATE, and ASSI GNED, specify names and

attributes of variables that are used in the model. Other blocks are directly involved in

setting initial conditions or generating solutions at each time step (the equation definition

blocks, e.g. I NI TI AL, BREAKPOI NT, DERI VATI VE, KI NETI C, FUNCTI ON,

PROCEDURE). Furthermore, C code can be inserted inside the model source code to

accomplish implementation-specific goals.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

NMODL recognizes all the keywords of MODL, but we will address only those that

are relevant to NEURON simulations. We will also examine the changes and extensions

that were necessary to endow NMODL with NEURON-specific features. To give these

ideas real meaning, we will consider them in the context of models of the following kinds

of mechanisms:

� a passive "leak" current and a localized transmembrane shunt (distributed mechanisms

vs. point processes)

� an electrode stimulus (discontinuous parameter changes with variable time step

methods)

� voltage-gated channels (differential equations vs. kinetic schemes)

� ion accumulation in a restricted space (extracellular K+)

� buffering, diffusion, and active transport (Ca2+ pump)

Features of NMODL that are used in models of synaptic transmission and networks are

examined in Chapter 10.

Example 9.1: a passive " leak" current

A passive "leak" current is one of the simplest biophysical mechanisms. Because it is

distributed over the surface of a cell, it is described in terms of conductance per unit area

and current per unit area, and therefore belongs to the class of "density" or "distributed

mechanisms" (see Distributed mechanisms in Chapter 5).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 9 November 28, 2004

Figure 9.1

Figure 9.1 illustrates a branch of a neuron with a distributed leak current (left) and the

equivalent circuit of a model of this passive current mechanism (right): a distributed,

voltage-independent conductance gleak in series with a voltage source Eleak that

represents the equilibrium potential for the ionic current. The leak current density is given

by ileak = gleak (Vm - Eleak), where Vm is membrane potential. Since this is a model of a

physical system that is distributed in space, the variables i leak and Vm and the parameters

gleak and Eleak are all functions of position.

Listing 9.1 presents an implementation of this mechanism with NMODL. Single line

comments start with a : (colon) and terminate at the end of the line. NMODL also allows

multiple line comments, which are demarcated by the keywords COMMENT and

ENDCOMMENT.

COMMENT
Thi s i s a
mul t i pl e l i ne
comment
ENDCOMMENT

A similar syntax can be used to embed C code in a mod file, e.g.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

VERBATI M
/ * C st at ement s * /

ENDVERBATI M

The statements between VERBATI M and ENDVERBATI M will appear without change in the

output file written by the NMODL translator. Although this should be done only with

great care, VERBATI M can be a convenient and effective way to add new features or even

to employ NEURON as a "poor man's C compiler."

: A passi ve l eak cur r ent

NEURON {
 SUFFI X l eak
 NONSPECI FI C_CURRENT i
 RANGE i , e, g
}

PARAMETER {
 g = 0. 001 (si emens/ cm2) < 0, 1e9 >
 e = - 65 (mi l l i vol t)
}

ASSI GNED {
 i (mi l l i amp/ cm2)
 v (mi l l i vol t)
}

BREAKPOI NT { i = g* (v - e) }

Listing 9.1. l eak. mod

Named blocks have the general form KEYWORD { statements } , where KEYWORD

is all upper case. User-defined variable names in NMODL can be up to 20 characters

long. Each variable must be defined before it is used. The variable names chosen for this

example were i , g, and e for the leak current, its specific conductance, and its

equilibrium potential, respectively. Some variables are not "owned" by any mechanism

but are available to all mechanisms; these include v , cel s i us , t , di am, and ar ea.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 9 November 28, 2004

Another variable that is available to all mechanisms is dt . However, using dt in

NMODL is neither necessary nor good practice. Before variable time step methods were

added to NEURON, analytic expressions involving dt were often used for efficient

modeling of voltage sensitive channel states. This idiom is now built-in and employed

automatically when such models are described in their underlying derivative form.

The NEURON block

The principal extension that differentiates NMODL from its MODL origins is that

there are separate instances of mechanism data, with different values of states and

parameters, in each segment (compartment) of a model cell. The NEURON block was

introduced to make this possible by defining what the model of the mechanism looks like

from the "outside" when many instances of it are sprinkled at different locations on the

cell. The specifications entered in this block are independent of any particular simulator,

but the detailed "interface code" requirements of a particular simulator determine whether

the output C file is suitable for NEURON (NMODL) or GENESIS (GMODL). For this

paper, we assume the translator is NMODL and that it produces code accepted by

NEURON.

The actual name of the current NMODL translator is nocmodl (nocmodl . exe under

MSWindows). This translator is consistent with the object oriented extensions that were

introduced with version 3 of NEURON. However, the older translator, which predated

these extensions, was called nmodl , and we will use the generic name NMODL to refer

to NEURON compatible translators.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

The SUFFI X keyword has two consequences. First, it identifies this to be a distributed

mechanism, which can be incorporated into a NEURON cable section by an i nser t

statement (see Usage below). Second, it tells the NEURON interpreter that the names for

variables and parameters that belong to this mechanism will include the suffix _l eak , so

there will be no conflict with similar names in other mechanisms.

The stipulation that i is a NONSPECI FI C_CURRENT also has two consequences. First,

the value of i will be reckoned in charge balance equations. Second, this current will

make no direct contribution to mass balance equations (it will have no direct effect on

ionic concentrations). In later examples, we will see how to implement mechanisms with

specific ionic currents that can change concentrations.

The RANGE statement asserts that i , e, and g are range variables, and can be accessed

by the hoc interpreter using range variable syntax (see Range and range variables in

Chapter 5). That is, each of these variables is a function of position, and can have a

different value in each of the segments that make up a section. Each variable mentioned

in a RANGE statement should also be declared in a PARAMETER or ASSI GNED block. The

alternative to RANGE is GLOBAL, which is discussed below in The PARAMETER block.

Membrane potential v is not mentioned in the NEURON block because it is one of the

variables that are available to all mechanisms, and because it is a RANGE variable by

default. However, for model completeness in non-NEURON contexts, and to enable units

checking, v should be declared in the ASSI GNED block (see below).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 9 November 28, 2004

Variable declaration blocks

As noted above, each user-defined variable must be declared before it is used. Even if

it is named in the NEURON block, it still has to appear in a variable declaration block.

Mechanisms frequently involve expressions that mix constants and variables whose

units belong to different scales of investigation and which may themselves be defined in

terms of other, more "fundamental" units. This can easily produce arithmetic errors that

are difficult to isolate and rectify. Therefore NMODL has special provisions for

establishing and maintaining consistency of units. To facilitate units checking, each

variable declaration includes a specification of its units in parentheses. The names used

for these specifications are defined in a file called nr nuni t s. l i b, which is based on the

UNIX units database (/ usr / shar e/ uni t s. dat in Linux). nr nuni t s. l i b is located

in nr n- x. x / shar e/ l i b/ under UNIX/Linux, and c: \ nr nxx\ l i b\ under

MSWindows). A variable whose units are not specified is taken to be dimensionless.

The user may specify whatever units are appropriate except for variables that are

defined by NEURON itself. These include v (millivolts), t (milliseconds), cel s i us

(ºC), di am (µm), and ar ea (µm2). Currents, concentrations, and equilibrium potentials

created by the USEI ON statement also have their own particular units (see The NEURON

block in Example 9.6: extracellular potassium accumulation below). In this

particular distributed mechanism, i and g are given units of current per unit area

(milliamperes/cm2) and conductance per unit area (siemens/cm2), respectively.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

The PARAMETER block

Variables whose values are normally specified by the user are parameters, and are

declared in a PARAMETER block. PARAMETERs generally remain constant during a

simulation, but they can be changed in mid-run if necessary to emulate some external

influence on the characteristic properties of a model (see Models with discontinuities

and Time-dependent PARAMETER changes near the end of this chapter)

The PARAMETER block in this example assigns default values of 0.001 siemens/cm2

and -65 mV to g and e, respectively. The pair of numbers in angle brackets specifies the

minimum and maximum limits for g that can be entered into the field editor of the GUI.

In this case, we are trying to keep conductance g from assuming a negative value. This

protection, however, only holds for field editors and does not prevent a hoc statement

from giving g a negative value.

Because g and e are PARAMETERs, their values are visible at the hoc level and can be

overridden by hoc commands or altered through the GUI. If a PARAMETER does not

appear in a NEURON block's RANGE statement, it will have GLOBAL scope, which means

that changing its value will affect every instance of that mechanism throughout an entire

model. However, the RANGE statement in the NEURON block of this particular mechanism

asserts that g and e are range variables, so they can be given different values in every

segment that has this leak current.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 9 November 28, 2004

The ASSIGNED block

The ASSI GNED block is used to declare two kinds of variables: those that are given

values outside the mod file, and those that appear on the left hand side of assignment

statements within the mod file. The first group includes variables that are potentially

available to every mechanism, such as v, cel s i us , t , and ionic variables (ionic

variables are discussed in connection with The NEURON block in Example 9.6:

extracellular potassium accumulation below). The second group specifically omits

variables that are unknowns in a set of simultaneous linear or nonlinear algebraic

equations, or that are dependent variables in differential equations or kinetic reaction

schemes, which are handled differently (see Example 9.4: a voltage-gated current

below for a discussion of the STATE block).

By default, a mechanism-specific ASSI GNED variable is a range variable, in that it

can have a different value for each instance of the mechanism. However, it will not be

visible at the hoc level unless it is declared in a RANGE or GLOBAL statement in the

NEURON block. This contrasts with ASSI GNED variables that are not "owned" by any

mechanism (v, cel s i us , t , dt , di am, and ar ea) which are visible at the hoc level but

are not mentioned in the NEURON block.

The current i is not a state variable because the model of the leak current mechanism

does not define it in terms of a differential equation or kinetic reaction scheme; that is to

say, i has no dynamics of its own. Furthermore it is not an unknown in a set of equations,

but is merely calculated by direct assignment. Therefore it is declared in the ASSI GNED

block.

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

For similar reasons membrane potential v is also declared in the ASSI GNED block.

Although membrane potential is unquestionably a state variable in a model of a cell, to

the leak current mechanism it is a driving force rather than a state variable (or even a

STATE variable).

Equation definition blocks

One equation suffices to describe this simple leak current model. This equation is

defined in the BREAKPOI NT block. As we shall see later, more complicated models may

require invoking NMODL's built-in routines to solve families of simultaneous algebraic

equations or perform numeric integration.

The BREAKPOINT block

The BREAKPOI NT block is the main computation block in NMODL. Its name derives

from SCoP, which executes simulations by incrementing an independent variable over a

sequence of steps or "breakpoints" at which the dependent variables of the model are

computed and displayed (Kohn et al. 1994). At exit from the BREAKPOI NT block, all

variables should be consistent with the independent variable. The independent variable in

NEURON is always time t , and neither t nor the time step dt should be changed in

NMODL.

Usage

The following hoc code illustrates how this mechanism might be used. Note the use

of RANGE syntax to examine the value of i _l eak near one end of cabl e.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 9 November 28, 2004

cabl e {
 nseg = 5
 i nser t l eak
 / / over r i de def aul t s
 g_l eak = 0. 002 / / S/ cm2
 e_l eak = - 70 / / mV
}

/ / show l eak cur r ent densi t y near 0 end of cabl e
pr i nt cabl e. i _l eak(0. 1)

The l eak mechanism automatically appears with the other distributed mechanisms in

GUI tools such as the Distributed Mechanism Inserter (Fig. 9.2). This is a consequence of

interface code that is generated by the NMODL compiler when it parses the definitions in

the NEURON block.

Figure 9.2. Compiling the leak mechanism automatically makes it available

through NEURON's graphical user interface, as in this Distributed Mechanism

Inserter (brought up by NEURON Main Menu / Tools / Distributed Mechanisms /

Managers / Inserter). The check mark signifies that the l eak mechanism has

been inserted into the section named cabl e.

Example 9.2: a localized shunt

At the opposite end of the spatial scale from a distributed passive current is a

localized shunt induced by microelectrode impalement (Durand 1984; Staley et al.

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

1992). A shunt is restricted to a small enough region that it can be described in terms of a

net conductance (or resistance) and total current, i.e. it is a point process (see Point

processes in Chapter 5). Most synapses are also best represented by point processes.

Figure 9.3

The localized nature of the shunt is emphasized in a cartoon of the neurite (Fig. 9.3

left). The equivalent circuit of the shunt (right) is similar to the equivalent circuit of the

distributed leak current (Fig. 9.1 right), but here the resistance and current are understood

to be concentrated in a single, circumscribed part of the cell. We will focus on how the

NMODL code for this localized shunt (Listing 9.2) differs from the leak distributed

mechanism of Example 9.1.

The NEURON block

The POI NT_PROCESS statement in the NEURON block identifies this mechanism as a

point process, so it will be managed in hoc using an object oriented syntax (see Usage

below). Declaring i , e, and r to be RANGE means that each instance of this point process

can have separate values for these variables. If a variable is declared in a GLOBAL

statement, then its value is shared among all instances of the mechanism (however, see

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 9 November 28, 2004

Equation definition blocks: The DERIVATIVE block in Example 9.5: a calcium-

activated, voltage-dependent current).

Variable declaration blocks

These are nearly identical to the PARAMETER and ASSI GNED blocks of the l eak

mechanism. However, Shunt is a point process so all of its current flows at one site

instead of being distributed over an area. Therefore its i and r are in units of

nanoamperes (total current) and gigaohms (0.001 / total conductance in microsiemens),

respectively.

This code specifies default values for the PARAMETERs r and e. Allowing a minimum

value of 10-9 for r prevents an inadvertent divide by 0 error (infinite conductance) by

ensuring that a user cannot set r to 0 in its GUI field editor. However, as we noted in the

l eak model, the <minval, maxval> syntax does not prevent a hoc statement from

assigning r a value outside of the desired range.

: A shunt cur r ent

NEURON {
 POI NT_PROCESS Shunt
 NONSPECI FI C_CURRENT i
 RANGE i , e, r
}

PARAMETER {
 r = 1 (gi gaohm) < 1e- 9, 1e9 >
 e = 0 (mi l l i vol t)
}

ASSI GNED {
 i (nanoamp)
 v (mi l l i vol t)
}

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

BREAKPOI NT { i = (0. 001) * (v - e) / r }

Listing 9.2. shunt . mod

Equation definition blocks

Like the leak current mechanism, the shunt mechanism is extremely simple and

involves no state variables. Its single equation is defined in the BREAKPOI NT block.

The BREAKPOINT block

The sole "complication" is that computation of i includes a factor of 0.001 to

reconcile the units on the left and right hand sides of this assignment (nanoamperes vs.

millivolts divided by gigaohms). The parentheses surrounding this conversion factor are a

convention for units checking: they disambiguate it from mere multiplication by a

number. When the NMODL code in Listing 9.2 is checked with NEURON's modl uni t

utility, no inconsistencies will be found.

[t ed@f ant om dshunt] $ modl uni t shunt . mod
model 1. 1. 1. 1 1994/ 10/ 12 17: 22: 51
Checki ng uni t s of shunt . mod
[t ed@f ant om dshunt] $

However if the conversion factor were not enclosed by parentheses, there would be an

error message that reports inconsistent units.

[t ed@f ant om dshunt] $ modl uni t shunt . mod
model 1. 1. 1. 1 1994/ 10/ 12 17: 22: 51
Checki ng uni t s of shunt . mod
The pr evi ous pr i mar y expr essi on wi t h uni t s : 1- 12 coul / sec
i s mi ss i ng a conver s i on f act or and shoul d r ead:
 (0. 001) * ()
 at l i ne 20 i n f i l e shunt . mod
 i = 0. 001* (v - e) / r <<ERROR>>
[t ed@f ant om dshunt] $

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 9 November 28, 2004

An error message would also result if parentheses surrounded a number which the user

intended to be a quantity, since the units would be inconsistent.

The simple convention of enclosing single numbers in parentheses to signify units

conversion factors minimizes the possibility of mistakes, either by the user or by the

software. It is important to note that expressions that involve more than one number, such

as "(1 + 1)", will not be interpreted as units conversion factors.

Usage

This hoc code illustrates how the shunt mechanism might be applied to a section

called cabl e; note the object syntax for specifying the shunt resistance and current (see

Point processes in Chapter 5).

obj r ef s
cabl e s = new Shunt (0. 1) / / put near 0 end of cabl e
s. r = 0. 2 / / pr et t y good f or a shar p el ect r ode
pr i nt s . i / / show shunt cur r ent

The definitions in the NEURON block of this particular model enable NEURON's

graphical tools to include the Shunt object in the menus of its PointProcessManager and

Viewer windows (Fig. 9.4). The check mark on the button adjacent to the numeric field

for r indicates that the shunt resistance has been changed from its default value (0.2

gigaohm when the shunt was created by the hoc code immediately above) to 0.1

gigaohm.

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Figure 9.4. The properties of a specific instance of the Shunt mechanism are

displayed in this Point Process Viewer (brought up by NEURON Main Menu /

Tools / Point Processes / Viewers / PointProcesses / Shunt and then selecting

Shunt [0] from the displayed list).

Example 9.3: an intracellular stimulating electrode

An intracellular stimulating electrode is similar to a shunt in the sense that both are

localized sources of current that are modeled as point processes. However, the current

from a stimulating electrode is not generated by an opening in the cell membrane, but

instead is injected directly into the cell. This particular model of a stimulating electrode

(Listing 9.3) has the additional difference that the current changes discontinuously, i.e. it

is a pulse with distinct start and stop times.

The NEURON block

This mechanism is identical to NEURON's built-in I Cl amp. Calling it I Cl amp1

allows the reader to test and modify it without conflicting with the existing I Cl amp point

process.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 9 November 28, 2004

This model of a current clamp generates a rectangular current pulse whose amplitude

amp in nanoamperes, start time del in milliseconds, and duration dur in milliseconds are

all adjustable by the user. Furthermore, these parameters need to be individually

adjustable for each separate instance of this mechanism, so they appear in a RANGE

statement.

The current i delivered by I Cl amp1 is declared in the NEURON block to make it

available for examination. The ELECTRODE_CURRENT statement has two important

consequences: positive values of i will depolarize the cell (in contrast to the

hyperpolarizing effect of positive transmembrane currents), and when the

ext r acel l ul ar mechanism is present there will be a change in the extracellular

potential vext .

Equation definition blocks

The BREAKPOINT block

The logic for deciding whether i = 0 or i = amp is straightforward, but the at _t i me()

calls need explanation. From the start we wish to emphasize that at _t i me() has become

a "deprecated" function, i.e. it still works but it should not be used in future model

development. We bring it up here because you may encounter it in legacy code.

However, NEURON's event delivery system (see Chapter 10) provides a far better way

to implement discontinuities.

To work properly with variable time step methods, e.g. CVODE, models that change

parameters discontinuously during a simulation must notify NEURON when such events

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

take place. With fixed time step methods, users implicitly assume that events occur on

time step boundaries (integer multiples of dt), and they would never consider defining a

pulse duration narrower than dt . Neither eventuality can be left to chance with variable

time step methods.

When this mechanism is used in a variable time step simulation, the first at _t i me()

call guarantees there will be a time step boundary just before del , and that integration

will restart from a new initial condition just after del (see Models with discontinuities

near the end of this chapter for more details).

: Cur r ent cl amp

NEURON {
 POI NT_PROCESS I Cl amp1
 RANGE del , dur , amp, i
 ELECTRODE_CURRENT i
}

UNI TS { (nA) = (nanoamp) }

PARAMETER {
 del (ms)
 dur (ms) < 0, 1e9 >
 amp (nA)
}

ASSI GNED { i (nA) }

I NI TI AL { i = 0 }

BREAKPOI NT {
 at _t i me(del)
 at _t i me(del +dur)
 i f (t < del + dur && t > del) {
 i = amp
 } el se {
 i = 0
 }
}

Listing 9.3. i c l amp1. mod

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 9 November 28, 2004

The INITIAL block

The code in the I NI TI AL block is executed when the standard run system's

f i ni t i al i ze() is called. The initialization here consists of making sure that

I Cl amp1. i is 0 when t = 0. Initialization of more complex mechanisms is discussed

below in Example 9.4: a voltage-gated current and Example 9.6: extracellular

potassium accumulation, and Chapter 8 considers the topic of initialization from a

broader perspective.

Usage

Regardless of whether a fixed or variable time step integrator is chosen, I Cl amp1

looks the same to the user. In either case, a current stimulus of 0.01 nA amplitude that

starts at t = 1 ms and lasts for 2 ms would be created by this hoc code

obj r ef cc l
/ / put at mi ddl e of soma
soma cc l = new I Cl amp1(0. 5)
cc l . del = 1
cc l . dur = 2
cc l . amp = 0. 01

or through the PointProcessManager GUI tool (Fig. 9.5).

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Figure 9.5. A PointProcessManager configured as an I c l amp1 object.

Example 9.4: a voltage-gated current

One of the particular strengths of NMODL is its flexibility in dealing with ion

channels whose conductances are not constant but instead are regulated by factors such as

membrane potential and/or ligand concentrations on one or both sides of the membrane.

Here we use the well known Hodgkin-Huxley (HH) delayed rectifier to show how a

voltage-gated current can be implemented; in this example, membrane potential is in

absolute millivolts, i.e. reversed in polarity from the original Hodgkin-Huxley convention

and shifted to reflect a resting potential of -65 mV. In Example 9.5 we will examine a

potassium current model that depends on both voltage and intracellular calcium

concentration.

The delayed rectifier and all other ion channels that are distributed over the cell

surface are distributed mechanisms. Therefore their NMODL representations and hoc

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 9 November 28, 2004

usage be similar to those of Example 9.1: a passive " leak" current. The following

discussion focuses on the significant differences between the implementations of the

delayed rectifier and passive leak current models.

: HH vol t age- gat ed pot ass i um cur r ent

NEURON {
 SUFFI X kd
 USEI ON k READ ek WRI TE i k
 RANGE gbar , g, i
}

UNI TS {
 (S) = (s i emens)
 (mV) = (mi l l i vol t)
 (mA) = (mi l l i amp)
}

PARAMETER { gbar = 0. 036 (S/ cm2) }

ASSI GNED {
 v (mV)
 ek (mV) : t ypi cal l y ~ - 77. 5
 i k (mA/ cm2)
 i (mA/ cm2)
 g (S/ cm2)
}

STATE { n }

BREAKPOI NT {
 SOLVE st at es METHOD cnexp
 g = gbar * n^4
 i = g * (v - ek)
 i k = i
}

I NI TI AL {
 : Assume v has been const ant f or a l ong t i me
 n = al pha(v) / (al pha(v) + bet a(v))
}

DERI VATI VE st at es {
 : Comput es s t at e var i abl e n at pr esent v & t
 n' = (1- n) * al pha(v) - n* bet a(v)
}

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

FUNCTI ON al pha(Vm (mV)) (/ ms) {
 LOCAL x
 UNI TSOFF
 x = (Vm+55) / 10
 i f (f abs(x) > 1e- 6) {
 al pha = 0. 1* x/ (1 - exp(- x))
 } el se {
 al pha = 0. 1/ (1 - 0. 5* x)
 }
 UNI TSON
}

FUNCTI ON bet a(Vm (mV)) (/ ms) {
 UNI TSOFF
 bet a = 0. 125* exp(- (Vm+65) / 80)
 UNI TSON
}

Listing 9.4. kd. mod

The NEURON block

As with the passive leak model, SUFFI X marks this as a distributed mechanism,

whose variables and parameters are identified in hoc by a particular suffix. Three RANGE

variables are declared in this block: the peak conductance density gbar (the product of

channel density and "open" conductance per channel), the macroscopic conductance g

(the product of gbar and the fraction of channels that are open at any moment), and the

current i that passes through g. At the level of hoc , these will be available as gbar _kd,

g_kd, and i _kd.

This model also has a fourth range variable: the gating variable n, which is declared

in the STATE block (see The STATE block below). STATE variables are automatically

RANGE variables and do not need to be declared in the NEURON block.

A mechanism needs a separate USEI ON statement for each of the ions that it affects or

that affect it. This example has one USEI ON statement, which includes READ ek because

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 9 November 28, 2004

the potential gradient that drives i _kd depends on the equilibrium potential for K+

(potassium). Since the resulting ionic flux may change local [K+], this example also

includes WRI TE i k . The WRI TE i x syntax enables NEURON to keep track of the total

outward current that is carried by an ionic species, its internal and external

concentrations, and its equilibrium potential. We will return to this point in the context of

a model with extracellular K+ accumulation.

The UNITS block

The statements in the UNI TS block define new names for units in terms of existing

names in the UNIX units database. This can increase legibility and convenience, and is

helpful both as a reminder to the user and as a means for automating the process of

checking for consistency of units.

Variable declaration blocks

The ASSIGNED block

This is analogous to the ASSI GNED block of the l eak mechanism. For the sake of

clarity, variables whose values are computed outside this mod file are listed first. Note

that ek is listed as an ASSI GNED variable, unlike the leak mechanism's e which was a

PARAMETER. The reason for this difference is that mechanisms that produce fluxes of

specific ions, such as K+, may cause the ionic equilibrium potential to change in the

course of a simulation. However, the NONSPECI FI C_CURRENT generated by the leak

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

mechanism was not linked to any particular ionic species, so e_l eak remains fixed

unless explicitly altered by hoc statements or the GUI.

The STATE block

If a model involves differential equations, families of algebraic equations, or kinetic

reaction schemes, their dependent variables or unknowns are to be listed in the STATE

block. Therefore gating variables such as the delayed rectifier's n are declared here.

In NMODL, variables that are declared in the STATE block are called STATE

variables, or simply STATEs. This NMODL-specific terminology should not be confused

with the physics or engineering concept of a "state variable" as a variable that describes

the state of a system. While membrane potential is a "state variable" in the engineering

sense, it would never be a STATE because its value is calculated only by NEURON and

never by NMODL code. Likewise, the unknowns in a set of simultaneous equations (e.g.

specified in a LI NEAR or NONLI NEAR block) would not be state variables in an

engineering sense, yet they would all be STATEs (see State variables and STATE

variables in Chapter 8).

All STATEs are automatically RANGE variables. This is appropriate, since channel

gating can vary with position along a neurite.

Equation definition blocks

In addition to the BREAKPOI NT block, this model also has I NI TI AL, DERI VATI VE,

and FUNCTI ON blocks.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 9 November 28, 2004

The BREAKPOINT block

This is the main computation block of the mechanism. By the end of the

BREAKPOI NT block, all variables are consistent with the new time. If a mechanism has

STATEs, this block must contain one SOLVE statement that tell how the values of the

STATEs will be computed over each time step. The SOLVE statement specifies a block of

code that defines the simultaneous equations that govern the STATEs. Currents are set

with assignment statements at the end of the BREAKPOI NT block.

There are two major reasons why variables that depend on the number of executions,

such as counts or flags or random numbers, should generally not be calculated in a

BREAKPOI NT block. First, the assignment statements in a BREAKPOI NT block are usually

called twice per time step. Second, with variable time step methods the value of t may

not even be monotonically increasing. The proper way to think about this is to remember

that the BREAKPOI NT block is responsible for making all variables consistent at time t .

Thus assignment statements in this block are responsible for trivially specifying the

values of variables that depend only on the values of STATEs, t , and v , while the SOLVE

statements perform the magic required to make the STATEs consistent at time t . It is not

belaboring the point to reiterate that the assignment statements should produce the same

result regardless of how many times BREAKPOI NT is called with the same STATEs, t , and

v . All too often, errors have resulted from an attempt to explicitly compute what is

conceptually a STATE in a BREAKPOI NT block. Computations that must be performed

only once per time step should be placed in a PROCEDURE, which in turn would be

invoked by a SOLVE statement in a BREAKPOI NT block.

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

We must also emphasize that the SOLVE statement is not a function call, and that the

body of the DERI VATI VE block (or any other block specified in a SOLVE statement) will

be executed asynchronously with respect to BREAKPOI NT assignment statements.

Therefore it is incorrect to invoke rate functions from the BREAKPOI NT block; instead

these must be called from the block that is specified by the SOLVE statement (in this

example, from within the DERI VATI VE block).

Models of active currents such as i _kd are generally formulated in terms of ionic

conductances governed by gating variables that depend on voltage and time. The SOLVE

statements at the beginning of the BREAKPOI NT block specify the differential equations

or kinetic schemes that govern the kinetics of the gating variables. The algebraic

equations that compute the ionic conductances and currents follow the SOLVE statements.

The INITIAL block

Though often overlooked, proper initialization of all STATEs is as important as

correctly computing their temporal evolution. This is accomplished for the common case

by the standard run system's f i ni t i al i ze() , which executes the initialization strategy

defined in the I NI TI AL block of each mechanism (see also INITIAL blocks in NMODL

in Chapter 8). The I NI TI AL block may contain any instructions that should be executed

when the hoc function f i ni t i al i ze() is called.

Prior to executing the I NI TI AL block, STATE variables are set to the values asserted

in the STATE block (or to 0 if no specific value was given in the STATE block). A

NET_RECEI VE block, if present, may also have its own I NI TI AL block for nonzero

initialization of Net Con "states" (the NET_RECEI VE block and its initialization are

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 9 November 28, 2004

discussion further in Chapter 10 and under Basic initialization in NEURON:

finitialize() in Chapter 8).

The I NI TI AL block should be used to initialize STATEs with respect to the initial

values of membrane potential and ionic concentrations. There are several other ways to

prepare STATEs for a simulation run, the most direct of which is simply to assign values

explicitly with hoc statements such as axon. n_kd(0. 3) = 0. 9. However, this

particular strategy can create arbitrary initial conditions that would be quite unnatural. A

more "physiological" approach, which may be appropriate for models of oscillating or

chaotic systems or whose mechanisms show other complex interactions, is to perform an

initialization run during which the model converges toward its limit cycle or attractor.

One practical alternative for systems that settle to a stable equilibrium point when left

undisturbed is to assign t a large negative value and then advance the simulation over

several large time steps (keeping t < 0 prevents the initialization steps from triggering

scheduled events such as stimulus currents or synaptic inputs); this takes advantage of the

strong stability properties of NEURON's implicit integration methods (see Chapter 4).

For a more extensive discussion of initialization, see Chapter 8, especially Examples of

custom initializations).

This delayed rectifier mechanism sets n to its steady state value for the local

membrane potential wherever the mechanism has been inserted. This potential itself can

be "left over" from a previous simulation run, or it can be specified by the user, e.g.

uniformly over the entire cell with a statement like f i ni t i al i ze(- 55) , or on a

compartment by compartment basis by asserting statements such as dend. v(0. 2) =

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

- 48 before calling f i ni t i al i ze() (see Default initialization in the standard run

system: stdinit() and init() in Chapter 8).

The DERIVATIVE block

This is used to assign values to the derivatives of those STATEs that are described by

differential equations. The statements in this block are of the form y' = expr, where a

series of apostrophes can be used to signify higher order derivatives.

In fixed time step simulations, these equations are integrated using the numerical

method specified by the SOLVE statement in the BREAKPOI NT block. The SOLVE

statement should explicitly invoke one of the integration methods that is appropriate for

systems in which state variables can vary widely during a time step (stiff systems). The

cnexp method, which combines second order accuracy with computational efficiency, is

a good choice for this example. It is appropriate when the right hand side of y´ = f(v,y) is

linear in y and involves no other states, so it is well suited to models with HH-style ionic

currents. This method calculates the STATEs analytically under the assumption that all

other variables are constant throughout the time step. If the variables change but are

second order correct at the midpoint of the time step, then the calculation of STATEs is

also second order correct.

If f(v,y) is not linear in y, then the SOLVE

statement in the BREAKPOI NT block should

specify the implicit integration method

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

Other integrators, such as r unge and eul er ,

are defined but are not useful in the

NEURON context. Neither is guaranteed to

be numerically stable, and r unge's high

order accuracy is wasted since voltage does

not have an equivalent order of accuracy.

The NEURON Book: Chapter 9 November 28, 2004

der i v i mpl i ci t . This provides first order accuracy and is usable with general ODEs

regardless of stiffness or nonlinearity.

With variable time step methods, no variable is assumed to be constant. These

methods not only change the time step, but adaptively choose a numerical integration

formula with accuracy that ranges from first order up to O(∆t6). The present

implementation of NMODL creates a diagonal Jacobian approximation for the block of

STATEs. This is done analytically if yi´ = fi(v,y) is polynomial in yi; otherwise, the

Jacobian is approximated by numerical differencing. In the rare case where this is

inadequate, the user may supply an explicit Jacobian. Future versions of NMODL may

attempt to deal with Jacobian evaluation in a more sophisticated manner. This illustrates a

particularly important benefit of the NMODL approach: improvements in methods do not

affect the high level description of the membrane mechanism.

The FUNCTION block

The functions defined by FUNCTI ON blocks are available at the hoc level and in other

mechanisms by adding the suffix of the mechanism in which they are defined, e.g.

al pha_kd() and bet a_kd() . Functions or procedures can be simply called from hoc if

they do not reference range variables (references to GLOBAL variables are allowed). If a

function or procedure does reference a range variable, then prior to calling the function

from hoc it is necessary to specify the proper instance of the mechanism (its location on

the cell). This is done by a set dat a_ function that has the syntax

section_name set dat a_suffix(x)

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

where section_name is the name of the section that contains the mechanism in

question, suffix is the mechanism suffix, and x is the normalized distance along the

section where the particular instance of the mechanism exists. The functions in our kd

example do not use range variables, so a specific instance is not needed.

The differential equation that describes the kinetics of n involves two voltage-

dependent rate constants whose values are computed by the functions al pha() and

bet a() . The original algebraic form of the equations that define these rates is

��� 0.1

�
v � 55

10 �
1 � e�	� v
 55

10 � and � � 0.125 e� � v
 65
80 �

Eq. 9.1

The denominator for � goes to 0 when v = -55 mV, which could cause numeric

overflow. The code used in al pha() avoids this by switching, when v is very close to

-55, to an alternative expression that is based on the first three terms of the infinite series

expansion of ex.

As noted elsewhere in this paper, NMODL has features that facilitate establishing and

maintaining consistency of units. Therefore the rate functions al pha() and bet a() are

introduced with the syntax

FUNCTI ON f_name(arg1 (units1) , arg2 (units2) , . . .) (returned_units)

to declare that their arguments are in units of millivolts and that their returned values are

in units of inverse milliseconds ("/ms"). This allows automatic units checking on entry to

and return from these functions. For the sake of legibility the UNI TSOFF . . . UNI TSON

directives disable units checking just within the body of these functions. This is

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 9 November 28, 2004

acceptable because the terms in the affected statements are mutually consistent.

Otherwise the statements would have to be rewritten in a way that makes unit consistency

explicit at the cost of legibility, e.g.

x = (Vm + 55 (mi l l i vol t)) / (10 (mi l l i vol t))

Certain variables exist solely for the sake of computational convenience. These

typically serve as scale factors, flags, or temporary storage for intermediate results, and

are not of primary importance to the mechanism. Such variables are often declared as

LOCAL variables declared within an equation block, e.g. x in this mechanism. LOCAL

variables that are declared in an equation block are not "visible" outside the block and

they do not retain their values between invocations of the block. LOCAL variables that are

declared outside an equation block have very different properties and are discussed under

Variable declaration blocks in Example 9.8: calcium diffusion with buffering.

Usage

The hoc code and graphical interface for using this distributed mechanism are similar

to those for the l eak mechanism (Fig. 9.2). However, the kd mechanism involves more

range variables, and this is reflected in the choices available in the range variable menu of

variable browsers, such as the Plot what? tool (brought up from the primary menu of a

Graph). Since kd uses potassium, the variables ek and i k (total K+ current) appear in

this list along with the variables that are explicitly declared in RANGE statements or the

STATE block of kd. mod (see Fig. 9.6). The total K+ current i k will differ from i _kd

only if another mechanism that WRI TEs i k is present in this section.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Figure 9.6. A Plot what? tool from a Graph created after the kd mechanism was

inserted into a section called cabl e. Note the hoc names of variables

associated with the kd mechanism.

Example 9.5: a calcium-activated,

voltage-gated current

This model of a potassium current that depends on both voltage and intracellular

calcium concentration [Ca2+]i. is based on the work of Moczydlowski and Latorre

(Moczydlowski and Latorre 1983). It is basically an elaboration of the HH mechanism in

which the forward and backward rates depend jointly on membrane potential and [Ca2+] i.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 9 November 28, 2004

Here we point out the salient implementational differences between this and the previous

model.

: Cal ci um- act i vat ed K channel

NEURON {
 SUFFI X cagk
 USEI ON ca READ cai
 USEI ON k READ ek WRI TE i k
 RANGE gkbar
 GLOBAL oi nf , t au
}

UNI TS {
 (mV) = (mi l l i vol t)
 (mA) = (mi l l i amp)
 (S) = (s i emens)
 (mol ar) = (1/ l i t er)
 (mM) = (mi l l i mol ar)
 FARADAY = (f ar aday) (k i l ocoul ombs)
 R = (k- mol e) (j oul e/ degC)
}

PARAMETER {
 gkbar = 0. 01 (S/ cm2)
 d1 = 0. 84
 d2 = 1. 0
 k1 = 0. 18 (mM)
 k2 = 0. 011 (mM)
 bbar = 0. 28 (/ ms)
 abar = 0. 48 (/ ms)
}

ASSI GNED {
 cai (mM) : t ypi cal l y 0. 001
 cel s i us (degC) : t ypi cal l y 20
 v (mV)
 ek (mV)
 i k (mA/ cm2)
 oi nf
 t au (ms)
}

STATE { o } : f r act i on of channel s t hat ar e open

BREAKPOI NT {
 SOLVE st at e METHOD cnexp
 i k = gkbar * o* (v - ek)
}

DERI VATI VE st at e {
 r at e(v, cai)
 o' = (oi nf - o) / t au
}

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

I NI TI AL {
 r at e(v, cai)
 o = oi nf
}

: t he f ol l owi ng ar e al l cal l abl e f r om hoc

FUNCTI ON al p(v (mV) , ca (mM)) (/ ms) {
 al p = abar / (1 + exp1(k1, d1, v) / ca)
}

FUNCTI ON bet (v (mV) , ca (mM)) (/ ms) {
 bet = bbar / (1 + ca/ exp1(k2, d2, v))
}

FUNCTI ON exp1(k (mM) , d, v (mV)) (mM) {
 : numer i c const ant s i n an addi t i on or subt r act i on
 : expr ess i on aut omat i cal l y t ake on t he uni t val ues
 : of t he ot her t er m
 exp1 = k* exp(- 2* d* FARADAY* v/ R/ (273. 15 + cel s i us))
}

PROCEDURE r at e(v (mV) , ca (mM)) {
 LOCAL a
 : LOCAL var i abl e t akes on uni t s of r i ght hand s i de
 a = al p(v , ca)
 t au = 1/ (a + bet (v, ca))
 oi nf = a* t au
}

Listing 9.5. cagk. mod

The NEURON block

This potassium conductance depends on [Ca2+]i, so two USEI ON statements are

required. Since this potassium channel depends on intracellular calcium concentration, it

must READ cai . The RANGE statement declares the peak conductance density gkbar .

However, there is no g, so this mechanism's ionic conductance will not be visible from

hoc (in fact, this model doesn't even calculate the activated ionic conductance density).

Likewise, there is no i _cagk to report this particular current component separately, even

though it will be added to the total K+ current i k because of WRI TE i k .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 9 November 28, 2004

The variables oi nf and t au, which govern the gating variable o, should be

accessible in hoc for the purpose of seeing how they vary with membrane potential and

[Ca2+]i. At the same time, the storage and syntax overhead required for a RANGE variable

does not seem warranted because it appears unlikely to be necessary or useful to plot

either oi nf or t au as a function of space. Therefore they have been declared in a

GLOBAL statement. On first examination, this might seem to pose a problem. The gating

of this K+ current depends on membrane potential and [Ca2+] i, both of which may vary

with location, so how can it be correct for oi nf and t au to be GLOBALs? And if some

reason did arise to examine the values of these variables at a particular location, how

could this be done? The answers to these questions lie in the DERI VATI VE and

PROCEDURE blocks, as we shall see below.

The UNITS block

The last two statements in this block require some explanation. The first

parenthesized item on the right hand side of the equal sign is the numeric value of a

standard entry in nr nuni t s. l i b, which may be expressed on a scale appropriate for

physics rather than membrane biophysics. The second parenthesized item rescales this to

the biophysically appropriate units chosen for this model. Thus (f ar aday) appears in

the units database in terms of coulombs/mole and has a numeric value of 96,485.309, but

for this particular mechanism we prefer to use a constant whose units are

kilocoulombs/mole. The statement

FARADAY = (f ar aday) (k i l ocoul ombs)

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

results in FARADAY having units of kilocoulombs and a numeric value of 96.485309. The

item (k- mol e) in the statement

R = (k- mol e) (j oul e/ degC)

is not kilomoles but instead is a specific entry in the units database equal to the product of

Boltzmann's constant and Avogadro's number. The end result of this statement is that R

has units of joules/°C and a numeric value of 8.313424. These special definitions of

FARADAY and R pertain to this mechanism only; a different mechanism could assign

different units and numeric values to these labels.

Another possible source of confusion is the interpretation of the symbol e. Inside a

UNITS block this is always the electronic charge (~ 1.6 · 10-19 coulombs), but elsewhere

a single number in parentheses is treated as a units conversion factor, e.g. the expression

(2e4) is a conversion factor of 2 · 104. Errors involving e in a units expression are easy

to make, but they are always caught by modl uni t .

Variable declaration blocks

The ASSIGNED block

Comments in this block can be helpful to the user as reminders of "typical" values or

usual conditions under which a mechanism operates. For example, the cagk mechanism

is intended for use in the context of [Ca2+]i on the order of 0.001 mM. Similarly, the

temperature sensitivity of this mechanism is accommodated by including the global

variable cel s i us , which is used to calculate the rate constants (see The FUNCTION and

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 9 November 28, 2004

PROCEDURE blocks below). NEURON's default value for cel s i us is 6.3ºC, but as the

comment in this mod file points out, the parameter values for this particular mechanism

were intended for an "operating temperature" of 20ºC. Therefore the user may need to

change cel s i us through hoc or the GUI.

The variables oi nf and t au, which were made accessible to NEURON by the

GLOBAL statement in the NEURON block, are given values by the procedure r at e and are

declared as ASSI GNED.

The STATE block

This mechanism needs a STATE block because o, the fraction of channels that are

open, is described by a differential equation.

Equation definition blocks

The BREAKPOINT block

This mechanism does not make its ionic conductance available to hoc , so the

BREAKPOI NT block just calculates the ionic current passing through these channels and

doesn't bother with separate computation of a conductance.

The DERIVATIVE block

The gating variable o is governed by a first order differential equation. The procedure

r at e() assigns values to the voltage sensitive parameters of this equation: the steady

state value oi nf , and the time constant t au. This answers the first question that was

raised above in the discussion of the NEURON block. The procedure r at e() will be

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

executed individually for each segment in the model that has the cagk mechanism. Each

time r at e() is called, its arguments will equal the membrane potential and [Ca2+]i of

the segment that is being processed, since v and cai are both RANGE variables. Therefore

oi nf and t au can be GLOBAL without destroying the spatial variation of the gating

variable o.

The FUNCTION and PROCEDURE blocks

The functions al p() , bet () , exp1() , and the procedure r at e() implement the

mathematical expressions that describe oi nf and t au. To facilitate units checking, their

arguments are tagged with the units that they use. For efficiency, r at e() calls al p()

once and uses the returned value twice; calculating oi nf and t au separately would have

required two calls to al p() .

Now we can answer the second question that was raised in the discussion of the

NEURON block: how to examine the variation of oi nf and t au over space. This is easily

done in hoc with nested loops, e.g.

f or al l { / / i t er at e over al l sect i ons
 f or (x) { / / i t er at e over each segment
 r at e_cagk(v(x) , cai (x))
 / / her e put st at ement s t o pl ot
 / / or save oi nf and t au
 }
}

Usage

This mechanism involves both K+ and Ca2+, so the list of RANGE variables displayed

by Plot what? has more entries than it did for the kd mechanism (Fig. 9.7; compare this

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 9 November 28, 2004

with Fig. 9.6). However, cai , cao, and eca will remain constant unless the section in

which this mechanism has been inserted also includes something that can affect calcium

concentration (e.g. a pump or buffer).

Figure 9.7. A Plot what? tool from a Graph created after the cagk mechanism

was inserted into a section called cabl e. Note the hoc names of variables

associated with the cagk mechanism.

Example 9.6: extracellular potassium accumulation

Because mechanisms can generate transmembrane fluxes that are attributed to

specific ionic species by the USEI ON x WRI TE ix syntax, modeling the effects of

restricted diffusion is straightforward. The kext mechanism described here emulates

potassium accumulation in the extracellular space adjacent to squid axon (Fig. 9.8). The

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

experiments of Frankenhaeuser and Hodgkin (Frankenhaeuser and Hodgkin 1956)

indicated that satellite cells and other extracellular structures act as a diffusion barrier that

prevents free communication between this space and the bath. When there is a large

efflux of K+ ions from the axon, e.g. during the repolarizing phase of an action potential

or in response to injected depolarizing current, K+ builds up in this "Frankenhaeuser-

Hodgkin space" (F-H space). This elevation of [K+]o shifts EK in a depolarized direction,

which has two important consequences. First, it reduces the driving force for K+ efflux

and causes a decline of the outward IK. Second, when the action potential terminates or

the injected depolarizing current is stopped, the residual elevation of [K+]o causes an

inward current that decays gradually as [K+]o equilibrates with [K+]bath.

Figure 9.8. Restricted diffusion may cause extracellular potassium

accumulation adjacent to the cell membrane. From Fig. 1 in (Hines and

Carnevale 2000).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 9 November 28, 2004

: Ext r acel l ul ar pot assi um i on accumul at i on

NEURON {
 SUFFI X kext
 USEI ON k READ i k WRI TE ko
 GLOBAL kbat h
 RANGE f hspace, t xf er
}

UNI TS {
 (mV) = (mi l l i vol t)
 (mA) = (mi l l i amp)
 FARADAY = (f ar aday) (coul ombs)
 (mol ar) = (1/ l i t er)
 (mM) = (mi l l i mol ar)
}

PARAMETER {
 kbat h = 10 (mM) : seawat er (squi d axon!)
 f hspace = 300 (angst r om) : ef f ect i ve t hi ckness of F- H space
 t xf er = 50 (ms) : t au f or F- H space <- > bat h exchange = 30- 100
}

ASSI GNED { i k (mA/ cm2) }

STATE { ko (mM) }

BREAKPOI NT { SOLVE st at e METHOD cnexp }

DERI VATI VE st at e {
 ko' = (1e8) * i k/ (f hspace*FARADAY) + (kbat h - ko) / t xf er
}

Listing 9.6. kext . mod

The NEURON block

A compartment may contain several mechanisms that have direct interactions with

ionic concentrations (e.g. diffusion, buffers, pumps). Therefore NEURON must be able to

compute the total currents and concentrations consistently. The USEI ON statement sets up

the necessary "bookkeeping" by automatically creating a separate mechanism that keeps

track of four essential variables: the total outward current carried by an ion, the internal

and external concentrations of the ion, and its equilibrium potential (also see Ion

concentrations and equilibrium potential in Chapter 8). In this case the name of the

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

ion is "k" and the automatically created mechanism is called "k_i on" in the hoc

interpreter. The k_i on mechanism has variables i k , ki , ko, and ek , which represent IK,

[K+] i, [K
+]o, and EK, respectively. These do not have suffixes; furthermore, they are

RANGE variables so they can have different values in every segment of each section in

which they exist. In other words, the K+ current through Hodgkin-Huxley potassium

channels near one end of the section cabl e is cabl e. i k_hh(0. 1) , but the total K+

current generated by all sources, including other ionic conductances and pumps, would be

cabl e. i k(0. 1) .

This mechanism computes [K+]o from the outward potassium current, so it READs i k

and WRI TEs ko. When a mechanism WRI TEs a particular ionic concentration, it sets the

value for that concentration at all locations in every section into which it has been

inserted. This has an important consequence: in any given section, no ionic concentration

should be "written" by more than one mechanism.

The bath is assumed to be a large, well stirred compartment that envelops the entire

"experimental preparation." Therefore kbat h is a GLOBAL variable so that all sections

that contain the kext mechanism will have the same numeric value for [K+]bath. Since

this would be one of the controlled variables in an experiment, the value of kbat h is

specified by the user and remains constant during a simulation. The thickness of the F-H

space is f hspace, the time constant for equilibration with the bath is t x f er , and both

are RANGE variables so they can vary along the length of each section.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 9 November 28, 2004

Variable declaration blocks

The PARAMETER block

The default value of kbat h is set to 10 mM, consistent with the composition of

seawater (Frankenhaeuser and Hodgkin 1956). Since kbat h is GLOBAL, a single hoc

statement can change this to a new value that will affect all occurrences of the kext

mechanism, e.g. kbat h_kext = 8 would change it to 8 mM everywhere.

The STATE block

Ionic concentration is a STATE of a mechanism only if that mechanism calculates the

concentration in a DERI VATI VE or KI NETI C block. This model computes ko, the

potassium concentration in the F-H space, according to the dynamics specified by an

ordinary differential equation.

Equation definition blocks

The BREAKPOINT block

This mechanism involves a single differential equation that tells the rate of change of

ko, the K+ concentration in the F-H space. The choice of integration method in NMODL

is based on the fact that the equation is linear in ko. The total K+ current i k might also

vary during a time step (see the DERI VATI VE block) if membrane potential, some K+

conductance, or ko itself is changing rapidly. In a simulation where such rapid changes

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

are likely to occur, proper modeling practice would lead one either to use NEURON with

CVODE, or to use a fixed time step that is short compared to the rate of change of i k .

The INITIAL block

How to provide for initialization of variables is a recurring question in model

implementation, and here it comes again. The answer is important because it bears

directly on how the model will be used. The only STATE in this mechanism is the ionic

concentration ko, which we could initialize in several different ways. The simplest might

be with the I NI TI AL block

I NI TI AL {
 ko = kbat h
}

but this seems too limiting. One alternative is to declare a new RANGE variable ko0 in the

NEURON block, specify its value in the PARAMETER block

PARAMETER {
 . . .
 ko0 = 10 (mM) = 10 (mM)
}

and use this I NI TI AL block

I NI TI AL {
 ko = ko0
}

This would be a very flexible implementation, allowing ko0 to vary with location

wherever kext has been i nser t ed. But some care is needed in its use, because ion

concentration assignment in an I NI TI AL block can result in an inconsistent initialization

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 9 November 28, 2004

on return from f i ni t i al i ze() (see Ion concentrations and equilibrium potentials

in Chapter 8).

So for this example we have decided to let the initial value of ko be controlled by the

built-in hoc variable ko0_k_i on (see Initializing concentrations in hoc in Chapter 8).

To make our mechanism rely on ko0_k_i on for the initial value of ko, we merely omit

any ko = . . . assignment statement from the I NI TI AL block. Since ko is kext 's only

STATE, we don't need an I NI TI AL block at all. This might seem a less flexible approach

than using our own ko0 RANGE variable, because ko0_k_i on is a global variable (has

the same value wherever ko is defined), but Initializing concentrations in hoc in

Chapter 8 shows how to work around this apparent limitation.

The DERIVATIVE block

At the core of this mechanism is a single differential equation that relates d[K+]o/dt to

the sum of two terms. The first term describes the contribution of i k to [K+]o, subject to

the assumption that the thickness F-H space is much smaller than the diameter of the

section. The units conversion factor of 108 is required because f hspace is given in

Ångstroms. The second term describes the exchange of K+ between the bath and the F-H

space.

Usage

If this mechanism is present in a section, the following RANGE variables will be

accessible through hoc : [K+] inside the cell and within the F-H space (ki and ko);

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

equilibrium potential and total current for K (ek and i k); thickness of the F-H space and

the rate of equilibration between it and the bath (f hspace_kext and t x f er _kext). The

bath [K+] will also be available as the global variable kbat h_kext .

General comments about kinetic schemes

Kinetic schemes provide a high level framework that is perfectly suited for compact

and intuitively clear specification of models that involve discrete states in which material

is conserved. The basic notion is that flow out of one state equals flow into another (also

see Chemical reactions in Chapter 3). Almost all models of membrane channels,

chemical reactions, macroscopic Markov processes, and diffusion can be elegantly

expressed through kinetic schemes. It will be helpful to review some fundamentals before

proceeding to specific examples of mechanisms implemented with kinetic schemes.

The unknowns in a kinetic scheme, which are usually concentrations of individual

reactants, are declared in the STATE block. The user expresses the kinetic scheme with a

notation that is very similar to a list of simultaneous chemical reactions. The NMODL

translator converts the kinetic scheme into a family of ODEs whose unknowns are the

STATEs. Hence

STATE { mc m }
KI NETI C scheme1 {
 ~ mc <- > m (a(v) , b(v))
}

is equivalent to

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 9 November 28, 2004

DERI VATI VE scheme1 {
 mc' = - a(v) * mc + b(v) * m
 m' = a(v) * mc - b(v) * m
}

The first character of a reaction statement is the tilde "~", which is used to

immediately distinguish this kind of statement from other sequences of tokens that could

be interpreted as an expression. The expressions on the left and right of the three

character reaction indicator "<- >" specify the reactants. The two expressions in

parentheses are the forward and reverse reaction rates (here the rate functions a(v) and b

(v)). Immediately after each reaction, the variables f _f l ux and b_f l ux are assigned

the values of the forward and reverse fluxes respectively. These can be used in

assignment statements such as

~ cai + pump <- > capump (k1, k2)
~ capump <- > pump + cao (k3, k4)
i ca = (f _f l ux - b_f l ux) * 2* Far aday/ ar ea

In this case, the forward flux is k3* capump, the reverse flux is k4* pump* cao, and the

"positive outward" current convention is consistent with the sign of the expression for

i ca (in the second reaction, forward flux means positive ions move from the inside to the

outside).

More complicated reaction sequences such as the wholly imaginary

KI NETI C scheme2 {
 ~ 2A + B <- > C (k1, k2)
 ~ C + D <- > A + 2B (k3, k4)
}

begin to show the clarity of expression and suggest the comparative ease of modification

of the kinetic representation over the equivalent but stoichiometrically confusing

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

DERI VATI VE scheme2 {
 A' = - 2* k1* A^2* B + 2* k2* C + k3* C* D - k4* A* B^2
 B' = - k1* A^2* B + k2* C + 2* k3* C* D - 2* k4* A* B^2
 C' = k1* A^2* B - k2* C - k3* C* D + k4* A* B^2
 D' = - k3* C* D + k4* A* B^2
}

Clearly a statement such as

~ cal modul i n + 3Ca <- > act i ve (k1, k2)

would be easier to modify (e.g. so it requires combination with 4 calcium ions) than the

relevant term in the three differential equations for the STATEs that this reaction affects.

The kinetic representation is easy to debug because it closely resembles familiar notations

and is much closer to the conceptualization of what is happening than the differential

equations would be.

Another benefit of kinetic schemes is the simple polynomial nature of the flux terms,

which allows the translator to easily perform a great deal of preprocessing that makes

implicit numerical integration more efficient. Specifically, the nonzero � y' i
�

� y j

elements (partial derivatives of dyi

�
dt with respect to y j) of the sparse matrix are

calculated analytically in NMODL and collected into a C function that is called by

solvers to calculate the Jacobian. Furthermore, the form of the reaction statements

determines if the scheme is linear, obviating an iterative computation of the solution.

Voltage-sensitive rates are allowed, but to guarantee numerical stability, reaction rates

should not be functions of STATEs. Thus writing the calmodulin example as

~ cal modul i n <- > act i ve (k3* Ca^3, k2)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 9 November 28, 2004

will work but is potentially unstable if Ca is a STATE in other simultaneous reactions in

the same mod file. Variable time step methods such as CVODE will compensate by

reducing dt , but this will make the simulation run more slowly.

Kinetic scheme representations provide a great deal of leverage because a single

compact expression is equivalent to a large amount of C code. One special advantage

from the programmer's point of view is the fact that these expressions are independent of

the solution method. Different solution methods require different code, but the NMODL

translator generates this code automatically. This saves the user's time and effort and

ensures that all code expresses the same mechanism. Another advantage is that the

NMODL translator handles the task of interfacing the mechanism to the remainder of the

program. This is a tedious exercise that would require the user to have special knowledge

that is not relevant to neurophysiology and which may change from version to version.

Special issues are raised by mechanisms that involve fluxes between compartments of

different size, or whose reactants have different units. The first of the following examples

has none of these complications, which are addressed later in models of diffusion and

active transport.

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Example 9.7: kinetic scheme for a

voltage-gated current

This illustration of NMODL's facility for handling kinetic schemes implements a

simple three state model for the conductance state transitions of a voltage gated

potassium current

C1

�
�
kb1

kf 1

C2

�
�
kb2

kf 2

O Eq. 9.2

The closed states are C1 and C2, the open state is O, and the rates of the forward and

backward state transitions are calculated in terms of the equilibrium constants and time

constants of the isolated reactions through the familiar expressions K i

�
v � � kf i

�
kbi

and � i

�
v � � 1

� �
kf i � kbi � . The equilibrium constants K i

�
v � are the Boltzmann factors

K 1
� e

�
k2 � d2 � v � � k1 � d1 � v �
	

 and K 2
� e� k2 � d2 � v �

, where the energies of states C1,

C2, and O are 0, k1

�
d1 � v � , and k2

�
d2 � v � respectively.

The typical sequence of analysis is to determine the constants k1, d1, k2, and d2 by

fitting the steady state voltage clamp data, and then to find the voltage sensitive transition

time constants � 1

�
v � and � 2

�
v � from the temporal properties of the clamp current at

each voltage pulse level. In this example the steady state information has been

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 9 November 28, 2004

incorporated in the NMODL code, and the time constants are conveyed by tables (arrays)

that are created within the interpreter.

: Thr ee st at e k i net i c scheme f or HH- l i ke pot ass i um channel
: St eady st at e v- dependent st at e t r ansi t i ons have been f i t
: Needs v- dependent t i me const ant s
: f r om t abl es cr eat ed under hoc

NEURON {
 SUFFI X k3st
 USEI ON k READ ek WRI TE i k
 RANGE g, gbar
}

UNI TS { (mV) = (mi l l i vol t) }

PARAMETER {
 gbar = 33 (mi l l i mho/ cm2)
 d1 = - 38 (mV)
 k1 = 0. 151 (/ mV)
 d2 = - 25 (mV)
 k2 = 0. 044 (/ mV)
}

ASSI GNED {
 v (mV)
 ek (mV)
 g (mi l l i mho/ cm2)
 i k (mi l l i amp/ cm2)
 kf 1 (/ ms)
 kb1 (/ ms)
 kf 2 (/ ms)
 kb2 (/ ms)
}

STATE { c1 c2 o }

BREAKPOI NT {
 SOLVE k i n METHOD spar se
 g = gbar * o
 i k = g* (v - ek) * (1e- 3)
}

I NI TI AL { SOLVE k i n STEADYSTATE spar se }

KI NETI C k i n {
 r at es(v)
 ~ c1 <- > c2 (kf 1, kb1)
 ~ c2 <- > o (kf 2, kb2)
 CONSERVE c1 + c2 + o = 1
}

FUNCTI ON_TABLE t au1(v(mV)) (ms)
FUNCTI ON_TABLE t au2(v(mV)) (ms)

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

PROCEDURE r at es(v(mi l l i vol t)) {
 LOCAL K1, K2
 K1 = exp(k2* (d2 - v) - k1* (d1 - v))
 kf 1 = K1/ (t au1(v) * (1+K1))
 kb1 = 1/ (t au1(v) * (1+K1))
 K2 = exp(- k2* (d2 - v))
 kf 2 = K2/ (t au2(v) * (1+K2))
 kb2 = 1/ (t au2(v) * (1+K2))
}

Listing 9.7. k3st . mod

The NEURON block

With one exception, the NEURON block of this model is essentially the same as for the

delayed rectifier presented in Example 9.4: a voltage-gated current. The difference is

that, even though this model contributes to the total K+ current i k , its own current is not

available separately (i.e. there will be no i k_k3st at the hoc level) because i k is not

declared as a RANGE variable.

Variable declaration blocks

The STATE block

The STATEs in this mechanism are the fractions of channels that are in closed states 1

or 2 or in the open state. Since the total number of channels in all states is conserved, the

sum of the STATEs must be unity, i.e. c1 + c2 + o = 1. This conservation rule means that

the k3st mechanism really has only two independent STATE variables, a fact that

underscores the difference between a STATE in NMODL and the general concept of a

state variable. It also affects how NMODL sets up the equations that are to be solved, as

we will see in the discussion of the KI NETI C block below.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

The NEURON Book: Chapter 9 November 28, 2004

Not all reactants have to be STATEs. If the reactant is an ASSI GNED or PARAMETER

variable, then a differential equation is not generated for it, and it is treated as constant

for the purposes of calculating the declared STATEs. Statements such as

PARAMETER { kbat h (mM) }
STATE { ko (mM) }
KI NETI C scheme3 {
 ~ ko <- > kbat h (r , r)
}

are translated to the single ODE equivalent

ko' = r * (kbat h - ko)

i.e. ko tends exponentially to the steady state value of kbat h.

Equation definition blocks

The BREAKPOINT block

The recommended idiom for integrating a kinetic scheme is

BREAKPOI NT {
 SOLVE scheme METHOD spar se
 . . .
}

which integrates the STATEs in the scheme one dt step per call to f advance() . The

spar se method is generally faster than computing the full Jacobian matrix, though both

use Newton iterations to advance the STATEs with a fully implicit method (first order

correct). Additionally, the spar se method separates the Jacobian evaluation from the

calculation of the STATE derivatives, thus allowing adaptive integration methods, such as

CVODE, to efficiently compute only what is needed to advance the STATEs. Nonimplicit

methods, such as Runge-Kutta or forward Euler, should be avoided since kinetic schemes

Page 54 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

commonly have very wide ranging rate constants that make these methods numerically

unstable with reasonable dt steps. In fact, it is not unusual to specify equilibrium

reactions such as

~ A <- > B (1e6* sqr t (K) , 1e6/ sqr t (K))

which can only be solved by implicit methods.

The INITIAL block

Initialization of a kinetic scheme to its steady state is accomplished with

I NI TI AL {
SOLVE scheme STEADYSTATE spar se

}

Appropriate CONSERVE statements should be part of the scheme (see the following

discussion of the KI NETI C block) so that the equivalent system of ODEs is linearly

independent. It should be kept in mind that source fluxes (constant for infinite time) have

a strong effect on the steady state. Finally, it is crucial to test the scheme in NEURON

under conditions in which the correct behavior is known.

The KINETIC block

The voltage-dependent rate constants are computed in procedure r at es() . That

procedure computes the equilibrium constants K1 and K2 from the constants k1, d1, k2,

and d2, whose empirically determined default values are given in the PARAMETER block,

and membrane potential v. The time constants t au1 and t au2, however, are found from

tables created under hoc (see The FUNCTION_TABLEs below).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

The NEURON Book: Chapter 9 November 28, 2004

The other noteworthy item in this block is the CONSERVE statement. As mentioned

above in General comments about kinetic schemes, the basic idea is to systematically

account for conservation of material. If there is neither a source nor a sink reaction for a

STATE, the differential equations are not linearly independent when steady states are

calculated (dt approaches infinity). For example, in scheme1 above the steady state

condition m' = mc' = 0 yields two identical equations. Steady states can be approximated

by integrating for several steps from any initial condition with large dt , but roundoff

error can be a problem if the Jacobian matrix is nearly singular. To help solve the

equations while maintaining strict numerical conservation throughout the simulation (no

accumulation of roundoff error), the user is allowed to explicitly specify conservation

equations with the CONSERVE statement. The conservation law for scheme1 is specified

in NMODL by

CONSERVE m + mc = 1

The CONSERVE statement does not add to the information content of a kinetic scheme

and should be considered only as a hint to the translator. The NMODL translator uses this

algebraic equation to replace the ODE for the last STATE on the left side of the equal

sign. If one of the STATE names is an array, the conservation equation will contain an

implicit sum over the array. If the last STATE is an array, then the ODE for the last

STATE array element will be replaced by the algebraic equation. The choice of which

STATE ODE is replaced by the algebraic equation depends on the implementation, and

does not affect the solution (to within roundoff error). If a CONSERVEd STATE is relative

to a compartment size, then compartment size is implicitly taken into account for the

STATEs on the left hand side of the CONSERVE equation (see Example 9.8: calcium

Page 56 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

diffusion with buffering for discussion of the COMPARTMENT statement). The right hand

side is merely an expression, in which any necessary compartment sizes must be included

explicitly.

Thus in a calcium pump model

Caint � Pump
�
�
k2

k1

Ca � Pump
�
�
k4

k3

Caext � Pump Eq. 9.3

the pump is conserved and one could write

CONSERVE pump + pumpca = t ot al _pump * pumpar ea

The FUNCTION_TABLEs

As noted above, the steady state clamp data define the voltage dependence of K1 and

K2, but a complete description of the K+ current requires analysis of the temporal

properties of the clamp current to determine the rate factors at each of the command

potentials. The result would be a list or table of membrane potentials with associated time

constants. One way to handle these numeric values would be to fit them with a pair of

approximating functions, but the tactic used in this example is to leave them in tabular

form for NMODL's FUNCTI ON_TABLE to deal with.

This is done by placing the numeric values in three Vect or s, say v_vec , t au1_vec ,

and t au2_vec, where the first is the list of voltages and the other two are the

corresponding time constants. These Vect or s would be attached to the

FUNCTI ON_TABLEs of this model with the hoc commands

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

The NEURON Book: Chapter 9 November 28, 2004

t abl e_t au1_k3st (t au1_vec, v_vec)
t abl e_t au2_k3st (t au2_vec, v_vec)

Then whenever t au1(x) is called in the NMODL file, or t au1_k3st (x) is called from

hoc , the returned value is interpolated from the array.

A useful feature of FUNCTI ON_TABLEs is that, prior to developing the Vect or

database, they can be attached to a scalar value, as in

t abl e_t au1_k3st (100)

effectively becoming constant functions. Also FUNCTI ON_TABLEs can be declared with

two arguments and attached to doubly dimensioned hoc arrays. In this case the table is

linearly interpolated in both dimensions. This is useful with rates that depend on both

voltage and calcium.

Usage

Inserting this mechanism into a section makes the STATEs c1_k3st , c2_k3st , and

o_k3st available at the hoc level, as well as the conductances gbar _k3st and g_k3st .

Example 9.8: calcium diffusion with buffering

This mechanism illustrates how to use kinetic schemes to model intracellular Ca2+

diffusion and buffering. It differs from the prior example in several important aspects:

Ca2+ is not conserved but instead enters as a consequence of the transmembrane Ca2+

current; diffusion involves the exchange of Ca2+ between compartments of unequal size;

Ca2+ is buffered.

Page 58 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Only free Ca2+ is assumed to be mobile, whereas bound Ca2+ and free buffer are

stationary. Buffer concentration and rate constants are based on the bullfrog sympathetic

ganglion cell model described by Yamada et al. (Yamada et al. 1998). For a thorough

treatment of numeric solution of the diffusion equations the reader is referred to Oran and

Boris (Oran and Boris 1987).

Modeling diffusion with kinetic schemes

Diffusion is modeled as the exchange of Ca2+ between adjacent compartments. We

begin by examining radial diffusion, and defer consideration of longidudinal diffusion to

Equation definition blocks: The KINETIC block later in this example.

For radial diffusion, the compartments are a series of concentric shells around a

cylindrical core, as shown in Fig. 9.9 for Nannul i = 4. The index of the outermost shell

is 0 and the index of the core is Nannul i - 1. The outermost shell is half as thick as the

others so that [Ca2+] will be second order correct with respect to space at the surface of

the segment. Concentration is also second order correct midway through the thickness of

the other shells and at the center of the core. These depths are indicated by "x" in Fig. 9.9.

The radius of the cylindrical core equals the thickness of the outermost shell, and the

intervening Nannul i - 2 shells each have thickness ∆r = di am / 2 (Nannul i - 1), where

di am is the diameter of the segment.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

The NEURON Book: Chapter 9 November 28, 2004

Figure 9.9. Diagram of the concentric shells used to model radial diffusion. The

× mark the radial distances at which concentration will be second order correct

in space.

Because segment diameter and the number of shells affect the dimensions of the

shells, they also affect the time course of diffusion. The flux between adjacent shells is

∆[Ca2+] DCa A / ∆r, where ∆[Ca2+] is the concentration difference between the shell

centers, DCa is the diffusion coefficient for Ca2+, A is the area of the boundary between

shells, and ∆r is the distance between their centers. This suggests that diffusion can be

described by the basic kinetic scheme

FROM i = 0 TO Nannul i - 2 {
 ~ ca[i] <- > ca[i +1] (f [i +1] , f [i +1])
}

where Nannul i is the number of shells, ca[i] is the concentration midway through the

thickness of shell i (except for ca[0] which is the concentration at the outer surface of

shell 0), and the rate constants f [i +1] equal DCa A i+1 / ∆r. For each adjacent pair of

shells, both Ai+1 and ∆r are directly proportional to segment diameter. Therefore the

ratios A i+1 / ∆r depend only on shell index, i.e. once they have been computed for one

Page 60 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

segment, they can be used for all segments that have the same number of radial

compartments regardless of segment diameter.

As it stands, this kinetic scheme is dimensionally incorrect. Dimensional consistency

requires that the product of STATEs and rates be in units of STATE per time (also see

Compartment size in the section on Chemical reactions in Chapter 3). In the present

example the STATEs ca[] are intensive variables (concentration, or mass/volume), so the

product of f [] and ca[] must be in units of concentration/time. However, the rates f []

have units of volume/time, so this product is actually in units of mass/time, i.e. it is a flux

that signifies the rate at which Ca2+ is entering or leaving a compartment. This is the time

derivative of an extensive variable (i.e. of a variable that describes amount of material).

This disparity is corrected by specifying STATE volumes with the COMPARTMENT

statement, as in

COMPARTMENT vol ume { st at e1 st at e2 . . . }

where the STATEs named in the braces have the same compartment volume given by the

volume expression after the COMPARTMENT keyword. The volume merely multiplies the

dSTATE/dt left hand side of the equivalent differential equations, converting it to an

extensive quantity and making it consistent with flux terms in units of absolute quantity

per time.

The volume of each cylindrical shell depends on its index and the total number of

shells, and is proportional to the square of segment diameter. Consequently the volumes

can be computed once for a segment with unit diameter and then scaled by di am̂ 2 for

use in each segment that has the same Nannul i . The equations that describe the radial

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

The NEURON Book: Chapter 9 November 28, 2004

movement of Ca2+ are independent of segment length. Therefore it is convenient to

express shell volumes and surface areas in units of µm2 (volume/length) and µm

(area/length), respectively.

: Cal ci um i on accumul at i on wi t h r adi al and l ongi t udi nal di f f usi on

NEURON {
 SUFFI X cadi f us
 USEI ON ca READ cai , i ca WRI TE cai
 GLOBAL vr at , Tot al Buf f er : vr at must be GLOBAL- - see I NI TI AL bl ock
 : however Tot al Buf f er may be RANGE
}

DEFI NE Nannul i 4 : must be >=2 (i . e. at l east shel l and cor e)

UNI TS {
 (mol ar) = (1/ l i t er)
 (mM) = (mi l l i mol ar)
 (um) = (mi cr on)
 (mA) = (mi l l i amp)
 FARADAY = (f ar aday) (10000 coul omb)
 PI = (pi) (1)
}

PARAMETER {
 DCa = 0. 6 (um2/ ms)
 k1buf = 100 (/ mM- ms) : Yamada et al . 1989
 k2buf = 0. 1 (/ ms)
 Tot al Buf f er = 0. 003 (mM)
}

ASSI GNED {
 di am (um)
 i ca (mA/ cm2)
 cai (mM)
 vr at [Nannul i] (1) : di mensi onl ess
 : vr at [i] i s vol ume of annul us i of a 1um di amet er cyl i nder
 : mul t i pl y by di am̂ 2 t o get vol ume per um l engt h
 Kd (/ mM)
 B0 (mM)
}

STATE {
 : ca[0] i s equi val ent t o cai
 : ca[] ar e ver y smal l , so speci f y absol ut e t ol er ance
 ca[Nannul i] (mM) <1e- 10>
 CaBuf f er [Nannul i] (mM)
 Buf f er [Nannul i] (mM)
}

BREAKPOI NT { SOLVE st at e METHOD spar se }

Page 62 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

LOCAL f act or s_done

I NI TI AL {
 i f (f act or s_done == 0) { : f l ag becomes 1 i n t he f i r st segment
 f act or s_done = 1 : al l subsequent segment s wi l l have
 f act or s() : vr at = 0 unl ess vr at i s GLOBAL
 }

 Kd = k1buf / k2buf
 B0 = Tot al Buf f er / (1 + Kd*cai)

 FROM i =0 TO Nannul i - 1 {
 ca[i] = cai
 Buf f er [i] = B0
 CaBuf f er [i] = Tot al Buf f er - B0
 }
}

LOCAL f r at [Nannul i] : scal es t he r at e const ant s f or model geomet r y

PROCEDURE f act or s() {
 LOCAL r , dr 2
 r = 1/ 2 : st ar t s at edge (hal f di am)
 dr 2 = r / (Nannul i - 1) / 2 : f ul l t hi ckness of out er most annul us,
 : hal f t hi ckness of al l ot her annul i
 vr at [0] = 0
 f r at [0] = 2* r
 FROM i =0 TO Nannul i - 2 {
 vr at [i] = vr at [i] + PI * (r - dr 2/ 2) *2*dr 2 : i nt er i or hal f
 r = r - dr 2
 f r at [i +1] = 2*PI * r / (2*dr 2) : out er r adi us of annul us
 : di v by di st ance bet ween cent er s
 r = r - dr 2
 vr at [i +1] = PI * (r +dr 2/ 2) *2*dr 2 : out er hal f of annul us
 }
}

LOCAL dsq, dsqvol : can' t def i ne l ocal var i abl e i n KI NETI C bl ock
 : or use i n COMPARTMENT st at ement

KI NETI C st at e {
 COMPARTMENT i , di am*di am*vr at [i] { ca CaBuf f er Buf f er }
 LONGI TUDI NAL_DI FFUSI ON i , DCa*di am*di am*vr at [i] { ca}
 ~ ca[0] << (- i ca*PI *di am/ (2*FARADAY)) : i ca i s Ca ef f l ux
 FROM i =0 TO Nannul i - 2 {
 ~ ca[i] <- > ca[i +1] (DCa* f r at [i +1] , DCa*f r at [i +1])
 }
 dsq = di am*di am
 FROM i =0 TO Nannul i - 1 {
 dsqvol = dsq*vr at [i]
 ~ ca[i] + Buf f er [i] <- > CaBuf f er [i] (k1buf *dsqvol , k2buf *dsqvol)
 }
 cai = ca[0]
}

Listing 9.8. cadi f . mod

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

The NEURON Book: Chapter 9 November 28, 2004

The NEURON block

This model READs cai to initialize both intracellular [Ca2+] and the buffer (see The

INITIAL block below), and it WRI TEs cai because it computes [Ca2+] in the outermost

shell during a simulation run. It also READs i ca, which is the Ca2+ influx into the

outermost shell.

There are two GLOBALs. One is the total buffer concentration Tot al Buf f er , which

is assumed to be uniform throughout the cell. The other is vr at , an array whose elements

will be the numeric values of the (volume/length) of the shells for a segment with unit

diameter. These values are computed by PROCEDURE f act or s() near the end of

Listing 9.8. As noted above, a segment with diameter di am has shells with volume/length

equal to di am̂ 2 * vr at [i] . Because each instance of this mechanism has the same

number of shells, the same vr at [i] can be used to find the shell volumes at each

location in the model cell where the mechanism exists.

The DEFI NE statement sets the number of shells to 4. Many of the variables in this

model are arrays, and NMODL arrays are not dynamic. Instead, their size must be

specified when the NMODL code is translated to C.

The UNITS block

Faraday's constant is rescaled here so we won't have to include a separate units

conversion factor in the statement in the KI NETI C block where transmembrane current

i ca is reckoned as the efflux of Ca2+ from the outermost shell. Each statement in a

Page 64 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

UNI TS block must explicitly assert the units that are involved, so the statement that

assigns the value 3.141 . . . to PI includes a (1) to mark it as a dimensionless constant.

Variable declaration blocks

The ASSIGNED block

The variable vr at is declared to be an array with Nannul i elements. As with C,

array indices run from 0 to Nannul i - 1. The variables Kd and B0 are the dissociation

constant for the buffer and the initial value of free buffer, which are computed in the

I NI TI AL block (see below). Both the total buffer and the initial concentration of Ca2+

are assumed to be uniform throughout all shells, so a scalar is used for B0.

The STATE block

In addition to diffusion, this mechanism involves Ca2+ buffering

Ca � Buffer
�
�

k2
buf

k1
buf

Ca � Buffer Eq. 9.4

This happens in each of the shells, so ca, Buf f er and CaBuf f er are all arrays.

The declaration of ca[] uses the syntax state (units) <absolute_tolerance>

to specify the local absolute error tolerance that will be employed by CVODE. The solver

tries to use a step size for which the local error �

i of each statei satisfies at least one of

these two inequalities:

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

The NEURON Book: Chapter 9 November 28, 2004

�

i < relative_tolerance · |statei|

or

�

i < absolute_tolerance

The default values for these tolerances are 0 and 10-3, respectively, so only a STATE that

is extremely small (such as intracellular [Ca2+]) needs to have its absolute tolerance

specified. As an alternative to specifying a smaller absolute tolerance, ca[] could have

been defined in terms of units such as micromolar or nanomolar, which would have

increased the numeric value of these variables. This would necessitate different units

conversion factors in many of the statements that involve ca[] . For example, the

assignment for cai (which is required to be in mM) would be cai = (1e- 6) * ca[0] .

LOCAL variables declared outside of equation definition blocks

A LOCAL variable that is declared outside of an equation definition block is

equivalent to a static variable in C. That is, it is visible throughout the mechanism (but

not at the hoc level), it retains its value, and it is shared between all instances of a given

mechanism. The initial value of such a variable is 0.

This particular mechanism employs four variables of this type: f act or s_done,

f r at [] , dsq, and dsqvol . The meaning of each of these is discussed below.

Page 66 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Equation definition blocks

The INITIAL block

Initialization of this mechanism is a two step process. The first step is to use

PROCEDURE f act or s() (see below) to set up the geometry of the model by computing

vr at [] and f r at [] , the arrays of units conversion factors that are applied to the shell

volumes and rate constants. This only has to be done once because the same conversion

factors are used for all segments that have the same number of shells, as noted above in

Modeling diffusion with kinetic schemes. The variable f act or s_done is a flag that

indicates whether vr at [] and f r at [] have been computed. The NMODL keyword

LOCAL means that the value of f act or s_done will be the same in all instances of this

mechanism, but that it will not be visible at the hoc level. Therefore f act or s() will be

executed only once, regardless of how many segments contain the cadi f us mechanism.

The second step is to initialize the mechanism's STATEs. This mechanism assumes

that the total buffer concentration and the initial free calcium concentration are uniform

in all shells, and that buffering has reached its steady state. Therefore the initial

concentration of free buffer is computed from the initial [Ca2+] and the buffer's

dissociation constant. It should be noted that the value of cai will be set to

cai 0_ca_i on just prior to executing the code in the I NI TI AL block (see Ion

concentrations and equilibrium potentials in Chapter 8).

It may be instructive to compare this initialization strategy with the approach that was

used for the voltage-gated current of Listing 9.7 (k3st . mod). That previous example

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 67

The NEURON Book: Chapter 9 November 28, 2004

initialized the STATE through numeric solution of a kinetic scheme, so its KI NETI C

block required a CONSERVE statement to ensure that the equivalent system of ODEs

would be linearly independent. Here, however, the STATEs are initialized by explicit

algebraic assignment, so no CONSERVE statement is necessary.

PROCEDURE factors()

The arrays vr at [] and f r at [] , which are used to scale the shell volumes and rate

constants to ensure consistency of units, are computed here. Their values depend only on

the number of shells, so they do not have to be recomputed if di am or DFr ee is changed.

The elements of vr at [] are the volumes of a set of concentric cylindrical shells,

whose total volume equals the volume of a cylinder with diameter and length of 1 µm.

These values are computed in two stages by the FROM i =0 TO Nannul i - 2 { } loop.

The first stage finds the volume of the outer half and the second finds the volume of the

inner half of the shell.

The f r at array is declared to be LOCAL because it applies to all segments that have

the cadi f us mechanism, but it is unlikely to be of interest to the user and therefore does

not need to be visible at the hoc level. This contrasts with vr at , which is declared as

GLOBAL within the NEURON block so that the user can see its values. The values f r at

[i +1] equal Ai+1 / ∆r, where Ai+1 is the surface area between shells i and i +1 for 0 ≤ i

< Nannul i , and ∆r is the distance between shell centers (radius / (Nannul i - 1)).

Page 68 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

The KINETIC block

The first statement in this block specifies the shell volumes for the STATEs ca,

CaBuf f er , and Buf f er . As noted above in Modeling diffusion with kinetic schemes,

these volumes equal the elements of vr at [] multiplied by the square of the segment

diameter. This mechanism involves many compartments whose relative volumes are

specified by the elements of an array, so we can deal with all compartments with a single

statement of the form

COMPARTMENT index, volume[index] { state1 state2 . . . }

where the diffusing STATEs are listed inside the braces.

Next in this block is a LONGI TUDI NAL_DI FFUSI ON statement, which specifies that

this mechanism includes "nonlocal" diffusion, i.e. longitudinal diffusion along a section

and into connecting sections. The syntax for scalar STATEs is

LONGI TUDI NAL_DI FFUSI ON flux_expr { state1 state2 . . . }

where flux_expr is the product of the diffusion constant and the area of the cross

section between adjacent compartments. Units of the flux_expr must be (micron4/ms),

i.e. the diffusion constant has units of (micron2/ms) and the cross sectional area has units

of (micron2). For cylindrical shell compartments, the cross sectional area is just the

volume per unit length. If the states are arrays then all elements are assumed to diffuse

between corresponding volumes in adjacent segments and the iteration variable must be

specified as in

LONGI TUDI NAL_DI FFUSI ON index, flux_expr(index) { state1 state2 . . . }

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 69

The NEURON Book: Chapter 9 November 28, 2004

A COMPARTMENT statement is also required for the diffusing STATEs and the units must

be (micron2), i.e. (micron3/micron).

The compactness of LONGI TUDI NAL_DI FFUSI ON specification contrasts nicely with

the great deal of trouble imposed on the computational methods used to solve the

equations. The standard backward Euler method, historically the default method used by

NEURON (see Chapter 4), can no longer find steady states with extremely large (e.g.

109 ms) steps since not every Jacobian element for both flux and current with respect to

voltage and concentration is presently accurately computed. CVODE works well for

these problems since it does not allow dt to grow beyond the point of numerical

instability. Despite these occasional limitations on numerical efficiency, it is satisfying

that, as methods evolve to handle these problems more robustly, the specification of the

models does not change.

The third statement in this block is equivalent to a differential equation that describes

the contribution of transmembrane calcium current to Ca2+ in the outermost shell. The <<

signifies an explicit flux. Because of the COMPARTMENT statement, the left hand side of

the differential equation is not d[Ca2+]0/dt but d(total Ca2+ in the outermost shell)/dt.

This is consistent with the right hand side of the equation, which is in units of mass per

time.

Next is the kinetic scheme for radial diffusion. The rate constants in this scheme

equal the product of DCa and the factor f r at [] for reasons that were explained earlier in

Modeling diffusion with kinetic schemes.

Page 70 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

It may not be immediately clear why the rate constants in the kinetic scheme for Ca2+

buffering are scaled by the compartment volume dsqvol ; however, the reason will

become obvious when one recalls that the COMPARTMENT statement at the beginning of

the KI NETI C block has converted the units of the dSTATE/dt on the left hand side of the

equivalent differential equations from concentration per time to mass per time. If the

reaction rate constants were left unchanged, the right hand side of the differential

equations for buffering would have units of concentration per time, which is inconsistent.

Multiplying the rate constants by compartment volume removes this inconsistency by

changing the units of the right hand side to mass per time.

The last statement in the KI NETI C block updates the value of cai from ca[0] . This

is necessary because intracellular [Ca2+] is known elsewhere in NEURON as cai , e.g. to

other mechanisms and to NEURON's internal routine that computes ECa.

When developing a new mechanism or making substantive changes to an existing

mechanism, it is generally advisable to check for consistency of units with modl uni t .

Given the dimensional complexity of this model, such testing is absolutely indispensable.

Usage

If this mechanism is inserted in a section, the concentrations of Ca2+ and the free and

bound buffer in all compartments will be available through hoc as ca_cadi f us[] ,

Buf f er _cadi f us[] , and CaBuf f er _cadi f us[] . These STATEs will also be available

for plotting and analysis through the GUI.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 71

The NEURON Book: Chapter 9 November 28, 2004

The PARAMETERs DCa, k1buf , k2buf , and Tot al Buf f er will also be available for

inspection and modification through both the graphical interface and hoc statements

(with the _cadi f us suffix). All PARAMETERs are GLOBALs by default, i.e. they will have

the same values in each location where the cadi f us mechanism has been inserted.

Therefore in a sense it is gratuitous to declare in the NEURON block that Tot al Buf f er is

GLOBAL. However, this declaration serves to remind the user of the nature of this

important variable, which is likely to be changed during exploratory simulations or

optimization.

In some cases it might be useful for one or more of the PARAMETERs to be RANGE

variables. For example, Tot al Buf f er and even DCa or the buffer rate constants might

not be uniform throughout the cell. To make Tot al Buf f er and DCa RANGE variables

only requires replacing the line

GLOBAL vr at , Tot al Buf f er

in the NEURON block with

GLOBAL vr at
RANGE Tot al Buf f er , DCa

The GLOBAL volume factors vr at [] are available through hoc for inspection, but it

is inadvisable to change their values because they would likely be inconsistent with the

f r at [] values and thereby cause errors in the simulation.

All occurrences of this mechanism will have the same number of shells, regardless of

the physical diameter of the segments in which the mechanism has been inserted. With

Nannul i = 4, the thickness of the outermost shell will be ≤ 1 µm in segments with di am

Page 72 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

≤ 6 µm. If this spatial resolution is inadequate, or if the model has segments with larger

diameters, then Nannul i may have to be increased. NMODL does not have dynamic

arrays, so in order to change the number of shells one must recompile the mechanism

after assigning a new value to Nannul i by editing the NMODL source code.

Example 9.9: a calcium pump

This mechanism involves a calcium pump based on the reaction scheme outlined in

the description of the KI NETI C block of Example 9.7: kinetic scheme for a voltage-

gated current. It is a direct extension of the model of calcium diffusion with buffering in

Example 9.8: calcium diffusion with buffering, the principal difference being that a

calcium pump is present in the cell membrane. The following discussion focuses on the

requisite changes in Listing 9.8, and the operation and use of this new mechanism. For all

other details the reader should refer to Example 9.8.

The NEURON block

Changes in the NEURON block are marked in bold. The first nontrivial difference from

the prior example is that this mechanism READs the value of cao, which is used in the

pump reaction scheme.

NEURON {
SUFFI X cdp
USEI ON ca READ cao, cai , i ca WRI TE cai , ica
RANGE ica_pmp
GLOBAL vr at , Tot al Buf f er , TotalPump

}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 73

The NEURON Book: Chapter 9 November 28, 2004

The mechanism also WRI TEs a pump current that is attributed to i ca so that its

transmembrane Ca2+ flux will be factored into NEURON's calculations of [Ca2+] i. This

current, which is a RANGE variable known as i ca_pmp_cdp to the hoc interpreter,

constitutes a net movement of positive charge across the cell membrane, and it follows

the usual sign convention (outward current is "positive"). The pump current has a direct

effect on membrane potential, which, because of the rapid activation of the pump, is

manifest by a distinct delay of the spike peak and a slight increase of the postspike

hyperpolarization. This mechanism could be made electrically "silent" by having it

WRI TE an equal but opposite NONSPECI FI C_CURRENT or perhaps a current that involves

some other ionic species, e.g. Na+, K+, or Cl-.

The variable Tot al Pump is the total density of pump sites on the cell membrane,

whether free or occupied by Ca2+. Making it GLOBAL means that it is user adjustable, and

that the pump is assumed to have uniform density wherever the mechanism has been

inserted. If local variation is required, this should be a RANGE variable.

The UNITS block

This mechanism includes the statement (mol) = (1) because the density of pump

sites will be specified in units of (mol / cm2) . The term mol e cannot be used here

because it is already defined in NEURON's units database as 6.022169 · 1023

(Avogadro's number).

Page 74 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Variable declaration blocks

The PARAMETER block

Five new statements have been added because this mechanism uses the rate constants

of the pump reactions and the density of pump sites on the cell membrane.

k1 = 1 (/ mM- ms)
k2 = 0. 005 (/ ms)
k3 = 1 (/ ms)
k4 = 0. 005 (/ mM- ms)
: t o el i mi nat e pump, set Tot al Pump t o 0 i n hoc
Tot al Pump = 1e- 11 (mol / cm2)

These particular rate constant values were chosen to satisfy two criteria: the pump influx

and efflux should be equal at [Ca2+] = 50 nM, and the rate of transport should be slow

enough to allow a slight delay in accelerated transport following an action potential that

included a voltage-gated Ca2+ current. The density Tot al Pump is sufficient for the pump

to have a marked damping effect on [Ca2+] i transients; lower values reduce the ability of

the pump to regulate [Ca2+]i.

The ASSIGNED block

These three additions have been made.

cao (mM)
i ca_pmp (mA/ cm2)
par ea (um)

This mechanism treats [Ca2+]o as a constant. The pump current and the surface area over

which the pump is distributed are also clearly necessary.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 75

The NEURON Book: Chapter 9 November 28, 2004

The CONSTANT block

Consistency of units requires explicit mention of an extracellular volume in the

kinetic scheme for the pump.

CONSTANT { vol o = 1e10 (um2) }

The value used here is equivalent to 1 liter of extracellular space per micron length of the

cell, but the actual value is irrelevant to this mechanism because cao is treated as a

constant. Since the value of vol o is not important for this mechanism, there is no need

for it to be accessible through hoc commands or the GUI, so it is not a PARAMETER. On

the other hand, there is a sense in which it is an integral part of the pump mechanism, so

it would not be appropriate to make vol o be a LOCAL variable since LOCALs are intended

for temporary storage of "throwaway" values. Finally, the value of vol o would never be

changed in the course of a simulation. Therefore vol o is declared in a CONSTANT block.

The STATE block

The densities of pump sites that are free or have bound Ca2+, respectively, are

represented by the two new STATEs

pump (mol / cm2)
pumpca (mol / cm2)

Equation definition blocks

The BREAKPOINT block

This block has one additional statement

Page 76 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

BREAKPOI NT {
 SOLVE st at e METHOD spar se
 i ca = i ca_pmp
}

The assignment i ca = i ca_pmp is needed to ensure that the pump current is reckoned

in NEURON's calculation of [Ca2+] i.

The INITIAL block

The statement

par ea = PI * di am

must be included to specify the area per unit length over which the pump is distributed.

If it is correct to assume that [Ca2+] i has been equal to cai 0_ca_i on (default =

50 nM) for a long time, the initial levels of pump and pumpca can be set by using the

steady state formula

pump = Tot al Pump/ (1 + (cai * k1/ k2))
pumpca = Tot al Pump - pump

An alternative initialization strategy is to place

i ca = 0
SOLVE st at e STEADYSTATE spar se

at the end of the I NI TI AL block, where the i ca = 0 statement is needed because the

kinetic scheme treats transmembrane Ca2+ currents as a source of Ca2+ flux. This idiom

makes NEURON compute the initial values of STATEs, which can be particularly

convenient for mechanisms whose steady state solutions are difficult or impossible to

express in analytical form. This would require adding a CONSERVE statement to the

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 77

The NEURON Book: Chapter 9 November 28, 2004

KI NETI C block to insure that the equations that describe the free and bound buffer are

independent (see also The INITIAL block in Example 9.7: kinetic scheme for a

voltage-gated current).

Both of these initializations explicitly assume that the net Ca2+ current generated by

other sources equals 0, so the net pump current following initialization is also 0. If this

assumption is incorrect, as is almost certainly the case if one or more voltage-gated Ca2+

currents are included in the model, then [Ca2+]i will start to change immediately when a

simulation is started. Most often this is not the desired outcome. The proper initialization

of a model that contains mechanisms with complex interactions may involve performing

an "initialization run" and using SaveSt at e objects (see Examples of custom

initializations in Chapter 8).

The KINETIC block

Changes in this block are marked in bold. For dimensional consistency, the pump

scheme requires the new COMPARTMENT statements and units conversion factor (1e10) .

KI NETI C st at e {
 COMPARTMENT i , di am*di am*vr at [i] { ca CaBuf f er Buf f er }
 COMPARTMENT (1e10)*parea {pump pumpca}
 COMPARTMENT volo {cao}
 LONGI TUDI NAL_DI FFUSI ON i , DCa*di am*di am*vr at [i] { ca}

 :pump
 ~ ca[0] + pump <-> pumpca (k1*parea*(1e10), k2*parea*(1e10))
 ~ pumpca <-> pump + cao (k3*parea*(1e10), k4*parea*(1e10))
 CONSERVE pump + pumpca = TotalPump * parea * (1e10)
 ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea

 : all currents except pump
 ~ ca[0] << (- (i ca - ica_pmp) *PI *di am/ (2*FARADAY))
 FROM i =0 TO Nannul i - 2 {
 ~ ca[i] <- > ca[i +1] (DCa*f r at [i +1] , DCa*f r at [i +1])
 }

Page 78 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

 dsq = di am*di am
 FROM i =0 TO Nannul i - 1 {
 dsqvol = dsq*vr at [i]
 ~ ca[i] + Buf f er [i] <- > CaBuf f er [i] (k1buf *dsqvol , k2buf *dsqvol)
 }

 cai = ca[0]
}

The pump reaction statements implement the scheme outlined in the description of

the KI NETI C block of Example 9.7: kinetic scheme for a voltage-gated current. Also

as described in that section, the CONSERVE statement ensures strict numerical

conservation, which is helpful for convergence and accuracy.

In the steady state, the net forward flux in the first and second reactions must be

equal. Even during physiologically relevant transients, these fluxes track each other

effectively instantaneously. Therefore the transmembrane Ca2+ flux generated by the

pump is taken to be the net forward flux in the second reaction.

This mechanism WRI TEs i ca in order to affect [Ca2+] i. The total transmembrane

Ca2+ flux is the sum of the pump flux and the flux from all other sources. Thus to make

sure that i ca_pmp is not counted twice, it is subtracted from total Ca2+ current i ca in

the expression that relates Ca2+ current to Ca2+ flux.

Usage

The STATEs and PARAMETERs that are available through hoc and the GUI are

directly analogous to those of the cadi f us mechanism, but they will have the suffix

_cdp rather than _cadi f us . The additional pump variables pump_cdp, pumpca_cdp,

i ca_pmp_cdp, and Tot al Pump_cdp will also be available and are subject to similar

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 79

The NEURON Book: Chapter 9 November 28, 2004

concerns and constraints as their counterparts in the diffusion reactions (see Usage in

Example 9.8: calcium diffusion with buffering).

Models with discontinuities

The incorporation of variable time step integration methods in NEURON made it

necessary to provide a way to ensure proper handling of abrupt changes in PARAMETERs,

ASSI GNED variables, and STATEs. At first this was accomplished by adding at _t i me()

and st at e_di scont i nui t y() to NMODL, but the advent of NEURON's event

delivery system has obviated the need for these functions and we strongly advise against

using them in any new model development. Even so, they have been employed in several

mechanisms of recent vintage, e.g. models of pulse generators and synaptic transmission,

so the following discussion contains explanations of why they were used and what they

do, as well as current recommendations for preferred ways to implement models that

involve discontinuities.

Discontinuities in PARAMETERs and ASSIGNED variables

Before CVODE was added to NEURON, sudden changes in PARAMETERs and

ASSI GNED variables, such as the sudden change in current injection during a current

pulse, had been implicitly assumed to take place on a time step boundary. This is

inadequate with variable time step methods because it is unlikely that a time step

boundary will correspond to the onset or offset of the pulse. Worse, the time step may be

longer than the pulse itself, which may thus be entirely ignored.

Page 80 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

The at _t i me() function was added so that a model description could explicitly

notify NEURON of the times at which any discontinuities occur. This function has no

effect on fixed time step integration, but during variable time step integration, the

statement at _t i me(t event) guarantees that the integrator reduces the step size so that

it completes at time t event - , which is on the order of roundoff error before t event .

The integrator then reinitializes at t event +, which is on the order of roundoff error after

t event , and the solution continues from there. This is how the built-in current clamp

model I Cl amp notifies NEURON of the time of onset of the pulse and its offset (see the

BREAKPOI NT block of Example 9.3: an intracellular stimulating electrode). As noted

above, however, now the preferred way to implement abrupt changes in PARAMETERs

and ASSI GNED variables is to take advantage of NEURON's event delivery system

(specifically, self-events) because of improved computational efficiency and greater

conceptual clarity (see Chapter 10).

In the course of a variable time step simulation, a missing at _t i me() call may cause

one of two symptoms. If a PARAMETER changes but returns to its original value within

the same interval, the pulse may be entirely missed. More often, a single discontinuity

will take place within a time step interval, causing the integrator to start what seems like

a binary search for the location of the discontinuity in order to satisfy the error tolerance

on the step; of course, this is very inefficient.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 81

The NEURON Book: Chapter 9 November 28, 2004

Discontinuities in STATEs

Some kinds of synaptic models involve a discontinuity in one or more STATE

variables. For example, a synapse whose conductance follows the time course of an alpha

function (for more detail about the alpha function itself see Rall (Rall 1977) and Jack et

al. (Jack et al. 1983)) can be implemented as a kinetic scheme in the two state model

KI NETI C st at e {
 ~ a <- > g (k , 0)
 ~ g - > (k)
}

("- >" indicates a sink reaction), where a discrete synaptic event results in an abrupt

increase of STATE a. This formulation has the attractive property that it can handle

multiple streams of events with different weights, so that g will be the sum of the

individual alpha functions with their appropriate onsets.

Abrupt changes in STATEs require particularly careful treatment because of the

special nature of states in variable time step ODE solvers. Before the advent of an event

delivery system in NEURON, this required not only an at _t i me() call to notify

NEURON about the time of the discontinuity, but also a st at e_di scont i nui t y()

statement to specify how the affected STATE would change. Furthermore,

st at e_di scont i nui t y() could only be used in an i f (at _t i me()) { } block. Thus

the BREAKPOI NT block for a synaptic event that starts at onset and reaches a maximum

conductance gmax would look like this

Page 82 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

BREAKPOI NT {
 i f (at _t i me(onset)) {
 : scal e f act or exp(1) = 2. 718. . . ensur es
 : t hat peak conduct ance wi l l be gmax
 st at e_di scont i nui t y(a, a + gmax* exp(1))
 }
 SOLVE st at e METHOD spar se
 i = g* (v - e)
}

The first argument to st at e_di scont i nui t y() is interpreted as a reference to the

STATE, and the second argument is an expression for its new value. The first argument

will be assigned the value of its second argument just once for any time step. This is

important because, for several integration methods, BREAKPOI NT assignment statements

are often executed twice to calculate the di/dv terms of the Jacobian matrix.

This synaptic model works well with deterministic stimulus trains, but it is difficult

for the user to supply the administrative hoc code for managing the onset and gmax

variables to take advantage of the promise of "multiple streams of input events with

different weights." The most important problem is how to save events that have

significant delay between their generation and their handling at time onset . As this

model stands, an event can be passed to it by assigning values to onset and gmax only

after the previous onset event has been handled.

These complexities have been eliminated by the event delivery system. Instead of

handling the state discontinuity in the BREAKPOI NT block, the synaptic model should

now be written in the form

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 83

The NEURON Book: Chapter 9 November 28, 2004

BREAKPOI NT {
 SOLVE st at e METHOD spar se
 i = g* (v - e)
}

NET_RECEI VE(wei ght (mi cr osi emens)) {
 a = a + wei ght * exp(1)
}

in which event distribution is handled

internally from a specification of network

connectivity (see next section). Note that

there is no need to use either at _t i me()

or st at e_di scont i nui t y() . Also, the

BREAKPOI NT block should not have any i f

statements. All discontinuities should be

handled in a NET_RECEI VE block. For further details of how to deal with streams of

synaptic events with arbitrary delays and weights, see Chapter 10.

Event handlers

With recent versions of NEURON, the most powerful and general strategy for dealing

with discontinuities in ASSI GNED variables, PARAMETERs, and STATEs is to use the

Net Con class's event () method, which exploits NEURON's event delivery system (see

Chapter 10). The handler() procedure in netcon. event (te, " handler() ") can

contain statements that change anything discontinuously, as long as the last statement in

handler() is cvode. r e_i ni t () (see Chapter 8).

Page 84 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

We should mention that early implementations

of the event delivery system did require

st at e_di scont i nui t y() . Thus you may

encounter a legacy synaptic model whose

NET_RECEI VE block contains a statement such

as st at e_di scont i nui t y(a, a+w*exp(1)) .

This requirement no longer exists, and we

discourage the use of this syntax.

November 28, 2004 The NEURON Book: Chapter 9

Time-dependent PARAMETER changes

One way to translate the concept of a "smoothly varying" parameter into a

computational implementation is by explicit specification in a model description, as in

BREAKPOI NT { i = i max* si n(w* t) }

This works with both fixed and variable time step integration. Time-dependent changes

can also be specified at the hoc interpreter level, but care is needed to ensure they are

properly computed in the context of variable time steps. For instance, it might seem

convenient to change PARAMETERs prior to f advance() calls, e.g.

pr oc advance() {
 I Cl amp[0] . amp = i max* s i n(w* t)
 f advance()
}

This does work with fixed dt but is discouraged because it produces inaccurate results

with variable dt methods.

An alternative that works well with fixed and variable time step integration is to use

the Vect or class's pl ay() method with linear interpolation, which became available in

NEURON 5.4. This is invoked with

vec. pl ay(&rangevar, tvec, 1)

in which vec and tvec are a pair of Vect or s that define a piecewise linear function of

time y = f(t), i.e. tvec contains a monotonically increasing sequence of times, and vec

holds the corresponding y values. The rangevar is the variable that is to be driven by f().

In the future, Vect or . pl ay will be extended to cubic spline interpolation and will allow

"continuous" play of a smooth function defined by a Vect or .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 85

The NEURON Book: Chapter 9 November 28, 2004

References

Durand, D. The somatic shunt cable model for neurons. Biophys. J. 46:645-653, 1984.

Frankenhaeuser, B. and Hodgkin, A.L. The after-effects of impulses in the giant nerve

fibers of Loligo. J. Physiol. 131:341-376, 1956.

Hines, M.L. and Carnevale, N.T. Expanding NEURON's repertoire of mechanisms with

NMODL. Neural Computation 12:995-1007, 2000.

Jack, J.J.B., Noble, D., and Tsien, R.W. Electric Current Flow in Excitable Cells.

London: Oxford University Press, 1983.

Johnston, D. and Wu, S.M.-S. Foundations of Cellular Neurophysiology. Cambridge,

MA: MIT Press, 1995.

Kohn, M.C., Hines, M.L., Kootsey, J.M., and Feezor, M.D. A block organized model

builder. Mathematical and Computer Modelling 19:75-97, 1994.

Kootsey, J.M., Kohn, M.C., Feezor, M.D., Mitchell, G.R., and Fletcher, P.R. SCoP: an

interactive simulation control program for micro- and minicomputers. Bulletin of

Mathematical Biology 48:427-441, 1986.

McCormick, D.A. Membrane properties and neurotransmitter actions. In: The Synaptic

Organization of the Brain, edited by G.M. Shepherd. NY: Oxford University Press, 1998,

p. 37-75.

Page 86 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

Moczydlowski, E. and Latorre, R. Gating kinetics of Ca
2+

-activated K
+

 channels from

rat muscle incorporated into planar lipid bilayers. Journal of General Physiology 82:511-

542, 1983.

Oran, E.S. and Boris, J.P. Numerical Simulation of Reactive Flow. New York: Elsevier,

1987.

Rall, W. Core conductor theory and cable properties of neurons. In: Handbook of

Physiology, vol. 1, part 1: The Nervous System, edited by E.R. Kandel. Bethesda, MD:

American Physiological Society, 1977, p. 39-98.

Staley, K.J., Otis, T.S., and Mody, I. Membrane properties of dentate gyrus granule cells:

comparison of sharp microelectrode and whole-cell recordings. J. Neurophysiol.

67:1346-1358, 1992.

Wilson, M.A. and Bower, J.M. The simulation of large scale neural networks. In:

Methods in Neuronal Modeling, edited by C. Koch and I. Segev. Cambridge, MA: MIT

Press, 1989, p. 291-333.

Yamada, W.M., Koch, C., and Adams, P.R. Multiple channels and calcium dynamics. In:

Methods in Neuronal Modeling, edited by C. Koch and I. Segev. Cambridge, MA: MIT

Press, 1998, p. 137-170.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 87

The NEURON Book: Chapter 9 November 28, 2004

Chapter 9 Index

A

absolute error

local

tolerance 65

active transport

electrically silent 74

pump current 74, 75, 77

countering with a NONSPECIFIC_CURRENT 74

initialization 78

ASSIGNED block 10, 24, 37, 65

ASSIGNED variable 10

GLOBAL

spatial variation 39

vs. RANGE 13, 36

is a range variable by default 10

v, celsius, t, dt, diam, and area 10

visibility at the hoc level 10, 18

when to use for an equilbrium potential 24

Page 88 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

B

Backward Euler method

and LONGITUDINAL_DIFFUSION 70

BREAKPOINT block 11, 26

and computations that must be performed only once per time step 26

and counts, flags, and random numbers 26

and PROCEDUREs 26

and rate functions 27

and variables that depend on the number of executions 26

currents assigned at end of 26

SOLVE 26, 29

cnexp 29

derivimplicit 30

is not a function call 27

sparse 54

C

celsius 8, 10, 37

channel

gating model

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 89

The NEURON Book: Chapter 9 November 28, 2004

HH type 29

nonlinear 29

computational efficiency 2, 6, 29, 49, 54, 70, 81

conceptual clarity 2, 48, 81

CONSTANT

vs. PARAMETER or LOCAL variable 76

CONSTANT block 76

CVODE

and LONGITUDINAL_DIFFUSION 70

and model descriptions

at_time() 18, 80-82, 84

state_discontinuity() 80, 82, 84

CVode class

re_init() 84

D

DERIVATIVE block 29, 38, 46

DERIVATIVE block

' (apostrophe) 29

diffusion

Page 90 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

kinetic scheme 47

longitudinal 69

radial 59, 70

distributed mechanism 3, 21

Distributed Mechanism GUI

Manager

Inserter 12

dt

use in NMODL 6, 11

E

e

electronic charge vs. units conversion factor 37

equation

conservation 7

current balance 7

event

self-event 81

times

with adaptive integration 18, 84

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 91

The NEURON Book: Chapter 9 November 28, 2004

Example 9.1: a passive "leak" current 3

Example 9.2: a localized shunt 12

Example 9.3: an intracellular stimulating electrode 17

Example 9.4: a voltage-gated current 21

Example 9.5: a calcium-activated, voltage-gated current 33

Example 9.6: extracellular potassium accumulation 40

Example 9.7: kinetic scheme for a voltage-gated current 51

Example 9.8: calcium diffusion with buffering 58

Example 9.9: a calcium pump 73

F

forward Euler method

stability 54

FUNCTION block 30, 39

G

GENESIS 1, 6

GMODL 6

H

hoc

calling an NMODL FUNCTION or PROCEDURE 30

Page 92 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

specifying proper instance with setdata_ 30

I

INITIAL block 27

SOLVE

STEADYSTATE sparse 55, 77

initialization

categories 28

finitialize() 20, 27

strategies 28

steady state initialization of complex kinetic schemes 77

ion accumulation

initialization

of model geometry 67

ion mechanism

automatically created 42

initialization 45

J

Jacobian 49, 54

approximate 30, 70

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 93

The NEURON Book: Chapter 9 November 28, 2004

computing di/dv elements 83

nearly singular 56

user-supplied 30

K

KINETIC block 55, 69, 78

-> (sink reaction indicator) 82

~ (tilde) 48

<-> (reaction indicator) 48

<< (explicit flux) 70

b_flux 48

COMPARTMENT 61, 69, 71

CONSERVE 55, 56

when is it required for initialization? 56, 68, 77

f_flux 48

LONGITUDINAL_DIFFUSION 69

reactants 48

ASSIGNED or PARAMETER variables as 54

reaction rates 48

STATE-dependent, and instability 49

Page 94 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

voltage-sensitive 49

reaction statement 48

L

LINEAR block 25

LOCAL variable

declared outside an equation block

initial value 66

scope and persistence 66

declared within an equation block

scope and persistence 32

M

Markov process

kinetic scheme 47

material

conservation 47, 53, 56, 57, 79

mod file 1

MODL 2

vs. NMODL 2, 6

modlunit 15, 37

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 95

The NEURON Book: Chapter 9 November 28, 2004

N

National Biomedical Simulation Resource project 2

NET_RECEIVE block

handling abrupt changes and discontinuities 84

INITIAL block 27

state_discontinuity() 84

NetCon class

event() 84

NEURON block 6

ELECTRODE_CURRENT 18

effect on extracellular mechanism 18

GLOBAL 7

NONSPECIFIC_CURRENT 7

equilibrium potential 24

POINT_PROCESS 13

RANGE 7, 18

SUFFIX 7

USEION 23, 35

READ ex (reading an equilibrium potential) 23

Page 96 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

READ ix (reading an ionic current) 43, 64

READ xi (reading an intracellular concentration) 35, 64

READ xo (reading an extracellular concentration) 73

WRITE ix (writing an ionic current) 24, 35, 40, 74, 79

WRITE xi (writing an intracellular concentration) 64

WRITE xo (writing an extracellular concentration) 43

NMODL

arrays

are not dynamic 64, 73

index starts at 0 65

comments 4

declaring variables 8

specifying units 8

DEFINE 64

FROM . . . TO . . . (loop statement) 68

FUNCTION_TABLE 57

named blocks 2

equation definition 2

general form 5

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 97

The NEURON Book: Chapter 9 November 28, 2004

variable declaration 2

translator 2, 5, 49, 50, 56

translator

nmodl 6

nocmodl 6

nocmodl.exe 6

units conversion factor 15, 37, 46, 64, 66, 67, 78

units conversion factor

parentheses 15, 16

UNITSOFF . . . UNITSON 31

user-defined variable 5

VERBATIM . . . ENDVERBATIM 5

NONLINEAR block 25

nrnunits.lib 8, 36

numeric integration

adaptive 26, 30, 45, 54, 80, 81, 85

explicit 54

fixed time step 29, 45, 85

fixed time step

Page 98 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

event aggregation to time step boundaries 19, 80

implicit 55

order of accuracy

first 30, 54

second 29, 59

variable 30

P

PARAMETER block 9

assigning default PARAMETER values 9

specifying minimum and maximum limits 9

PARAMETER variable 9

GLOBAL vs. RANGE 9, 43, 74

is GLOBAL by default 72

RANGE 18

time-dependent 85

visibility at the hoc level 9

when to use for an equilbrium potential 24

Plot what? GUI 32, 39

point process 13, 17

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 99

The NEURON Book: Chapter 9 November 28, 2004

Point Process Viewer GUI 17

PROCEDURE block 39

R

Runge-Kutta method

stability 54

S

SCoP 2, 11

standard run system

fadvance() 54, 85

STATE block 25

specifying local absolute error tolerance 65

state variable

of a mechanism vs. state variable of a model 11

STATE variable 25

array in NMODL 56

initialization 27

state0 45

ion concentration as 44

is automatically RANGE 25

Page 100 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 9

vs. state variable 53

T

t

the independent variable in NEURON 11

use in NMODL 11

U

units

checking 8, 15, 71

consistency 61, 71

database 8

dimensionless

(1) 65

by default 8

e 37

faraday 36

k-mole 37

mole 74

specifying 31

UNITS block 24

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 101

The NEURON Book: Chapter 9 November 28, 2004

defining new names 24

units scaling 36, 64

V

v

is a RANGE variable 7

variable

abrupt change of 80-83

extensive 61

intensive 61

Vector class

play()

with interpolation 85

X

x 74

Page 102 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

Chapter 10

Synaptic transmission and artificial spiking cells

In NEURON, a cell model is a set of differential equations. Network models consist

of cell models and the connections between them. Some forms of communication

between cells, e.g. graded synapses, gap junctions, and ephaptic interactions, require

more or less complete representations of the underlying biophysical mechanisms. In these

cases, coupling between cells is achieved by adding terms that refer to one cell's variables

into equations that belong to a different cell. The first part of this chapter describes the

POI NTER syntax that makes this possible in NEURON.

The same approach can be used for detailed mechanistic models of spike-triggered

transmission, which entails spike initiation and propagation to the presynaptic terminal,

transmitter release, ligand-receptor interactions on the postsynaptic cell, and

somatodendritic integration. However, it is far more efficient to use the widespread

practice of treating spike propagation from the trigger zone to the synapse as a delayed

logical event. The second part of this chapter tells how the Net Con (network connection)

class supports this event-based style of communication.

In the last part of this chapter, we use event-based communication to simplify

representation of the neurons themselves, creating highly efficient implementations of

artificial spiking cells, e.g. integrate and fire "neurons." Artificial spiking cells are very

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 10 November 28, 2004

convenient sources of spike trains for driving synaptic mechanisms attached to

biophysical neuron models. Networks that consist entirely of artificial spiking cells run

hundreds of times faster than their biophysical counterparts, so they are particularly

suitable for prototyping network models. They are also excellent tools in their own right

for studying the functional consequences of network architectures and synaptic plasticity

rules. In Chapter 11 we demonstrate network models that involve various combinations

of biophysical and artificial neuron models.

Modeling communication between cells

Experiments have demonstrated many kinds of interactions between neurons, but for

most cells the principal avenues of communication are gap junctions and synapses. Gap

junctions and synapses generate localized ionic currents, so in NEURON they are

represented by point processes (see Point processes in Chapter 5, and Example 9.2: a

localized shunt and Example 9.3: an intracellular stimulating electrode in

Chapter 9).

The point processes used to represent gap

junctions and synapses must produce a change

at one location in the model that depends on

information (membrane potential, calcium

concentration, the occurrence of a spike) from

some other location. This is in sharp contrast to the examples we discussed in Chapter 9,

all of which are "local" in the sense that an instance of a mechanism at a particular

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Models with LONGI TUDI NAL_DI FFUSI ON

might also be considered "nonlocal," but

their dependence on concentration in

adjacent segments is handled automatically

by the NMODL translator.

November 28, 2004 The NEURON Book: Chapter 10

location on the cell depends only on the STATEs and PARAMETERs of that model at that

location. They may also depend on voltage and ionic variables, but these also are at that

location and automatically available to the model. To see how to do this, we will examine

models of graded synaptic transmission, gap junctions, and spike-triggered synaptic

transmission.

Example 10.1: graded synaptic transmission

A minimal conceptual model of graded synaptic transmission is that neurotransmitter

is released continuously at a rate that depends on something in the presynaptic terminal,

and that this causes some change in the postsynaptic cell. For the sake of discussion, let's

say this something is [Ca2+]pre, the concentration of free calcium in the presynaptic

terminal. We will also assume that the transmitter changes an ionic conductance in the

postsynaptic cell.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 10 November 28, 2004

Cm

Ic I ion

m
V

Is

gs

sE

Ia

Figure 10.1. Membrane potential in the immediate neighborhood of a

postsynaptic conductance depends on the synaptic current (Is), the currents

through the local membrane capacitance and ionic conductances (Ic and I ion),

and the axial current arriving from adjacent regions of the cell (Ia).

From the standpoint of the postsynaptic cell, a conductance-change synapse might

look like Fig. 10.1, where gs, Es, and Is are the synaptic conductance, equilibrium

potential, and current, respectively. The effect of graded synaptic transmission on the

postsynaptic cell is expressed in Equation 10.1.

Cm

d V m

dt
�

I ion
� I a �

�
V m � Es ��� gs

���
Ca2+ 	

pre � Eq. 10.1

This is the charge balance equation for the electrical vicinity of the postsynaptic region.

The terms on the left hand side are the usual local capacitive and ionic transmembrane

currents. The first term on the right hand side is the current that enters the postsynaptic

region from adjacent parts of the cell, which NEURON takes care of automatically. The

second term on the right hand side expresses the effect of the ligand-gated channels. The

current through these channels is the product of two factors. The first factor is merely the

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

local electrochemical gradient for ion flow. The second factor is a conductance term that

depends on the calcium concentration at some other location.

We already know that a localized conductance is implemented in NEURON with a

point process, and that such a mechanism is automatically able to access all the local

variables that it needs (in this case, the local membrane potential and the synapse's

equilibrium potential). But the calcium concentration in the presynaptic terminal is

nonlocal, and that poses a problem; furthermore, it is likely to change with every

f advance() .

We could try inserting a hoc statement like this into the main computational loop

somedendr i t e. syn. capr e = pr ecel l . bout on. cai (1)

At each time step, this would update the variable capr e in the synaptic mechanism syn

attached to the postsynaptic section somedendr i t e, making it equal to the free calcium

concentration cai at the 1 end of the bout on section in the presynaptic cell pr ecel l .

However, this statement would have to be reinterpreted at each f advance() , which

might slow down the simulation considerably.

If what happens to the postsynaptic cell depends on the

moment-to-moment details of what is going on in the

presynaptic terminal, it is far more efficient to use a

POI NTER variable (see Listing 10.1). In NMODL, a

POI NTER variable holds a reference to another variable.

The specific reference is defined by a hoc statement, as we shall see below.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

POI NTER variables are not

limited to point processes.

Distributed mechanisms can

also use POI NTERs, although

possibly for very different

purposes.

The NEURON Book: Chapter 10 November 28, 2004

: Gr aded synapt i c t r ansmi ss i on

NEURON {
 POI NT_PROCESS Gr adSyn
 POI NTER capr e
 RANGE e, k , g, i
 NONSPECI FI C_CURRENT i
}

UNI TS {
 (nA) = (nanoamp)
 (mV) = (mi l l i vol t)
 (uS) = (mi cr os i emens)
 (mol ar) = (1/ l i t er)
 (mM) = (mi l l i mol ar)
}

PARAMETER {
 e = 0 (mV) : r ever sal pot ent i al
 k = 0. 02 (uS/ mM3)
}

ASSI GNED {
 v (mV)
 capr e (mM) : pr esynapt i c [Ca]
 g (uS)
 i (nA)
}

BREAKPOI NT {
 g = k* capr e^ 3
 i = g* (v - e)
}

Listing 10.1. gr adsyn. mod

The NEURON block

The POI NTER statement in the NEURON block declares that capr e refers to some

other variable that may belong to a noncontiguous segment, possibly even in a different

section; below we show how to attach this to the free calcium concentration in a

presynaptic terminal. The synaptic strength is not specified by a peak conductance, but in

terms of a "transfer function scale factor" k, which has units of (µS/mM3).

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

The BREAKPOINT block

The synaptic conductance g is proportional to the cube of capr e and does not

saturate. This is similar to the calcium dependence of synaptic conductance in a model

described by De Schutter et al. (1993).

Usage

After creating a new instance of the Gr adSyn point process, we link its POI NTER

variable to the variable at some other location we want it to follow with hoc statements,

e.g.

obj r ef syn
somedendr i t e syn = new Gr adSyn(0. 8)
set poi nt er syn. cp, pr ecel l . bout on. cai (0. 5)

The second statement attaches an instance of the Gr adSyn mechanism, called syn, to

somedendr i t e. The third statement uses set poi nt er to assert that the synaptic

conductance of syn will be governed by cai in the middle of a section called bout on

that is part of cell pr ecel l . Of course this assumes that the presynaptic section

pr ecel l . bout on contains a calcium accumulation mechanism.

Figure 10.2 shows simulation results from a model of graded synaptic transmission.

In this model, the presynaptic terminal pr ecel l is a 1 µm diameter hemisphere with

voltage-gated calcium current cachan (cachan. mod in c: nr nxx\ exampl es\ nr ni v\ nmodl

under MSWindows or nr n- x. x/ shar e/ exampl es/ nr ni v/ nmodl under UNIX) and a

calcium accumulation mechanism that includes diffusion, buffering, and a pump (cdp,

discussed in Example 9.9: a calcium pump). The postsynaptic cell is a passive single

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 10 November 28, 2004

compartment with surface area 100 µm2, Cm = 1 µf/cm2, and τm = 30 ms. A Gr adSyn

synapse with transfer function scale factor k = 0.2 µS/mM3 is attached to the postsynaptic

cell, and presynaptic membrane potential is driven between -70 and -30 mV by a sinusoid

with a period of 400 ms. The time course of presynaptic [Ca] i and synaptic conductance

show clipping of the negative phases of the sine wave; the postsynaptic membrane

potential shows less clipping because of filtering by membrane capacitance.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

−70

−50

−30
mV

preterm.v(0.5)

0 400 800 1200
ms

0

0.03

0.06
mM

preterm.cai(0.5)

0 400 800 1200
ms

0 400 800 1200
ms

0

5e−5
µS

GradSyn[0].g

−70

−50

−30
mV

postcell.v(0.5)

0 400 800 1200
ms

Figure 10.2. Graded synaptic transmission. Top two graphs: Presynaptic

membrane potential pr et er m. v was "clamped" to -70-20cos(2πt/400) mV,

producing a periodic increase of [Ca] i (pr et er m. cai is the concentration just

inside the cell membrane) with clipping of the negative peaks. Bottom two

graphs: The synaptic conductance GradSyn[0].g shows even more clipping of

the negative phases of the sinusoid, but membrane capacitance smoothes the

time course of postsynaptic membrane potential.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 10 November 28, 2004

Example 10.2: a gap junction

The current that passes through a gap junction depends on the moment-to-moment

fluctuations of voltage on both sides of the junction. This can be handled by a pair of

point processes on the two sides that use POI NTERs to monitor each other's voltage, as in

sect i on1 gap1 = new Gap(x1)
sect i on2 gap2 = new Gap(x2)
set poi nt er gap1. vpr e, sect i on2. v(x2)
set poi nt er gap2. vpr e, sect i on1. v(x1)

Conservation of charge requires the use of two point processes: one drains current from

one side of the gap junction, and the other delivers an equal current to the other side.

Listing 10.2 presents the NMODL specification of a point process that can be used to

implement ohmic gap junctions.

NEURON {
 POI NT_PROCESS Gap
 POI NTER vgap
 RANGE r , i
 NONSPECI FI C_CURRENT i
}

PARAMETER { r = 1e10 (megohm) }

ASSI GNED {
 v (mi l l i vol t)
 vgap (mi l l i vol t)
 i (nanoamp)
}

BREAKPOI NT { i = (v - vgap) / r }

Listing 10.2. gap. mod

This implementation can cause spurious oscillations if the coupling between the two

voltages is too tight (i.e. if the resistance r is too low) because it degrades the Jacobian

matrix of the system equations. While it does introduce off-diagonal terms to couple the

nodes on either side of the gap junction, it fails to add the conductance of the gap junction

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

to the terms on the main diagonal. The result is an approximate Jacobian, which makes

numeric integration effectively a modified Euler method, instead of the fully implicit or

Crank-Nicholson methods which are numerically more robust. Consequently, results are

satisfactory only if coupling is loose (i.e. if r is large compared to the total conductance

of the other ohmic paths connected to the affected nodes). If oscillations do occur, their

amplitude can be reduced by decreasing dt , and they can be eliminated by using

CVODE. In such cases, it may be preferable to implement gap junctions is with the

Li near Mechani sm class (e.g. by using the LinearCircuitBuilder), which sets up the

diagonal and off-diagonal terms of the Jacobian properly so that simulations are

completely stable.

Usage

The following hoc code use this mechanism to set up a model of a gap junction

between two cells. The Gap mechanisms allow current to flow between the internal node

at the 1 end of a and the internal node at the 0 end of b.

cr eat e a, b
access a

f or al l { nseg=10 L=1000 di am=10 i nser t hh}

obj r ef g[2]
f or i =0, 1 {
 g[i] = new Gap()
 g[i] . r = 3
}

a g[0] . l oc(0. 9999) / / j ust i nsi de " di s t al " end of a
b g[1] . l oc(0. 0001) / / j ust i nsi de " pr ox i mal " end of b
set poi nt er g[0] . vgap, b. v(0. 0001)
set poi nt er g[1] . vgap, a. v(0. 9999)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 10 November 28, 2004

Modeling spike-triggered synaptic transmission:
an event-based strategy

Prior to NEURON 4.1, model descriptions of synaptic transmission could only use

POI NTER variables to obtain their presynaptic information. This required a detailed

piecing together of individual components that was acceptable for models with only a

few synapses. Models of larger networks required users to exert considerable

administrative effort to create mechanisms that handle synaptic delay, exploit potentially

great simulation efficiencies offered by simplified models of synapses, and maintain

information about network connectivity.

The experience of NEURON users in creating special strategies for managing

network simulations (e.g. (Destexhe et al. 1994a; Lytton 1996)) stimulated the

development of NEURON's network connection (Net Con) class and event delivery

system. Instances of the Net Con class manage the delivery of presynaptic "spike" events

to synaptic point processes via the event delivery system. This works for all of

NEURON's integrators, including the local variable time step method in which each cell

is integrated with a time step appropriate to its own state changes. Model descriptions of

synapses never need to queue events, and there is no need for heroic efforts to make them

work properly with adaptive integration. These features offer enormous convenience to

users who are interested in models that involve synaptic transmission at any level of

complexity from single cell to large networks.

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

Conceptual model

In its most basic form, the physical system that we want to represent consists of a

presynaptic neuron with a spike initiation zone that gives rise to an axon, which leads to a

terminal that makes a synaptic connection onto a postsynaptic cell (Fig. 10.3). Our

conceptual model of spike-triggered transmission is that arrival of a spike at the

presynaptic terminal has some effect (e.g. a conductance change) in the postsynaptic cell

that is described by a differential equation or kinetic scheme. Details of what goes on at

the spike initiation zone are assumed to be unimportant--all that matters is whether a

spike has, or has not, reached the presynaptic terminal. This conceptual model lets us take

advantage of special features of NEURON that allow extremely efficient computation.

pre

post

Figure 10.3. Cartoon of a synaptic connection (filled circle) between a

presynaptic cell pre and a postsynaptic cell post.

A first approach to implementing a computational representation of our conceptual

model might be something like the top of Fig. 10.4. We would monitor membrane

potential at the presynaptic terminal for spikes (watch for threshold crossing). When a

spike is detected, we wait for an appropriate delay (latency of transmitter release plus

diffusion time) and then notify the synaptic mechanism that it's time to go into action. For

this simple example, we have assumed that synaptic transmission simply causes a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 10 November 28, 2004

conductance change in the postsynaptic cell. It is also possible to implement more

complex mechanisms that include representations of processes in the presynaptic terminal

(e.g. processes involved in use-dependent plasticity).

We can speed things up a lot by leaving out the axon and presynaptic terminal

entirely, i.e. instead of computing the propagation of the action potential along the axon,

just monitor the spike initiation zone. Once a spike occurs, we wait for a total delay equal

to the sum of the conduction latency and the synaptic latency, and then activate the

postsynaptic conductance change (Fig. 10.4 bottom).

Spike
detector

Postsynaptic
region

gs
Synaptic
latency

Complete
representation
of propagation
from spike init.
zone through
axon to terminal

Spike
initiation
zone

Spike
detector

Postsynaptic
region

gs

Delay
 =
conduction
latency
 +
synaptic
latency

Figure 10.4. Computational implementation of a model of spike-triggered

synaptic transmission. Top: The basic idea is that a presynaptic spike causes

some change in the postsynaptic cell. Bottom: A more efficient version doesn't

bother computing conduction in the presynaptic axon.

The NetCon class

Let's step back from this problem for a moment and think about the bottom diagram

in Fig. 10.4. The "spike detector" and "delay" in the middle of this diagram are the seed

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

of an idea for a general strategy for dealing with synaptic connections. In fact, the

Net Con object class is used to apply this strategy in defining the synaptic connection

between a source and a target.

A Net Con object connects a presynaptic variable, such as voltage, to a target point

process (here a synapse) with arbitrary delay and weight. If the presynaptic variable

crosses t hr eshol d in a positive direction at time t , then at time t +del ay a special

NET_RECEI VE procedure in the target point process is called and receives the wei ght

information. Each Net Con can have its own t hr eshol d, del ay , and wei ght , i.e. these

parameters are stream-specific. The only constraint on del ay is that it be nonnegative.

There is no limit on the number of events that can be "in the pipeline," and there is no

loss of events under any circumstances. Events always arrive at the target at the interval

del ay after the time they were generated.

When you create a Net Con object, at a minimum you must specify the source

variable and the target. The source variable is generally the membrane potential of the

currently accessed section, as shown here. The target is a point process that contains a

NET_RECEI VE block (see Listing 10.3 below).

section netcon = new Net Con(&v(x) , target, thresh, del, wt)

Threshold, delay, and weight are optional; their defaults are shown here, and they can be

specified after the Net Con object has been constructed.

netcon. t hr eshol d = 10 / / mV
netcon. del ay = 1 / / ms
netcon. wei ght = 0 / / uS

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 10 November 28, 2004

The weight associated with a Net Con object is actually the first element of a weight

vector. The number of elements in the weight vector depends on the number of

arguments in the NET_RECEI VE statement of the NMODL source code that defines the

point process. We will return to this in Example 10.5: use-dependent synaptic

plasticity and Example 10.6: saturating synapses.

NEURON's event-based approach to implementing communication between cells

reduces the computational burden of network simulations tremendously, because it

supports efficient, unlimited divergence and convergence (fan-out and fan-in). To

understand why, first consider divergence. What if a presynaptic cell projects to multiple

postsynaptic targets (Fig. 10.5 top)? Easy enough--just add a Net Con object for each

target (Fig. 10.5 bottom). This is computationally efficient because threshold detection is

done on a "per source" basis, rather than a "per Net Con" basis. That is, if multiple

Net Cons have the same source with the same t hr eshol d, they all share a single

threshold detector. The source variable is checked only once per time step and, when it

crosses t hr eshol d in the positive direction, events are generated for each connecting

Net Con object. Each of these Net Cons can have its own weight and delay, and the target

mechanisms can belong to different classes.

Now consider convergence. Suppose a neuron receives multiple inputs that are

anatomically close to each other and of the same type (Fig. 10.6 top). In other words,

we're assuming that each synapse has its postsynaptic action through the same kind of

mechanism (i.e. it has identical kinetics, and (in the case of conductance-change

synapses) the same equilibrium potential). We can represent this by connecting multiple

Net Con objects to the same postsynaptic point process (Fig. 10.6 bottom). This yields

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

large efficiency improvements because a single set of synaptic equations can be shared

by many input streams (one input stream per connecting Net Con instance). Of course,

these synapses can have different strengths and latencies, because each Net Con object

has its own weight and delay.

Path 0

Path 1

Spike
initiation
zone

Spike
detector Delay 0 gs

Postsynaptic
region 0

Delay 1 gs
Postsynaptic
region 1

Figure 10.5. Efficient divergence. Top: A single presynaptic neuron projects to two

different target synapses. Bottom: Computational model of this circuit uses multiple

Net Cons with a single threshold detector that monitors a common source.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 10 November 28, 2004

Path 0

Path 1

Delay 0Spike
detector 0

Spike
initiation
zone 0

gs
Postsynaptic
region

Delay 1
Spike
initiation
zone 1

Spike
detector 1

Figure 10.6. Efficient convergence. Top: Two different presynaptic cells make synaptic

connections of the same class that are electrically close to each other. Bottom:

Computational model of this circuit uses multiple Net Cons that share a single

postsynaptic mechanism (single equation handles multiple input streams).

Having seen the rationale for using events to implement models of synaptic

transmission, we are ready to examine some point processes that include a

NET_RECEI VE block and can be used as synaptic mechanisms in network models.

Example 10.3: synapse with exponential decay

Many kinds of synapses produce a synaptic conductance that increases rapidly and

then declines gradually with first order kinetics, e.g. AMPAergic excitatory synapses.

This can be modeled by an abrupt change of conductance, which is triggered by arrival of

an event, and then decays with a single time constant.

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

The NMODL code that implements such a mechanism is shown in Listing 10.3. This

mechanism is similar to NEURON's built in ExpSyn. Calling it ExpSyn1 allows us to

test and modify it without conflicting with NEURON's built-in ExpSyn.

The synaptic conductance of this mechanism summates not only when events arrive

from a single presynaptic source, but also when they arrive from different places

(multiple input streams). This mechanism handles both situations by defining a single

conductance state g which is governed by a differential equation whose solution is

g
�
t ��� g

�
t0 � e

�
t � t0

�����
, where g

�
t0 � is the conductance at the time of the most recent

event.

: expsyn1. mod

NEURON {
 POI NT_PROCESS ExpSyn1
 RANGE t au, e, i
 NONSPECI FI C_CURRENT i
}

PARAMETER {
 t au = 0. 1 (ms)
 e = 0 (mi l l i vol t)
}

ASSI GNED {
 v (mi l l i vol t)
 i (nanoamp)
}

STATE { g (mi cr os i emens) }

I NI TI AL { g = 0 }

BREAKPOI NT {
 SOLVE st at e METHOD cnexp
 i = g* (v - e)
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 10 November 28, 2004

DERI VATI VE st at e { g' = - g/ t au }

NET_RECEI VE(wei ght (mi cr osi emens)) {
 g = g + wei ght
}

Listing 10.3. expsyn1. mod

The BREAKPOINT block

The BREAKPOI NT block of this mechanism is its main computational block. This

contains the SOLVE statement that tells how states will be integrated. The cnexp method

is used because the kinetics of ExpSyn1 are described by a differential equation of the

form y´ = f(y), where f(y) is linear in y (see also The DERIVATIVE block in Example

9.4: a voltage-gated current in Chapter 9). The BREAKPOI NT block ends with an

assignment statement that sets the value of the synaptic current.

The DERIVATIVE block

The DERI VATI VE block contains the differential equation that describes the time

course of the synaptic conductance g: a first order decay with time constant t au.

The NET_RECEIVE block

The NET_RECEI VE block contains the code that specifies what happens in response

to presynaptic activation. This is called by the Net Con event delivery system when an

event arrives at this point process.

So suppose we have a model with an ExpSyn1 point process that is the target of a

Net Con. Imagine that the Net Con detects a presynaptic spike at time t . What happens

next?

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

ExpSyn1's conductance g continues to follow

a smooth exponential decay with time constant

t au until time t +del ay , where del ay is the delay

associated with the Net Con object. At this point,

an event is delivered to the ExpSyn1. Just before entry to the NET_RECEI VE block,

NEURON makes all STATEs, v, and values assigned in the BREAKPOI NT block

consistent at t +del ay . Then the code in the NET_RECEI VE block is executed, making

the synaptic conductance suddenly jump up by the amount specified by the Net Con's

weight.

Usage

Suppose we wanted to set up a synaptic connection between two cells using an

ExpSyn1 mechanism, as in Fig. 10.7.

Figure 10.7. Schematic of a synaptic connection between two cells.

This could be done with the following hoc code, which also illustrates the use of a Li st

of Net Con objects as a means for keeping track of the synaptic connections in a network.

/ / keep connect i v i t y i n a l i s t of Net Con obj ect s
obj r ef nc l
nc l = new Li st ()

/ / at t ach an ExpSyn1 poi nt pr ocess cal l ed syn
/ / t o t he 0. 3 l ocat i on on dend[3] of cel l [5]
obj r ef syn
cel l [5] . dend[3] syn = new ExpSyn1(0. 3)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

As we mentioned in Chapter 9, earlier

versions of NEURON had to change g

with a st at e_di scont i nui t y()

statement. This is no longer necessary.

The NEURON Book: Chapter 10 November 28, 2004

/ / pr esynapt i c v i s cel l [20] . axon. v(1)
/ / connect t hi s t o syn v i a a new Net Con obj ect
/ / and add t he Net Con t o t he l i s t ncl
cel l [20] . axon ncl . append(new Net Con(&v(1) , \
 syn, t hr eshol d, del ay, wei ght)

precell[0]

precell[1]

0 50 100 150
−70

−69

−68 postcell.soma.v(0.5)

0 50 100 150

0.001

0.002

0

ExpSyn1[0].g

Figure 10.8. Simulation results from the model shown in Fig. 10.6. Note stream-specific synaptic

weights and temporal summation of synaptic conductance and membrane potential.

Figure 10.8 shows results of a simulation of two input streams that converge onto a

single ExpSyn1 attached to a postsynaptic cell, as in the diagram at the top of Fig. 10.6.

The presynaptic firing times are indicated by the rasters labeled pr ecel l [0] and

pr ecel l [1] . The synaptic conductance and postsynaptic membrane potential (middle

and bottom graphs) display stream-specific synaptic weights, and also show temporal

summation of inputs within an individual stream and between inputs on multiple streams.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

Example 10.4: alpha function synapse

With a few small changes, we can extend ExpSyn1 to implement an alpha function

synapse. We only need to replace the differential equation with the two state kinetic

scheme

STATE { a (mi cr os i emens) g (mi cr os i emens) }
KI NETI C st at e {
 ~ a <- > g (1/ t au, 0)
 ~ g - > (1/ t au)
}

and change the NET_RECEI VE block to

NET_RECEI VE(wei ght (mi cr osi emens)) {
 a = a + wei ght * exp(1)
}

The factor exp(1) = e is included so that an isolated event produces a peak conductance

of magnitude wei ght , which occurs at time t au after the event. Since this mechanism

involves a KI NETI C block instead of a DERI VATI VE block, we must also change the

integration method specified by the SOLVE statement from cnexp to spar se.

The extra computational complexity of using a kinetic scheme is offset by the fact

that, no matter how many Net Con streams connect to this model, the computation time

required to integrate STATE g remains constant. Some increase of efficiency can be

gained by recasting the kinetic scheme as two linear differential equations

DERI VATI VE st at e {
. . a' = - a/ t au1
. . b' = - b/ t au
. . g = b - a
}

which are solved by the cnexp method (this is what NEURON's built in Exp2Syn

mechanism does). As t au1 approaches t au, g approaches an alpha function (although

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 10 November 28, 2004

the factor by which wei ght must be multiplied approaches infinity; see f act or in the

next example). Also, there are now two state discontinuities in the NET_RECEI VE block

NET_RECEI VE(wei ght (mi cr osi emens)) {
 a = a + wei ght * f act or
 b = b + wei ght * f act or
}

Example 10.5: use-dependent synaptic plasticity

Here the alpha function synapse is extended to implement a form of use-dependent

synaptic plasticity. Each presynaptic event initiates two distinct processes: direct

activation of ligand-gated channels, which causes a transient conductance change, and

activation of a mechanism that in turn modulates the conductance change produced by

successive synaptic activations. In this example we presume that modulation depends on

the postsynaptic increase of a second messenger, which we will call "G protein" for

illustrative purposes. We must point out that this example is entirely hypothetical, and

that it is quite different from models described by others (Destexhe and Sejnowski 1995)

in which the G protein itself gates the ionic channels.

For this mechanism it is essential to distinguish each stream into the generalized

synapse, since each stream has to maintain its own [G] (concentration of activated G

protein). That is, streams are independent of each other in terms of the effect on [G], but

their effects on synaptic conductance show linear superposition.

: gsyn. mod

NEURON {
 POI NT_PROCESS GSyn
 RANGE t au1, t au2, e, i
 RANGE Gt au1, Gt au2, Gi nc
 NONSPECI FI C_CURRENT i
 RANGE g
}

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

UNI TS {
 (nA) = (nanoamp)
 (mV) = (mi l l i vol t)
 (umho) = (mi cr omho)
}

PARAMETER {
 t au1 = 1 (ms)
 t au2 = 1. 05 (ms)
 Gt au1 = 20 (ms)
 Gt au2 = 21 (ms)
 Gi nc = 1
 e = 0 (mV)
}

ASSI GNED {
 v (mV)
 i (nA)
 g (umho)
 f act or
 Gf act or
}

STATE {
 A (umho)
 B (umho)
}

I NI TI AL {
 LOCAL t p
 A = 0
 B = 0
 t p = (t au1* t au2) / (t au2 - t au1) * l og(t au2/ t au1)
 f act or = - exp(- t p/ t au1) + exp(- t p/ t au2)
 f act or = 1/ f act or
 t p = (Gt au1* Gt au2) / (Gt au2 - Gt au1) * l og(Gt au2/ Gt au1)
 Gf act or = - exp(- t p/ Gt au1) + exp(- t p/ Gt au2)
 Gf act or = 1/ Gf act or
}

BREAKPOI NT {
 SOLVE st at e METHOD cnexp
 g = B - A
 i = g* (v - e)
}

DERI VATI VE st at e {
 A' = - A/ t au1
 B' = - B/ t au2
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 10 November 28, 2004

NET_RECEI VE(wei ght (umho) , w, G1, G2, t 0 (ms)) {
 G1 = G1* exp(- (t - t 0) / Gt au1)
 G2 = G2* exp(- (t - t 0) / Gt au2)
 G1 = G1 + Gi nc* Gf act or
 G2 = G2 + Gi nc* Gf act or
 t 0 = t

 w = wei ght * (1 + G2 - G1)
 A = A + w* f act or
 B = B + w* f act or
}

Listing 10.4. gsyn. mod

The NET_RECEIVE block

The conductance of the ligand-gated ion channel uses the differential equation

approximation for an alpha function synapse. The peak synaptic conductance depends on

the value of [G] at the moment of synaptic activation. A similar, albeit much slower,

alpha function approximation describes the time course of [G]. These processes peak

approximately t au1 and Gt au1 after delivery of an event, respectively.

The peak synaptic conductance elicited by an individual event is specified in the

NET_RECEI VE block, where w = wei ght * (1+G2- G1) describes how the effective

weight of the synapse is modified by [G]. Even though conductance is integrated, [G] is

needed only at discrete event times so it can be computed analytically from the elapsed

time since the prior synaptic activation. The I NI TI AL block sets up the factors that are

needed to make the peak changes equal to the values of w and Gi nc .

Note that G1 and G2 are not STATEs in this mechanism. They are not even variables

in this mechanism, but instead are "owned" by the particular Net Con instance that

delivered the event. Each Net Con object instance keeps an array (the weight vector)

whose size equals the number of arguments to NET_RECEI VE, and the arguments to

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

NET_RECEI VE are really references to the elements

of this array. Unlike the arguments to a PROCEDURE

or FUNCTI ON block, which are "call by value," the

arguments to a NET_RECEI VE block are "call by

reference." Therefore assignment statements in

gsyn. mod's NET_RECEI VE block can change the

values of variables that belong to the Net Con object,

and this means that the Net Con's weight vector can

be used to hold stream-specific state information. In the context of this particular

example, each connection has its own [G], so gsyn uses "stream-specific plasticity" to

represent "synapse-specific plasticity."

0 20 40 60
0

Sµ
1e−4

80
ms

5e−5

GSyn[0].g

S1

S2

Figure 10.9. Simulation results from the model shown in Fig. 10.6 when the

synaptic mechanism is GSyn. Note stream-specific use-dependent plasticity.

To illustrate the operation of this mechanism, imagine the network of Fig. 10.6 with a

single GSyn driven by the two spike trains shown in Fig. 10.9. This emulates two

synapses that are electrotonically close to each other, but with separate pools of [G]. The

train with spikes at 5 and 45 ms (S1) shows some potentiation of the second conductance

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

On initialization, all elements of the

weight vector other than the first one

are automatically set to 0. However,

a NET_RECEI VE block may have its

own I NI TI AL block, and this can

contain statements that assign

nonzero values to Net Con "states."

Such an I NI TI AL block is executed

when f i ni t i al i ze() is called.

The NEURON Book: Chapter 10 November 28, 2004

transient, but the train that starts at 15 ms with a 200 Hz burst of three spikes displays a

large initial potentiation that is even larger when tested after a 40 ms interval.

Example 10.6: saturating synapses

Several authors (e.g. (Destexhe et al. 1994a; Lytton 1996)) have used synaptic

transmission mechanisms based on a simple conceptual model of transmitter-receptor

interaction:

C � T
�
�

�

�

O Eq. 10.2

where transmitter T binds to a closed receptor channel C to produce an open channel O.

In this conceptual model, spike-triggered transmitter release produces a transmitter

concentration in the synaptic cleft that is approximated by a rectangular pulse with a

fixed duration and magnitude (Fig. 10.10). A "large excess of transmitter" is assumed, so

that while transmitter is present (the "onset" state, "ligand binding to channel") the

postsynaptic conductance increases toward a maximum value with a single time constant

1/(α T + β). After the end of the transmitter pulse (the "offset" state, "ligand·channel

complex dissociating"), the conductance decays with time constant 1/β. Further details of

saturating mechanisms are covered by (Destexhe et al. 1994a and b) and (Lytton 1996).

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

g

xmtr

Cdur Cdur

Figure 10.10. A saturating synapse model. A single presynaptic spike (top

trace) causes a pulse of transmitter in the synaptic cleft with fixed duration

(Cdur) and concentration (middle trace). This elicits a rapid increase of

postsynaptic conductance followed by a slower decay (bottom trace). A high

frequency burst of spikes produces a sustained elevation of transmitter that

persists until Cdur after the last spike and causes saturation of the postsynaptic

conductance.

There is an ambiguity when one or more spikes arrive on a single stream during the

onset state triggered by an earlier spike: should the mechanism ignore the "extra" spikes,

concatenate onset states to make the transmitter pulse longer without increasing its

concentration, or increase (summate) the transmitter concentration? Summation of

transmitter requires the onset time constant to vary with transmitter concentration. This

places transmitter summation outside the scope of the Destexhe/Lytton model, which

assumes a fixed time constant for the onset state. We resolve this ambiguity by choosing

concatenation, so that repetitive impulses on one stream produce a saturating conductance

change (Fig. 10.10). However, conductance changes elicited by separate streams will

summate.

A model of the form used in Examples 10.4 and 10.5 can capture the idea of

saturation, but the separate onset/offset formulation requires keeping track of how much

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 10 November 28, 2004

"material" is in the onset or offset state. The mechanism in Listing 10.5 implements an

effective strategy for doing this. A noteworthy feature of this model is that the event

delivery system serves as more than a conduit for receiving inputs from other cells:

discrete events are used to govern the duration of synaptic activation, and are thus an

integral part of the mechanism itself.

: ampa. mod

NEURON {
 POI NT_PROCESS AMPA_S
 RANGE g
 NONSPECI FI C_CURRENT i
 GLOBAL Cdur , Al pha, Bet a, Er ev, Ri nf , Rt au
}

UNI TS {
 (nA) = (nanoamp)
 (mV) = (mi l l i vol t)
 (umho) = (mi cr omho)
}

PARAMETER {
 Cdur = 1. 0 (ms) : t r ansmi t t er dur at i on (r i s i ng phase)
 Al pha = 1. 1 (/ ms) : f or war d (bi ndi ng) r at e
 Bet a = 0. 19 (/ ms) : backwar d (di ssoci at i on) r at e
 Er ev = 0 (mV) : equi l i br i um pot ent i al
}

ASSI GNED {
 v (mV) : post synapt i c vol t age
 i (nA) : cur r ent = g* (v - Er ev)
 g (umho) : conduct ance
 Rt au (ms) : t i me const ant of channel bi ndi ng
 Ri nf : f r act i on of open channel s i f xmt r i s pr esent " f or ever "
 synon : sum of wei ght s of al l synapses i n t he " onset " s t at e
}

STATE { Ron Rof f } : i ni t i al i zed t o 0 by def aul t
: Ron and Rof f ar e t he t ot al conduct ances of al l synapses
: t hat ar e i n t he " onset " (t r ansmi t t er pul se ON)
: and " of f set " (t r ansmi t t er pul se OFF) s t at es, r espect i vel y

I NI TI AL {
 synon = 0
 Rt au = 1 / (Al pha + Bet a)
 Ri nf = Al pha / (Al pha + Bet a)
}

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

BREAKPOI NT {
 SOLVE r el ease METHOD cnexp
 g = (Ron + Rof f) * 1(umho)
 i = g* (v - Er ev)
}

DERI VATI VE r el ease {
 Ron' = (synon* Ri nf - Ron) / Rt au
 Rof f ' = - Bet a* Rof f
}

NET_RECEI VE(wei ght , on, r 0, t 0 (ms)) {
 : f l ag i s an i mpl i c i t ar gument of NET_RECEI VE, nor mal l y 0
 i f (f l ag == 0) {
 : a spi ke ar r i ved, s t ar t onset s t at e i f not al r eady on
 i f (! on) {
 : t hi s synapse j oi ns t he set of synapses i n onset st at e
 synon = synon + wei ght
 r 0 = r 0* exp(- Bet a* (t - t 0)) : r 0 at s t ar t of onset s t at e
 Ron = Ron + r 0
 Rof f = Rof f - r 0
 t 0 = t
 on = 1
 : come agai n i n Cdur wi t h f l ag = 1
 net _send(Cdur , 1)
 } el se {
 : al r eady i n onset s t at e, so move of f set t i me
 net _move(t + Cdur)
 }
 }
 i f (f l ag == 1) {
 : " t ur n of f t r ansmi t t er "
 : i . e. t hi s synapse ent er s t he of f set s t at e
 synon = synon - wei ght
 : r 0 at s t ar t of of f set s t at e
 r 0 = wei ght * Ri nf + (r 0 - wei ght * Ri nf) * exp(- (t - t 0) / Rt au)
 Ron = Ron - r 0
 Rof f = Rof f + r 0
 t 0 = t
 on = 0
 }
}

Listing 10.5. ampa. mod

The PARAMETER block

The actual value of the transmitter concentration in the synaptic cleft during the onset

state is unimportant to this model, as long as it remains constant. To simplify the

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 10 November 28, 2004

mechanism, we assume transmitter concentration to be dimensionless, with a numeric

value of 1. This allows us to specify the forward rate constant Al pha in units of 1/ms.

The STATE block

This mechanism has two STATEs. Ron is the total conductance of all synapses that are

in the onset state, and Rof f is the total conductance of all synapses that are in the offset

state. These are declared without units, so a units factor will have to be applied elsewhere

(in this example, this is done in the BREAKPOI NT block).

The INITIAL block

At the start of a simulation, we assume that all channels are closed and no transmitter

is present at any synapse. The initial values of Ron, Rof f , and synon must therefore

be 0. This initialization happens automatically for STATEs and does not require explicit

specification in the I NI TI AL block, but synon needs an assignment statement.

The I NI TI AL block also calculates Rt au and Ri nf . Rt au is the time constant for

equilibration of the closed (free) and open (ligand-bound) forms of the postsynaptic

receptors when transmitter is present in the synaptic cleft. Ri nf is the open channel

fraction if transmitter is present forever.

The BREAKPOINT and DERIVATIVE blocks

The total conductance is numerically equal to Ron+Rof f . The * 1(umho) factor is

included for dimensional consistency.

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

The DERI VATI VE block specifies the first order differential equations that govern

these STATEs. The meaning of each term in

Rof f ' = - Bet a* Rof f

is obvious, and in

Ron' = (synon* Ri nf - Ron) / Rt au

the product synon* Ri nf is the value that Ron approaches with increasing time.

The NET_RECEIVE block

The NET_RECEI VE block performs the task of switching each synapse between its

onset and offset states. In broad outline, if an external event (an event generated by the

Net Con's source passing threshold) arrives at time t

to start an onset, the NET_RECEI VE block generates

an event that it sends to itself. This self-event will be

delivered at time t +Cdur , where Cdur is the duration

of the transmitter pulse. Arrival of the self-event is the signal to switch the synapse back

to the offset state. If another external event arrives from the same Net Con before the self-

event does, the self-event is moved to a new time that is Cdur in the future. Thus

resetting to the offset state can happen only if an interval of Cdur passes without new

external events arriving.

To accomplish this strategy, the NET_RECEI VE block must distinguish an external

event from a self-event. It does this by exploiting the fact that every event has an implicit

argument called f l ag, the value of which is automatically 0 for an external event.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

"External event" and "input event"

are synonyms. We will use the

former term as clarity dictates when

contrasting them with self-events.

The NEURON Book: Chapter 10 November 28, 2004

Handling of external events

Arrival of an external event causes

execution of the statements inside the

i f (f l ag==0) { } clause. These begin with

i f (! on) , which tests whether this synapse should switch to the onset state.

Switching to the onset state involves keeping track of how much "material" is in the

onset and offset states. This requires moving the synapse's channels into the pool of

channels that are exposed to transmitter, which simply means adding the synapse's

wei ght to synon. Also, the conductance of this synapse, which had been decaying with

rate constant 1/ Bet a, must now start to grow with rate constant Rt au. This is done by

computing r 0, the synaptic conductance at the present time t , and then adding r 0 to Ron

and subtracting it from Rof f . Next the value of t 0 is updated for future use, and on is set

to 1 to signify that the synapse is in the onset state. The last statement inside i f (! on) { }

is net _send(Cdur , nspi ke) , which generates a self-event with delay given by the first

argument and flag value given by the second argument. All the explicit arguments of this

self-event will have the values of this particular Net Con, so when this self-event returns

we will know how much "material" to switch from the onset to the offset state.

The el se { } clause takes care of what happens if another external event arrives

while the synapse is still in the onset state. The net _move(t +Cdur) statement moves

the self-event to a new time that is Cdur in the future (relative to the arrival time of the

new external event). In other words, this prolongs synaptic activation until Cdur after the

most recent external event.

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The event flag is "call by value," unlike the

explicit arguments that are declared inside

the parentheses of the NET_RECEI VE()

statement, which are "call by reference."

November 28, 2004 The NEURON Book: Chapter 10

Handling of self-events

When the self-event is finally delivered, it triggers an offset. We know it is a self-

event because its f l ag is 1. Once again we keep track of how much "material" is in the

onset and offset states, but now we subtract the synapse's wei ght from synon to remove

the synapse's channels from the pool of channels that are exposed to transmitter.

Likewise, the conductance of this synapse, which was growing with rate constant Rt au,

must now begin to decay with rate constant 1/ Bet a. Finally, the value of t 0 is updated

and on is reset to 0.

Artificial spiking cells

NEURON's event delivery system was created with the primary aim of making it

easier to represent synaptic connections between biophysical model neurons. However,

the event delivery system turns out to be quite useful for implementing a wide range of

mechanisms that require actions to be taken after a delay. The saturating synapse model

presented above is just one example of this.

The previous section also showed how spike-triggered synaptic transmission makes

extensive use of the network connection class to define connections between cells. The

typical Net Con object watches a source cell for the occurrence of a spike, and then, after

some delay, delivers a weighted event to a target synaptic mechanism, i.e. it is a

metaphor for axonal spike propagation. More generally, a Net Con object can be regarded

as a channel on which a stream of events generated at a source is transmitted to a target.

The target can be a point process, a distributed mechanism, or an artificial neuron (e.g. an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 10 November 28, 2004

integrate and fire model). The effect of events on a target is specified in NMODL by

statements in a NET_RECEI VE block, which is called only when an event has been

delivered.

The event delivery system also opens up a large domain of simulations in which

certain types of artificial spiking cells, and networks of them, can be simulated hundreds

of times faster than with numerical integration methods. Discrete event simulation is

possible when all the state variables of a model cell can be computed analytically from a

new set of initial conditions. That is, if an event occurs at time t1, all state variables must

be computable from the state values and time t0 of the previous event. Since

computations are performed only when an event occurs, total computation time is

proportional to the number of events delivered and independent of the number of cells,

number of connections, or problem time. Thus handling 100,000 spikes in one hour for

100 cells takes the same time as handling 100,000 spikes in 1 second for 1 cell.

Artificial spiking cells are implemented in NEURON as point processes, but unlike

ordinary point processes, they can serve as targets and sources for Net Con objects. They

can be targets because they have a NET_RECEI VE block, which specifies how incoming

events from one or more Net Con objects are handled, and details the calculations

necessary to generate outgoing events. They can also be sources because the same

NET_RECEI VE block generates discrete output events which are delivered through one or

more Net Con objects to targets.

The following examples analyze the three broad classes of integrate and fire cells that

are built into NEURON. In order to emphasize how the event delivery system is used to

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

implement the dynamics of these mechanisms, we have omitted many details from the

NMODL listings. Ellipses indicate elisions, and listings include italicized pseudocode

where necessary for clarity. Complete source code for all three of these cell classes is

provided with NEURON.

Example 10.7: IntFire1, a basic integrate and fire model

The simplest integrate and fire mechanism built into NEURON is I nt Fi r e1, which

has a membrane state variable m (analogous to membrane potential) which decays toward

0 with time constant τ.

� dm
dt

�
m � 0 Eq. 10.3

An input event of weight w adds instantaneously to m, and if m reaches or exceeds the

threshold value of 1, the cell "fires," producing an output event and returning m to 0.

Negative weights are inhibitory while positive weights are excitatory. This is analogous

to a cell with a membrane time constant τ that is very long compared to the time course

of individual synaptic conductance changes. Every synaptic input to such a cell shifts

membrane potential to a new level in a time that is much shorter than τ, and each cell

firing erases all traces of prior inputs. Listing 10.6 presents an initial implementation of

I nt Fi r e1.

NEURON {
 ARTI FI CI AL_CELL I nt Fi r e1
 RANGE t au, m
}

PARAMETER { t au = 10 (ms) }

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 10 November 28, 2004

ASSI GNED {
 m
 t 0 (ms)
}

I NI TI AL {
 m = 0
 t 0 = 0
}

NET_RECEI VE (w) {
 m = m* exp(- (t - t 0) / t au)
 m = m + w
 t 0 = t
 i f (m > 1) {
 net _event (t)
 m = 0
 }
}

Listing 10.6. A basic implementation of I nt Fi r e1.

The NEURON block

As the introduction to this section mentions, artificial spiking cells are implemented

in NEURON as point processes. The keyword ARTI FI CI AL_CELL is in fact a synonym

for POI NT_PROCESS, but we use it as a deliberate reminder to ourselves that this model

has a NET_RECEI VE block, lacks a BREAKPOI NT block, and does not have to be

associated with a section location or numerical integrator. Unlike other point processes,

an artificial cell is isolated from the usual things that link mechanisms to each other: it

does not refer to membrane potential v or any ions, and it does not use POI NTER

variables. Instead, the "outside" can affect it only by sending it discrete events, and it can

only affect the "outside" by sending discrete events.

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

The NET_RECEIVE block

The mechanisms we have seen so far use BREAKPOI NT and KI NETI C or

DERI VATI VE blocks to specify the calculations that are performed during a time step dt ,

but an artificial cell model does not have these blocks. Instead, calculations only take

place when a new event arrives, and these are performed in the NET_RECEI VE block.

When a Net Con delivers a new event to an I nt Fi r e1 cell, the present value of m is

computed analytically and then m is incremented by the weight w of the event. According

to the NET_RECEI VE block, the present value of m is found by applying an exponential

decay to the value it had immediately after the previous event; therefore the code contains

variable t 0 which keeps track of the last event time.

If an input event drives m to or above threshold, the net _event (t) statement

notifies all Net Cons, for which this point process is the source, that it fired a spike at

time t (the argument to net _event () can be any time at or later than the current

time t). Then the cell resets m to 0. The code in Listing 10.6 imposes no limit on firing

frequency--if a Net Con with del ay of 0 and a wei ght of 1.1 has such an artificial cell

as both its source and target, the system will behave "properly," in the sense that events

will be generated and delivered without time ever advancing. It is easy to prevent the

occurrence of such a runaway stream of events (see Adding a refractory period below).

There is no threshold test overhead at every dt because I nt Fi r e1 has no variable

for Net Cons to watch. That is, this artificial spiking cell does not need the usual test for

local membrane potential v to cross Net Con. t hr eshol d, which is essential at every

time step for event generation with biophysical neuron models. Furthermore the event

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 10 November 28, 2004

delivery system only places the earliest event to be delivered on the event queue. When

that time finally arrives, all targets whose Net Cons have the same source and delay get

the event delivery, and longer delay streams are put back on the event queue to await

their specific delivery time.

Enhancements to the basic mechanism

Visualizing the membrane state variable

The membrane state variable m is difficult to plot in an understandable manner, since

it is represented in the computer by a variable m that remains unchanged over the interval

between input events regardless of how many numerical integration steps were performed

in that interval. Consequently m always has the value that was calculated after the last

event was received, and plots of it look like a staircase (Fig. 10.11 left), with no apparent

decay or indication of what the value of m was just before the event.

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

IntFire1[0].m

0 10 20 30
ms

0

0.2

0.4

0.6

0.8

1

0 10 20 30
ms

0

0.2

0.4

0.6

0.8

1
IntFire1[0].M

0 10 20
0

0.2

0.4

0.6

0.8

1

30
ms

IntFire1[0].M

Figure 10.11. Response of an I nt Fi r e1 cell with τ = 10 ms to input events with weight

= 0.8 arriving at t = 5, 22, and 25 ms (arrows). The third input initiates a "spike." Left:

The variable m is evaluated only when a new event arrives, so its plot looks like a

staircase. A function can be included in I nt Fi r e1's mod file (see text) to better indicate

the time course of the membrane state variable m. Center: Plotting this function during a

simulation with fixed dt (0.025 ms here) demonstrates the decay of m between events.

Right: In a variable time step simulation, m appears to follow a sequence of linear ramps.

This artifact is a consequence of the efficiency of adaptive integration, which computed

analytical solutions at only a few instants, so the Graph tool could only draw lines from

instant to instant.

This can be partially repaired by adding a function

FUNCTI ON M() {
 M = m* exp(- (t - t 0) / t au)
}

that returns the present value of the membrane state variable m. This gives nice

trajectories when fixed time step integration is used (Fig. 10.11 center). However, the

natural step with the variable step method is the interspike interval itself, unless

intervening events occur in other cells (e.g. 1 ms before the second input event in

Fig. 10.11 right). At least the integration step function f advance() returns 10-9 ms

before and after the event to properly indicate the discontinuity in M.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 10 November 28, 2004

Adding a refractory period

It is easy to add a relative refractory period by initializing m to a negative value after

the cell fires (alternatively, a depolarizing afterpotential can be emulated by initializing m

to a value in the range (0,1)). However, incorporating an absolute refractory period

requires self-events.

Suppose we want to limit the maximum firing rate to 200 spikes per second, which

corresponds to an absolute refractory period of 5 ms. To specify the duration of the

refractory period, we use a variable named r ef r ac , which is declared and assigned a

value of 5 ms in the PARAMETER block. Adding the statement RANGE r ef r ac to the

NEURON block allows us to adjust this parameter from the interpreter and graphical

interface. We also use a variable to keep track of whether the point process is in the

refractory period or not. The name we choose for this variable is the eponymous

r ef r act or y , and it is declared in the ASSI GNED block and initialized to a value of 0

("false") in the I NI TI AL block.

The NET_RECEI VE implementation is then

NET_RECEI VE (w) {
 i f (r ef r act or y == 0) {
 m = m* exp(- (t - t 0) / t au)
 m = m + w
 t 0 = t
 i f (m > 1) {
 net _event (t)
 r ef r act or y = 1
 net _send(r ef r ac, r ef r act or y)
 }
 } el se i f (f l ag == 1) {
 : sel f - event ar r i ved, so t er mi nat e r ef r act or y per i od
 r ef r act or y = 0
 m = 0
 t 0 = t
 } : el se i gnor e t he ext er nal event
}

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

If r ef r act or y equals 0, the cell accepts external events (i.e. events delivered by a

Net Con) and calculates the state variable m and whether to fire the cell. When the cell

fires a spike, r ef r act or y is set to 1 and further external events are ignored until the end

of the refractory period (Fig. 10.12).

Recall from the saturating synapse example that the f l ag variable that accompanies

an external event is 0. If this mechanism receives an event with a nonzero f l ag, it must

be a self-event, i.e. an event generated by a call to net _send() when the cell fired. The

net _send(i nt er val , f l ag) statement places an event into the delivery system as an

"echo" of the current event, i.e. it will come back to the sender after the specified

i nt er val with the specified f l ag. In this case we aren't interested in the weight but

only the f l ag. Arrival of this self-event means that the refractory period is over.

The top of Fig. 10.12 shows the response of this model to a train of input stimuli.

Temporal summation triggers a spike on the fourth input. The fifth input arrives during

the refractory interval and has no effect.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 10 November 28, 2004

refractory
0

1

0 5 10 15 20
ms

IntFire1[0].M

0 5 10 15 20
ms

0.5

1.5

2

0

1

IntFire1[0].M

0 5 10 15

−1

0

1

2

20
ms

Figure 10.12. Response of an I nt Fi r e1 cell with a 5 ms refractory interval to a

run of inputs at 3 ms intervals (arrows), each with weight = 0.4. Top: The cell

accepts inputs when r ef r act or y == 0. The fourth input (at 11 ms) drives the

cell above threshold. This triggers an output event, increases r ef r act or y to 1

(top trace), and function M, which reflects the membrane state variable m, jumps

to 2. During the 5 ms refractory period, M decays gradually, but the cell is

unresponsive to further inputs (note that the input at 14 ms produces no change

in the membrane state variable). At 16 ms r ef r act or y falls to 0, making the

cell once again responsive to inputs, and M also returns to 0 until the next

external event arrives. Bottom: After modifying the function M to generate

rectangular pulses that emulate a spike followed by postspike hyperpolarization.

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

Improved presentation of the membrane state variable

The performance in the top of Fig. 10.12 is satisfactory, but the model could be

further improved by one relatively minor change. As it stands the M function shows an

exponential decay during the refractory period, which is at best distracting and irrelevant

to the operation of the model, and potentially misleading at worst. It would be better for M

to follow a stereotyped time course, e.g. a brief positive pulse followed by a longer

negative pulse. This would not be confused with the subthreshold operation of the model,

and it might be more suggestive of an action potential.

The most direct way to do this is to make M take different actions depending on

whether or not the model is "spiking." One possibility is

FUNCTI ON M() {
 i f (r ef r act or y == 0) {
 M = m* exp(- (t - t 0) / t au)
 } el se i f (r ef r act or y == 1) {
 i f (t - t 0 < 0. 5) {
 M = 2
 } el se {
 M = - 1
 }
 }
}

which is exactly what the built-in I nt Fi r e1 model does. The bottom of Fig. 10.12

shows the time course of this revised function.

This demonstrates how visualization of cell operation can be enhanced by simple

calculations of patterns for the spiking and refractory trajectories, with no overhead for

cells that are not plotted. We must emphasize that the simulation calculations are analytic

and performed only at event arrival, regardless of the refinements we introduced for the

purpose of esthetics.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 10 November 28, 2004

Sending an event to oneself to trigger deferred computation involves very little

overhead, yet it allows elaborate calculations to be performed much more efficiently than

if they were executed on a per dt basis. Self-events are heavily exploited in the

implementation of I nt Fi r e2 and I nt Fi r e4, which both offer greater kinetic

complexity than I nt Fi r e1.

Example 10.8: IntFire2, firing rate proportional to input

The I nt Fi r e2 model, like I nt Fi r e1, has a membrane state variable m that follows

first order kinetics with time constant τm. However, an input event to I nt Fi r e2 does not

affect m directly. Instead it produces a discontinuous change in a synaptic current state

variable i. Between events, i decays with its own time constant τs toward a steady "bias"

value specified by the parameter ib. That is,

�

s
di
dt

�
i � ib Eq. 10.4

where an input event causes i to change abruptly by w (Fig. 10.13 top). This current i

drives m, i.e.

�

m
dm
dt

�
m � i Eq. 10.5

where τm < τs. Thus an input event produces a gradual change in m that is described by

two time constants and approximates an alpha function if τm ≈ τs. When m crosses a

threshold of 1 in a positive direction, the cell fires, m is reset to 0, and integration

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

resumes immediately, as shown in the bottom of Fig. 10.13. Note that i is not reset to 0,

i.e. unlike I nt Fi r e1, firing of an I nt Fi r e2 cell does not obliterate all traces of prior

synaptic activation.

2

1.5

1

0.5

0
0 50 100 150

ms

ib = 0.2
w = 1.4

IntFire2[0].I

0 50 100 150
ms

0

0.2

0.4

0.6

0.8

1 IntFire2[0].M

Figure 10.13. Top: Time course of synaptic current i in an I nt Fi r e2 cell with

τs = 20 ms and τm = 10 ms. This cell has bias current ib = 0.2 and receives

inputs with weight w = 1.4 at t = 50 and 100 ms. Bottom: The membrane state

variable m of this cell is initially 0 and approaches the value of ib (0.2 in this

example) with time constant τm. The first synaptic input produces a

subthreshold response, but temporal summation drives m above threshold at t =

109.94 ms. This resets m to 0 and integration resumes.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 10 November 28, 2004

Depending on its parameters, I nt Fi r e2 can emulate a wide range of relationships

between input pattern and firing rate. Its firing rate is ~ i / τm if i is >> 1 and changes

slowly compared to τm.

The parameter ib is analogous to the combined effect of a baseline level of synaptic

drive plus a bias current injected through an electrode. The requirement that τm < τs is

equivalent to asserting that the membrane time constant is faster than the decay of the

current produced by an individual synaptic activation. This is plausible for slow

inhibitory inputs, but where fast excitatory inputs are concerned an alternative

interpretation can be applied: each input event signals an abrupt increase (followed by an

exponential decline) in the mean firing rate of one or more afferents that produce brief

but temporally overlapping postsynaptic currents. The resulting change of i is the moving

average of these currents.

The I nt Fi r e2 mechanism is amenable to discrete event simulation because

Eqns. 10.4 and 10.5 have analytic solutions. If the last input event was at time t0 and the

values of i and m immediately after that event were i(t0) and m(t0), then their subsequent

time course is given by

i
�
t � � i b

� �
i
�
t0 � � i b

	 e
�
�
t � t0

��� �
s Eq. 10.6

and

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

m
�
t � � ib

���
i
�
t0 � � i b � �

s
�

s � �

m

e
�
�
t � t0

��� �
s

���
m
�
t0 � � i b � � i � t0 � � i b � �

s
�

s � �

m � e�
�
t � t0

� � �
m

Eq. 10.7

Implementation in NMODL

The core of the NMODL implementation of I nt Fi r e2 is the function f i r et i me() ,

which is discussed below. This function projects when m will equal 1 based on the

present values of ib, i, and m, assuming that no new input events arrive. The value

returned by f i r et i me() is 109 if the cell will never fire with no additional input. Note

that if ib > 1 the cell fires spontaneously even if no input events occur.

I NI TI AL {
 . . .
 net _send(f i r et i me(args) , 1)
}

NET_RECEI VE (w) {
 . . .
 i f (f l ag == 1) { : t i me t o f i r e
 net _event (t)
 m = 0
 . . .
 net _send(f i r et i me(args) , 1)
 } el se {
 . . .
 update m
 i f (m >= 1) {
 net _move(t) : t he t i me t o f i r e i s now
 } el se {
 . . .
 net _move(f i r et i me(args) + t)
 }
 }
 update t0 and i
}

Listing 10.7. Key excerpts from i nt f i r e2. mod

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 10 November 28, 2004

The I NI TI AL block in I nt Fi r e2 calls f i r et i me() and uses the returned value to

put a self-event into the delivery system. The strategy, which is spelled out in the

NET_RECEI VE block, is to respond to external events by moving the delivery time of the

self-event back and forth with the net _move() function. When the self-event is finally

delivered (potentially never), net _event () is called to signal that this cell is firing.

Notice that external events always have an effect on the value of i, and are never

ignored--and shouldn't be, even if we introduced a refractory period in which we refused

to integrate m.

The function f i r et i me() returns the first t ≥ 0 for which

a
�

b e
� t

� �
s � �

c � a � b � e
� t

� �
m � 1 Eq. 10.8

where the parameters a, b and c are defined by the coefficients in Eq. 10.7. If there is no

such t the function returns 109. This represents the time of the next cell firing, relative to

the time t0 of the most recent synaptic event.

Since f i r et i me() must be executed on every input event, it is important to

minimize the number of Newton iterations needed to calculate the next firing time. For

this we use a strategy that depends on the behavior of the function

f 1

�
x � � a

�
b x r � �

c � a � b � x Eq. 10.9a

where x � e
� t

� �
m

r � �

m � �

s

Eq. 10.9b

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

over the domain 0 < x ≤ 1. Note that c < 1 is the value of f1 at x = 0 (i.e. at t = ∞). The

function f1 is either linear in x (if b = 0) or convex up (b > 0) or down (b < 0) with no

inflection points. Since r < 1, f1 is tangent to the y axis for any nonzero b (i.e. f1´(0) is

infinite).

1.5

1

0.5

0
0 0.2 0.4 0.6 0.8 1

x

b = 4

2

1

0

−1

a = 0.2
c = 0.9
r = 0.5

f (x)
1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

f (x)
1

x

a = 1.5
c = 0.3
r = 0.5

1+(c−1)x

b = 0.8
0

−0.8

−2.4

1.5

1

0.5

0

a = 1.5
c = 0.3
r = 0.5

b = −2.4

0 0.2 0.4 0.6 0.8 1
x

f (x)
2

Figure 10.14. Plots of f1 and f2 computed for r = 0.5. See text for details.

The left panel of Fig. 10.14 illustrates the qualitative behavior of f1 for a ≤ 1. It is

easy to analytically compute the maximum in order to determine if there is a solution to

f1(x) = 1. If a solution exists, f1 will be concave downward so Newton iterations starting

at x = 1 will underestimate the firing time.

For a > 1, a solution is guaranteed (Fig. 10.14 middle). However, starting Newton

iterations at x = 1 is inappropriate if the slope there is more negative than c - 1 (straight

dashed line in Fig. 10.14 middle). In that case, the transformation x � e
� t

� �
s is used,

giving the function

f 2

�
x � � a

�
b x

� �
c � a � b � x 1 � r Eq. 10.9c

and the Newton iterations begin at x = 0 (Fig. 10.14 right).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 10 November 28, 2004

These computations are performed over regions in which f1 and f2 are relatively

linear, so the f i r et i me() function usually requires only two or three Newton iterations

to converge to the next firing time. The only exception is when f1 has a maximum that is

just slightly larger than 1, in which case it may be a good idea to stop after a couple of

iterations and issue a self-event. The advantage of this would be the deferral of a costly

series of iterations, allowing an interval in which another external event might arrive that

would force computation of a new projected firing time. Such an event, whether

excitatory or inhibitory, would likely make it easier to compute the next firing time.

Example 10.9: IntFire4, different synaptic time constants

I nt Fi r e2 can emulate an input-output relationship with more complex dynamics

than I nt Fi r e1 does, but it is somewhat restricted because its response to every external

event, whether excitatory or inhibitory, has the same kinetics. As we pointed out in the

discussion of I nt Fi r e2, it is possible to interpret excitatory events in a way that

partially sidesteps this issue. However, experimentally observed synaptic excitation tends

to be faster than inhibition (e.g. (Destexhe et al. 1998)) so a more flexible integrate and

fire mechanism is needed.

The I nt Fi r e4 mechanism addresses this need. Its dynamics are specified by four

time constants: τe for a fast excitatory current, τi
1
 and τi

2
 for a slower inhibitory current,

and τm for the even slower leaky "membrane" which integrates these currents. When the

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

membrane state variable m reaches 1, the cell "fires," producing an output event and

returning m to 0. This does not affect the other states of the model.

The differential equations that govern I nt Fi r e4 are

de
dt

� � kee Eq. 10.10

di1
dt

� � k i1
i1

Eq. 10.11

di2
dt

� � k i 2
i 2
�

ai1
i1

Eq. 10.12

dm
dt

� � kmm
�

aee
�

ai 2
i2 Eq. 10.13

where each k is a rate constant that equals the reciprocal of the corresponding time

constant, and it is assumed that ke > ki
1
 > ki

2
 > km (i.e. τe < τi

1
 < τi

2
 < τm). An input event

with weight w > 0 (i.e. an excitatory event) adds instantaneously to the excitatory current

e. Equations 10.11 and 12, which define the inhibitory current i2, are based on the

reaction scheme

i1
�

ki 1

i2
�

ki 2

bath
Eq. 10.14

in which an input event with weight w < 0 (i.e. an inhibitory event) adds instantaneously

to i1. The constants ae, ai
1
, and ai

2
 are chosen to normalize the response of the states e, i1,

i2, and m to input events (Fig. 10.15). Therefore an input with weight we > 0 (an

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

The NEURON Book: Chapter 10 November 28, 2004

"excitatory" input) produces a peak e of we and a maximum "membrane potential" m of

we. Likewise, an input with weight wi < 0 (an "inhibitory" input) produces an inhibitory

current i2 with a minimum of wi and drives m to a minimum of wi. Details of the analytic

solution to these equations are presented in Appendix A1: Mathematical analysis of

IntFire4.

0 20 40 60 80 100
ms

0.5

0

−0.5

e

i
2

0 20 40 60 80 100
ms

0.5

0

−0.5

m

Figure 10.15. Left: Current generated by a single input event with weight 0.5

(e) or -0.5 (i2). Right: The corresponding response of m. Parameters were

τe = 3, τi
1
 = 5, τi

2
 = 10, and τm = 30 ms.

I nt Fi r e4, like I nt Fi r e2, finds the next firing time through successive

approximation. However, I nt Fi r e2 generally iterates to convergence every time an

input event is received, whereas I nt Fi r e4's algorithm implement a series of deferred

Newton iterations by exploiting the downward convexity of the membrane potential

trajectory and using NEURON's event delivery system. The result is an alternating

sequence of self-events and single Newton iterations that converges to the correct firing

time, yet remains computationally efficient in the face of heavy input event traffic.

Page 54 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

This is illustrated in Fig. 10.16. If an event arrives at time t0, values of e(t0), i1(t0), i2

(t0), and m(t0) are calculated analytically. Should m(t0) be subthreshold, the self-event is

moved to a new approximate firing time tf that is based on the slope approximation to m

tf = t0 + (1 - m(t0)) / m´(t0) if m´(t0) > 0 Eq. 10.15

or

∞ if m´(t0) ≤ 0

(Fig. 10.16 left and middle). If instead m(t0) reaches threshold, the cell "fires" so that

net _event () is called (producing an output event that is picked up by all Net Cons for

which this cell is a source) and m is reset to 0. The self-event is then moved to an

approximate firing time that is computed from Eq. 10.15 using the values assigned to m

and m´ immediately after the "spike" (Fig. 10.16 right).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 55

The NEURON Book: Chapter 10 November 28, 2004

1 1

0

Figure 10.16. Excerpts from simulations of I nt Fi r e4 cells showing time

course of m. Arrival of an event (arrow = external event, vertical dotted line =

self-event) triggers a Newton iteration. Slanted dashed lines are slope

approximations to m immediately after an event. Left: Although Eq. 10.15

yields a finite tf , this input is too weak for the cell to fire. Middle: Here m´ < 0

immediately after an input event, so both tf and the true firing time are infinite.

Right: The slope approximation following the excitatory input is not shown, but

it obviously crosses threshold before the actual firing time (asterisk). Following

the "spike" m is reset to 0 but bounces back up because of persistent excitatory

current. This dies away without eliciting a second spike, even though tf is finite

(dashed line).

Page 56 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

1

0.6

1

0.975

0.99

Figure 10.17. These magnified views of the trajectory from the right panel of

Fig. 10.16 indicate how rapidly the event-driven Newton iterations converge to

the next firing time. In this simulation, spike threshold was reached in four

iterations after the excitatory input (arrow). The first two iterations are evident

in the left panel, and additional magnification of the circled region reveals the

last two iterations (right panel).

The justification for this approach stems from several considerations. The first of

these is that tf is never later than the true firing time. This assertion, which we prove in

Appendix A1, is of central importance because the simulation would otherwise be in

error.

Another consideration is that successive approximations must converge rapidly to the

true firing time, in order to avoid the overhead of a large number of self-events. Using the

slope approximation to m is equivalent to the Newton method for solving m(t) = 1, so

convergence is slow only when the maximum value of m is close to 1. The code in

I nt Fi r e4 guards against missing "real" firings when m is asymptotic to 1, because it

actually tests for m > 1 - eps , where the default value of eps is 10-6. This

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 57

The NEURON Book: Chapter 10 November 28, 2004

convergence tolerance eps is a user-settable GLOBAL parameter, so one can easily

augment or override this protection.

Finally, the use of a series of self-events is superior to carrying out a complete

Newton method solution because it is most likely that external events will arrive in the

interval between firing times. Each external event would invalidate the previous

computation of firing time and force a recalculation. This might be acceptable for the

I nt Fi r e2 mechanism with its efficient convergence, but the complicated dynamics of

I nt Fi r e4 suggest that the cost would be too high. How many iterations should be

carried out per self-event is an experimental question, since the self-event overhead

depends partly on the number of outstanding events in the event queue.

Other comments regarding artificial spiking cells

NEURON's event delivery system has been used to create many more kinds of

artificial spiking neurons than the three classes that we have just examined. Specific

examples include pacemakers, bursting cells, models with various forms of use-

dependent synaptic plasticity, continuous or quantal stochastic variation of synaptic

weight, and an "IntFire3" with a bias current and time constants τm > τi > τe.

Page 58 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

References

De Schutter, E., Angstadt, J.D., and Calabrese, R.L. A model of graded synaptic

transmission for use in dynamic network simulations. J. Neurophysiol. 69:1225-1235,

1993.

Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. An efficient method for computing

synaptic conductances based on a kinetic model of receptor binding. Neural Computation

6:14-18, 1994a.

Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. Synthesis of models for excitable

membranes, synaptic transmission, and neuromodulation using a common kinetic

formalism. J. Comput. Neurosci. 1:195-231, 1994b.

Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. Kinetic models of synaptic transmission.

In: Methods in Neuronal Modeling, edited by C. Koch and I. Segev. Cambridge, MA:

MIT Press, 1998, p. 1-25.

Destexhe, A. and Sejnowski, T.J. G-protein activation kinetics and spillover of γ-

aminobutyric acid may account for differences between inhibitory responses in the

hippocampus and thalamus. Proc. Nat. Acad. Sci. 92:9515-9519, 1995.

Lytton, W.W. Optimizing synaptic conductance calculation for network simulations.

Neural Computation 8:501-509, 1996.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 59

The NEURON Book: Chapter 10 November 28, 2004

Chapter 10 Index

A

artificial spiking cell 35

advantages and uses 1

computational efficiency 36, 39

differences from other point processes 36, 38

implemented as point processes 36

B

biophysical neuron model 2

C

call by reference vs. call by value 27

convergence 16, 18

D

discrete event simulation

computational efficiency 36

conditions for 36

divergence 16, 17

E

event

Page 60 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

external 33

distinguishing from a self-event 33

flag 33

self-event 33

Example 10.1: graded synaptic transmission 3

Example 10.2: a gap junction 10

Example 10.3: synapse with exponential decay 18

Example 10.4: alpha function synapse 23

Example 10.5: use-dependent synaptic plasticity 24

Example 10.6: saturating synapses 28

Example 10.7: IntFire1, a basic integrate and fire model 37

Example 10.8: IntFire2, firing rate proportional to input 46

Example 10.9: IntFire4, different synaptic time constants 52

Exp2Syn

computational efficiency 23

F

FUNCTION block

arguments are call by value 27

G

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 61

The NEURON Book: Chapter 10 November 28, 2004

gap junction 1, 2, 10

conservation of charge 10

spurious oscillations 10

I

IntFire1 class 37

effect of an input event 39

membrane state variable 37

time constant 37

visualizing 40, 45

refractory period 42

IntFire2 class 46

approximate firing rate 48

constraint on time constants 48

effect of an external event 46, 50

firing time

efficient computation 50

role of self-events 50

membrane state variable 46

time constant 46

Page 62 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

synaptic current state variable 46

bias 46

time constant 46

IntFire4 class 52

constraint on time constants 53

convergence tolerance 58

effect of an external event 53

firing time

efficient computation 54

role of self-events 55

membrane state variable 53

membrane state variable

time constant 52

synaptic current state variables

excitatory 53

inhibitory 53

time constants 52

J

Jacobian

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 63

The NEURON Book: Chapter 10 November 28, 2004

approximate 11

L

LinearCircuitBuilder

for gap junctions 11

List object

managing network connections with 21

M

modified Euler method 11

N

NET_RECEIVE block 15, 20

arguments are call by reference 27

INITIAL block 27

net_event() 39, 50, 55

net_move() 34, 50

net_send() 34, 43

NetCon class 12, 14

delay 15

source variable 15

stream-specificity 15, 22

Page 64 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 10

target 15

threshold 15

weight 15

weight vector 16

initialization 27

NetCon object

as a channel for a stream of events 35

NEURON block

ARTIFICIAL_CELL 38

POINTER 6

P

POINTER variable 5

PROCEDURE block

arguments are call by value 27

S

setpointer 7

standard run system

event delivery system

event time queue 40

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 65

The NEURON Book: Chapter 10 November 28, 2004

implementing deferred computation 35, 46, 54

synapse

ephaptic 1

synaptic transmission

graded 1

conceptual model 3

implementation in NMODL 5

spike-triggered

computational efficiency in NEURON 16

conceptual model 13

event-based implementation 13

V

variable

abrupt change of 18, 21, 24, 37, 39, 43, 46, 48, 53

local vs. nonlocal 2

Page 66 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

Chapter 11

Modeling networks

NEURON was initially developed to handle models of individual cells or parts of

cells, in which complex membrane properties and extended geometry play important

roles (Hines 1989; 1993; 1995). However, as the research interests of experimental and

theoretical neuroscientists evolved, NEURON has been revised to meet their changing

needs. Since the early 1990s it has been used to model networks of biological neurons

(e.g. (Destexhe et al. 1993; Lytton et al. 1997; Sohal et al. 2000)). This work stimulated

the development of powerful strategies that increase the convenience and efficiency of

creating, managing, and exercising such models (Destexhe et al. 1994; Lytton 1996;

Hines and Carnevale 2000). Increasing research activity on networks of spiking neurons

(e.g. (Riecke et al. 1997; Maass and Bishop 1999)) prompted further enhancements to

NEURON, such as inclusion of an event delivery system and development of the Net Con

(network connection) class (see Chapter 10).

Consequently, since the latter 1990s, NEURON has been capable of efficient

simulations of networks that may include biophysical neuron

models and/or artificial spiking neurons. biophysical neuron

models are built around representations of the biophysical

mechanisms that are involved in neuronal function, so they have sections, density

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

What could be more

oxymoronic than

"real model neuron"?

The NEURON Book: Chapter 11 November 28, 2004

mechanisms, and synapses (see Chapter 5). A synapse onto a biophysical neuron model

is a point process with a NET_RECEI VE block that affects membrane current (e.g.

ExpSyn) or a second messenger (see Chapter 10). The membrane potential of a

biophysical neuron model is governed by complex, interacting nonlinear mechanisms,

and spatial nonuniformities may also be present, so numerical integration is required to

advance the solution in time.

As we discussed in Chapter 10, artificial spiking neurons are really point processes

with a NET_RECEI VE block that calls net _event () (e.g. I nt Fi r e1). The "membrane

state variable" of an artificial neuron has very simple dynamics, and space is not a factor,

so the time course of the membrane state is known analytically and it is relatively easy to

compute when the next spike will occur. Since artificial neurons do not need numerical

integration, they can be used in discrete event simulations that run several orders of

magnitude faster than simulations involving biophysical neuron models. Their simplicity

also makes it very easy to work with them. Consequently, artificial spiking neurons are

particularly useful for prototyping network models.

In this chapter we present an example of how to build network models by combining

the strengths of the GUI and hoc programming. The GUI tools for creating and

managing network models are most appropriate for exploratory simulations of small nets.

Once you have set up and tested a small network with the GUI, a click of a button creates

a hoc file that contains reusable cell class definitions and procedures. This eliminates the

laborious, error-prone task of writing "boilerplate" code. Instead, you can just combine

NEURON's automatically generated code with your own hoc programming to quickly

construct large scale nets with complex architectures. Of course, network models can be

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

constructed entirely by writing hoc code, and NEURON's WWW site contains links to a

tutorial for doing just that (Gillies and Sterratt, 2004). However, by taking advantage of

GUI shortcuts, you'll save valuable time that can be used to do more research with your

models.

Building a simple network with the GUI

Regardless of whether you use the GUI or write hoc code, creating and using a

network model involves these basic steps:

1. Define the types of cells.

2. Create each cell in the network.

3. Connect the cells.

4. Set up instrumentation for adjusting model parameters and recording and/or

displaying simulation results.

5. Set up controls for running simulations.

We will demonstrate this process by constructing a network model that can be used to

examine the contributions of synaptic, cellular, and network properties to the emergence

of synchronous and/or correlated firing patterns.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 11 November 28, 2004

Conceptual model

The conceptual model is a fully connected network, i.e. each cell projects to all other

cells, but not to itself (Fig. 11.1 left). All conduction delays and synaptic latencies are

identical.

The cells are spontaneously active integrate and fire neurons, similar to those that we

discussed in Chapter 10. All cells have the same time constant and firing threshold, but

in isolation each has its own natural interspike interval (ISI), and the ISIs of the

population are distributed uniformly over a fixed range (Fig. 11.1 right).

Figure 11.2 illustrates the dynamics of these cells. Each spike is followed by a "post-

spike" hyperpolarization of the membrane state variable m, which then decays

monoexponentially toward a suprathreshold level. When m reaches threshold (1), it

triggers another spike and the cycle repeats. A synaptic input hyperpolarizes the cell and

prolongs the ISI in which it occurred, shifting subsequent spikes to later times. Each input

produces the same hyperpolarization of m, regardless of where in the ISI it falls. Even so,

the shift of the spike train depends on the timing of the input. If it arrives shortly after a

spike, the additional hyperpolarization decays quickly and the spike train shifts by only a

small amount (Fig. 11.2 left). An input that arrives late in the ISI can cause a much larger

shift in the subsequent spike train (Fig. 11.2 right).

Our task is to create a model that will allow us to examine how synaptic weight,

membrane time constant and natural firing frequency, number of cells and conduction

latency interact to produce synchronized or correlated spiking in this network.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

0 20 40 60 80 100
ms

Cell

1

3

5

0

2

4

Figure 11.1. Left: An example of a fully connected net. Thin lines indicate reciprocal connections

between each pair of cells, and thick lines mark projections from one cell to its targets. Right:

When disconnected from each other, every cell has its own natural firing frequency.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
IntervalFire[0].M

ms
0 10 20 30 40

0

0.2

0.4

0.6

0.8

1
IntervalFire[0].M

50
ms

Figure 11.2. Time course of the membrane state variable m in the absence (thin traces) and

presence (thick traces) of an inhibitory input. Notice that m follows a monoexponential

"depolarizing" time course which carries it toward a suprathreshold level. When m reaches 1, a

spike is triggered and m is reset to 0 ("post-spike hyperpolarization"). An inhibitory synaptic

event causes the same hyperpolarizing shift of m no matter where in the ISI it arrives, but its

effect on later spike times depends on its relative position in the ISI. Left: Inhibitory events that

occur early in the ISI decay quickly, so following spikes are shifted to slightly later times. Right:

An inhibitory event that occurs late in the ISI has a longer lasting effect and causes a greater

delay of the subsequent spike train.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 11 November 28, 2004

Adding a new artificial spiking cell to NEURON

Before we start to build this network, we need to add a new kind of artificial spiking

cell to NEURON. Our model will use cells whose membrane state variable m is governed

by the equation

� dm
dt

�
m � m � Eq. 11.3

where m � > 1 and is set to a value that produces spontaneous firing with the desired ISI.

An input event with weight w adds instantaneously to m, and if m reaches or exceeds the

threshold value of 1, the cell "fires," producing an output event and returning m to 0. We

will call this the I nt er val Fi r e model, and the NMODL code for it is shown in

Listing 11.1. I nt er val Fi r e has essentially the same dynamics as I nt Fi r e1, but

because its membrane state relaxes toward a suprathreshold value, it uses a f i r et i me()

function to compute the time of the next spike (see discussions of I nt Fi r e1 and

I nt Fi r e2 in Chapter 10).

NEURON {
 ARTI FI CI AL_CELL I nt er val Fi r e
 RANGE t au, m, i nvl
}

PARAMETER {
 t au = 5 (ms) <1e- 9, 1e9>
 i nvl = 10 (ms) <1e- 9, 1e9>
}

ASSI GNED {
 m
 mi nf
 t 0(ms)
}

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

I NI TI AL {
 mi nf = 1/ (1 - exp(- i nvl / t au)) : so nat ur al spi ke i nt er val i s i nvl
 m = 0
 t 0 = t
 net _send(f i r et i me() , 1)
}

NET_RECEI VE (w) {
 m = M()
 t 0 = t
 i f (f l ag == 0) {
 m = m + w
 i f (m > 1) {
 m = 0
 net _event (t)
 }
 net _move(t +f i r et i me())
 } el se {
 net _event (t)
 m = 0
 net _send(f i r et i me() , 1)
 }
}

FUNCTI ON f i r et i me() (ms) { : m < 1 and mi nf > 1
 f i r et i me = t au* l og((mi nf - m) / (mi nf - 1))
}

FUNCTI ON M() {
 M = mi nf + (m - mi nf) * exp(- (t - t 0) / t au)
}

Listing 11.1. NMODL implementation of I nt er val Fi r e. Figures 11.1 (right)

and 11.3 illustrate its operation.

Creating a prototype net with the GUI

After we compile the code in Listing 11.1 (see Chapter 9), when we launch nr ngui

these lines should appear at the end of NEURON's startup message

Addi t i onal mechani sms f r om f i l es
 i nvl f i r e. mod

to reassure us that what was defined in i nvl f i r e. mod--i.e. the I nt er val Fi r e cell

class--is now available. We are ready to use the GUI to build and test a prototype net.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 11 November 28, 2004

1. Define the types of cells

This involves using the existing cell classes to create the types of cells that we will

employ in our network. Our network contains artificial spiking cells, so we need an

ArtCellGUI tool, which we get by clicking on Build / NetWork Cell / Artificial Cell in the

NEURON Main Menu toolbar (Fig. 11.3).

Figure 11.3. Using the NEURON Main Menu to bring up an ArtCellGUI tool.

The gray area in the lower left corner of the ArtCellGUI tool displays a list of the

types of artificial spiking cells that will be available to the NetWork Builder. It starts out

empty because we haven't done anything yet (Fig. 11.4). To remedy this, click on New

and scroll down to select IntervalFire (Fig. 11.5 left), and then release the mouse button.

The Artificial Cell types list now contains a new item called IntervalFire, and the right

panel of the ArtCellGUI tool shows the user-settable parameters for this cell type

(Fig. 11.5 right). These default values are fine for our initial exploratory simulations, so

we'll leave them as is.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

However, there is one small change that will make it easier to use the NetWork

Builder: IntervalFire is a big word, and the NetWork Builder's canvas is relatively small.

To avoid clutter, let's give our cell type a short, unique name, like IF (see Figs. 11.6 and

11.7).

Figure 11.4. The ArtCellGUI tool starts with an empty Artificial Cell types list.

Figure 11.5. Click on New / IntervalFire to add it to the Artificial Cell types list.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 11 November 28, 2004

Figure 11.6. Changing the name of one of the Artificial Cell types.

To change the name of one of the Artificial Cell types, select it (if it isn't

already selected) and then click on the Rename button.

This pops up a window with a string editor field. Click in the field . . .

 . . . change the name to IF, and then click the Accept button.

Figure 11.7. The ArtCellGUI tool after renaming the cell type. The right panel

shows that IF is based on the IntervalFire class.

Now that we have configured the ArtCellGUI tool, it would be a good idea to save

everything to a session file with NEURON Main Menu / File / save session (also see

Fig. 1.23 and Save the model cell in Chapter 1). If you like, you may hide the

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

ArtCellGUI tool by clicking on Hide just above the drag bar, but don't close it--the

NetWork Builder will need it to exist.

2. Create each cell in the network

Having specified the cell types that will be used in the network, we are ready to use

the NetWork Builder to create each cell in the network and connect them to each other. In

truth, we'll just be creating the specification of each cell in the net; no cells are really

created and there is no network until the Create button in the NetWork Builder is ON.

To get a NetWork Builder, click on NEURON Main Menu / Build / NetWork Builder

(Fig. 11.8).

Figure 11.8. Bringing up a NetWork Builder.

The NetWork Builder's drag bar reveals that this tool is an instance of the Net GUI class

(see Fig. 11.9).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 11 November 28, 2004

The right panel of a NetWork Builder is a canvas for laying out the network. The

"palette" for this canvas is a menu of the cell types that were created with the ArtCellGUI

tool. These names appear along the upper left edge of the canvas (for this example, a

limited palette indeed: IF is the only cell type). Context-dependent hints are displayed at

the top of the canvas.

The left panel of a NetWork Builder contains a set of buttons that control its operation.

When a NetWork Builder is first created, its Locate radio button is automatically ON.

This means that the NetWork Builder is ready for us to create new cells. We do this by

merely following the hint (Fig. 11.10). Notice that the cell names are generated by

concatenating the base name (name of the cell type) with a number that starts at 0 and

increases by 1 for each new cell. We'll say more about cell names in A word about cell

names under 7. Caveats and other comments below.

Figure 11.9. A new NetWork Builder.

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

Figure 11.10. Creating new cells in the NetWork Builder.

To create a new cell, click on one of the items in

the palette (in this example, the only item is IF)

and hold the mouse button down . . .

while dragging the new cell to a convenient

location on the canvas. Release the mouse

button, and you will see a new cell labeled IF0.

After you create a second IF cell, the NetWork

Builder should look like this.

If the mouse button is released while the cursor is close to one of the palette items, the

new cell will be hard to select since palette item selection takes precedence over

selection of a cell. If this happens, just select Translate in the canvas's secondary menu

(the canvas is just a modified graph!) and then left click on the canvas and drag it to the

right (if you have a three button mouse, or a mouse with a scroll wheel, don't bother with

the canvas's menu--just click on the middle button or scroll wheel and drag the canvas).

This will pull the cell out from under the palette items, which never move from their

position along the left edge of the canvas. Finally, click on one of the radio buttons

(Locate, Src -> Tar, etc.) and continue working with the NetWork Builder.

3. Connect the cells

Connecting the cells entails two closely related tasks: setting up the network's

architecture, and specifying the delays and weights of these connections.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 11 November 28, 2004

Setting up network architecture

To set up the architecture, we click on the Src -> Tar radio button, read the new hint

in the canvas, and do what it says (Fig. 11.11).

Figure 11.11. Setting up network architecture.

Clicking on the Src -> Tar button brings out a

new hint.

So we click on IF0 and hold the mouse button

down while dragging the cursor toward IF1. A

thin "rubber band" line will stretch from IF0 to

the cursor.

When the cursor is on top of IF1, the rubber

band becomes a thick black line, and the hint

changes to the message shown here.

To complete the attachment, we just release the

mouse button. The projection ("edge") from IF0

to IF1 will appear as a thin line with a slight

bend near its midpoint. The O marks the target

end of this connection.

Making the reciprocal connection requires only

that we click on IF1, drag to IF0, and release the

mouse button.

This is a good time to save everything to a session file.

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

Specifying delays and weights

The default initial value of all synaptic weights is 0, i.e. a presynaptic cell will have

no effect on its postsynaptic targets. The NetWork Builder has a special tool that we can

use to change the weights to what we want (Fig. 11.12).

Figure 11.12. Setting the synaptic weights.

Clicking on the Weights button in the NetWork Builder . . .

 . . . brings up a tool for specifying synaptic weights. The top of this

tool has a numeric field with its associated spinner and button

(labeled Weight). The value in the numeric field can be set in the

usual ways (direct entry, using the spinner, etc.), but note the

arrows, which suggest other possibilities.

The bottom of the weights tool contains two panels that list the

weights of all synaptic connections (aka "edges" in graph theory).

Clicking on a connection in the left list copies from the connection

to the numeric field, and clicking on a connection in the right list

copies from the numeric field to the connection.

Let's give both synapses a weight of -0.1 (mild inhibition). First we

change Weight to -0.1 . . .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 11 November 28, 2004

 . . . and then we click on IF0->IF1 and IF1->IF0 in the right panel.

We're finished when the weights tool looks like this.

Now we can close this window. If we need it again, clicking on the

NetWork Builder's Weights button will bring it back.

All delays are 1 ms by default, which is fine for our purposes. If we wanted to change

this to something else, we would click on the NetWork Builder's Delays button (see

Fig. 11.9) to bring up a tool for setting delays. The delay tool works just like the weight

tool.

At this point, the ArtCellGUI tool plus the NetWork Builder together constitute a

complete specification of our network model. We should definitely save another session

file before doing anything else!

Now we have a decision to make. We could use the NetWork Builder to create a hoc

file that, when executed, would create an instance of our network model. A better choice

is to use the GUI to test our model. If there are any problems with what we have done so

far, this is a good time to find out and make the necessary corrections.

However, before we can run tests, there must first be something to test. We have a

network specification, but no network. As we pointed out earlier in 2. Create each cell

in the network, the network doesn't really exist yet. Clicking on the Create button in the

NetWork Builder fixes that (Fig. 11.13).

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

4. Set up instrumentation

We want to see what our network does, and to explore how its behavior is affected by

model parameters. Clicking on the SpikePlot button in the NetWork Builder brings up a

tool that will show the input and output spike trains (Fig. 11.14).

We already know how to adjust model parameters. With the NetWork Builder we can

change synaptic weights and delays, and the IF cells' properties can be changed with the

ArtCellGUI tool. Suddenly, we realize that both IF cells will have the same time constant

and firing rate. No problem--our goal is to combine the strengths of the GUI and hoc . We

will take care of this later, by combining the hoc code that the NetWork Builder generates

with our own hoc code. Using a few lines of hoc, we can easily assign unique firing

rates across the entire population of IF cells. And if we insisted on sticking with GUI

tools to the bitter end, we could just bring up a PointProcessGroupManager (NEURON

Main Menu / Tools / Point Processes / Managers / Point Group), which would allow us

to control the attributes of each cell in our network individually.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 11 November 28, 2004

Figure 11.13. Left: Toggling the Create button ON causes the network

specification to be executed. Right: Once Create is ON, the representation of

the network is available for NEURON's computational engine to use in a

simulation.

Figure 11.14. The NetWork Builder's SpikePlot button (left) brings up a tool for

displaying and analyzing spike trains (right).

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

5. Set up controls for running simulations

At a minimum, we need a RunControl panel (NEURON Main Menu / Tools /

RunControl, as shown in 5. Set up controls for running the simulation in Chapter 1).

Also, since our network contains only artificial spiking neurons, we can use adaptive

integration to achieve extremely fast, discrete event simulations. We'll need a

VariableTimeStep panel (NEURON Main Menu / Tools / VariableStepControl

(Fig. 11.15)), which makes it easy to choose between fixed time step or adaptive

integration (Fig. 11.16).

Figure 11.15. Bringing up a VariableTimeStep panel.

Figure 11.16. Toggling adaptive integration ON and OFF.

The VariableTimeStep panel's Use variable dt checkbox is empty,

which means that adaptive integration is off.

To turn adaptive integration ON, we click on the Use variable dt

checkbox.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 11 November 28, 2004

The check mark in the Use variable dt checkbox tells us that

adaptive integration is ON. Clicking on this checkbox again will

turn it back OFF so that fixed time steps are used.

Adaptive integration can use either global or local time steps, each of which has its

own particular strengths and weaknesses (see Adaptive integrators in Chapter 7). The

VariableTimeStep panel's default setting is to use global time steps, which is best for

models of single cells or perfectly synchronous networks. Our toy network has two

identical cells connected by identical synapses, so we would expect them to fire

synchronously. However, when we build our net with hoc code, the cells will all have

different natural firing frequencies, and who can tell in advance that they will achieve

perfect synchrony? Besides, this is a tutorial, so let's use local time steps (Fig. 11.17).

Figure 11.17. Toggling between global and local time steps.

To specify whether to use global or local time steps,

we first click on the VariableTimeStep panel's Details

button.

We are concerned with the Local step checkbox,

which is empty. To activate the use of local variable

time steps . . .

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

 . . . we just click on the Local step checkbox . . .

 . . . and now each cell in our network will advance

with its own time step. If we want to restore global

time steps, we can just click on the Cvode button.

Now we can close this panel; should we need it again,

we only have to click on the VariableTimeStep panel's

Details button.

After rearrangement, the various windows we have created should look something

like Fig. 11.18. The tools we used to specify the network are on the left, simulation

controls are in the middle, and the display of simulation results is on the right. Quick,

save it to a session file!

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 11 November 28, 2004

Figure 11.18. The completed model with controls for running simulations and

displaying results.

6. Run a simulation

This is almost too easy. Clicking on Init & Run in the RunControl panel, we see--

nothing! Well, almost nothing. The t field in the RunControl panel shows us that time

advanced from 0 to 5 ms, but there were no spikes. A glance at the ArtCellGUI tool tells

us why: invl is 5 ms, which means that our cells won't fire their first spikes for another

5 ms. Let's change Tstop to 200 ms so we'll get a lot of spikes, and try again. This time

we're successful (Fig. 11.19).

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

Figure 11.19. The SpikePlot shows the spike trains generated by the cells in our

network model. Note that rasters correspond to cell names from top to bottom,

and that the raster for cell i is plotted along the line y = i + 1.

7. Caveats and other comments

Changing the properties of an existing network

As we have seen, the ArtCellGUI tool is used to specify what artificial spiking cell

types are available to a NetWork Builder. The same ArtCellGUI tool can be used to adjust

the parameters of those cells, and such changes take effect immediately, even if the

network already exists (i.e. even if the NetWork Builder's Create button is ON).

The NetReadyCellGUI tool (NEURON Main Menu / Build / NetWork Cell / From Cell

Builder) is used to configure biophysical neuron model types for use with a NetWork

Builder. In fact, we would use a separate NetReadyCellGUI instance for each different

type of biophysical neuron model we wanted to use in the net. The NetReadyCellGUI tool

has its own CellBuilder for specifying topology, geometry, and biophysical properties,

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 11 November 28, 2004

plus a SynapseTypes tool for adding synaptic mechanisms to the cell (see the tutorial at

ht t p: / / www. neur on. yal e. edu/ neur on/ docs/ net bui l d/ mai n. ht ml). However,

changes made with a NetReadyCellGUI tool do not affect an existing network; instead, it

is necessary to save a session file, exit NEURON, restart and reload the session file.

What about changes to the network itself? Any changes whatsoever can be made in

the NetWork Builder, as long as its Create button is OFF. Once it is ON, some changes

are possible (e.g. adding new cells and synaptic connections to an existing network), but

additional actions may be required (a pre-existing SpikePlot will not show spike trains

from new cells), and there is a risk of introducing a mismatch between one's conceptual

model and what is actually in the computer. The best policy is to toggle Create OFF (see

Fig. 11.20), make whatever changes are needed, save everything to a session file, exit

NEURON, and then restart and load the new session file.

Figure 11.20. Trying to turn Create OFF brings up this window, which offers

the opportunity to change one's mind. Select Turn off if it is necessary to make

substantial changes to an existing network in the NetWork Builder.

A word about cell names

As we mentioned above in 2. Create each cell in the network, the cell names that

appear in the NetWork Builder are generated automatically by concatenating the name of

the cell type with a sequence of numbers that starts at 0 and increases by 1 for each

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

additional cell. But that's only part of the story. These are really only short "nicknames,"

a stratagem for preventing the NetWork Builder and its associated tools from being

cluttered with long character strings.

This is fine as long as the NetWork Builder does everything we want. But suppose we

need to use one of NEURON's other GUI tools, or we have to write some hoc code that

refers to one of our model's cells? For example, we might have a network that includes a

biophysical neuron model, and we want to see the time course of somatic membrane

potential. In that case, it is absolutely necessary to know the actual cell names.

That's where the NetWork Builder's Cell Map comes in. Clicking on Show Cell Map

brings up a small window that often needs to be widened by clicking and dragging on its

left or right margin (Fig. 11.21). Now we realize that, when we used the ArtCellGUI tool

to create an IF cell "type," we were actually specifying a new cell class whose name is a

concatenation of our "type" (IF), an underscore character, and the name of the root class

(the name of the class that we based IF on, which was IntervalFire).

Figure 11.21. The Cell Map for our toy network. See text for details.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 11 November 28, 2004

Combining the GUI and programming

Creating a hoc file from the NetWork Builder

Having tested our prototype model, we are now ready to write a hoc file that can be

mined for reusable code. Clicking on the Hoc File button in the NetWork Builder brings

up a tool that looks much like what we used to specify file name and location when

saving a session file. Once we're satisfied with our choices, clicking on this tool's "Open"

button writes the hoc file (yes, the button should say Close). This file, which we will call

pr ot ot ype. hoc , is presented in Listing 11.2, and executing it would recreate the toy

network that we just built with the NetWork Builder.

/ / Net GUI def aul t sect i on. Ar t i f i ci al cel l s, i f any, ar e l ocat ed her e.
 cr eat e acel l _home_
 access acel l _home_

/ / Net wor k cel l t empl at es
/ / Ar t i f i ci al cel l s
/ / I F_I nt er val Fi r e

begi nt empl at e I F_I nt er val Fi r e
publ i c pp, connect 2t ar get , x, y, z, posi t i on, i s_ar t
ext er nal acel l _home_
obj r ef pp
pr oc i ni t () {
 acel l _home_ pp = new I nt er val Fi r e(. 5)
}
f unc i s_ar t () { r et ur n 1 }
pr oc connect 2t ar get () { $o2 = new Net Con(pp, $o1) }
pr oc posi t i on() { x=$1 y=$2 z=$3}
endt empl at e I F_I nt er val Fi r e

/ / Net wor k speci f i cat i on i nt er f ace

obj r ef cel l s, ncl i st , net con
{ cel l s = new Li st () ncl i st = new Li st () }

f unc cel l _append() { cel l s. append($o1) $o1. posi t i on($2, $3, $4)
r et ur n cel l s. count - 1

}

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

f unc nc_append() { / / sr ci ndex, t ar cel i ndex, syni ndex
 i f ($3 >= 0) {
 cel l s. obj ect ($1) . connect 2t ar get (cel l s. obj ect ($2) . synl i st . obj ect ($3) , \
 net con)
 net con. wei ght = $4 net con. del ay = $5
 } el se{
 cel l s. obj ect ($1) . connect 2t ar get (cel l s. obj ect ($2) . pp, net con)
 net con. wei ght = $4 net con. del ay = $5
 }
 ncl i st . append(net con)
 r et ur n ncl i st . count - 1
}

/ / Net wor k i nst ant i at i on

 / * I F0 * / cel l _append(new I F_I nt er val Fi r e() , - 149, 73, 0)
 / * I F1 * / cel l _append(new I F_I nt er val Fi r e() , - 67, 73, 0)
 / * I F1 - > I F0 * / nc_append(1, 0, - 1, - 0. 1, 1)
 / * I F0 - > I F1 * / nc_append(0, 1, - 1, - 0. 1, 1)

Listing 11.2. Clicking on the Hoc File button in the NetWork Builder produces a

file which we have called pr ot ot ype. hoc .

A quick glance over the entire listing reveals that pr ot ot ype. hoc is organized into

several parts, which are introduced by one or more lines of descriptive comments. Let us

consider each of these in turn, to see how it works and think about what we might reuse

to make a network of any size we like.

NetGUI default section

The first part of the file creates acel l _home_ and make this the default section.

What is a section doing in a model that contains artificial spiking cells? Remember that

artificial spiking cells are basically point processes (see Artificial spiking cells in

Chapter 10), and just like other point processes, they must be attached to a section.

Suddenly the meaning of the comment Ar t i f i c i al cel l s, i f any, ar e

l ocat ed her e becomes clear: acel l _home_ is merely a "host" for artificial spiking

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 11 November 28, 2004

cells. It has no biophysical mechanisms of its own, so it introduces negligible

computational overhead.

Network cell templates

The NetWork Builder and its associated tools make extensive use of object-oriented

programming. Each cell in the network is an instance of a cell class, and this is where the

templates that declare these classes are located (templates and other aspects of object-

oriented programming in NEURON are discussed in Chapter 13).

The comments that precede the templates contain a list of the cell class names. Our

toy network uses only one cell class, so pr ot ot ype. hoc contains only one template,

which defines the I F_I nt er val Fi r e class. When biophysical neuron models are

present, they are declared first. Thus, if we had a NetWork Builder whose palette

contained a biophysical neuron model type called pyr, and an artificial spiking cell type S

that was derived from the Net St i m class, the corresponding cell classes would be called

pyr _Cel l and S_Net St i m, and the header in the exported hoc file would read

/ / Net wor k cel l t empl at es
/ / pyr _Cel l
/ / Ar t i f i c i al cel l s
/ / S_Net St i m

Functions and procedures with the same names as those contained in the

I F_I nt er val Fi r e template will be found in every cell class used by a NetWork Builder

(although some of their internal details may differ). The first of these is i ni t () , which is

executed automatically whenever a new instance of the I F_I nt er val Fi r e class is

created. This in turn creates a new instance of the I nt er val Fi r e class that will be

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

associated with the acel l _home_ section. As an aside, we should mention that this is an

example of how the functionality of a basic object class can be enhanced by wrapping it

inside a template in order to define a new class with additional features, i.e. an example

of emulating inheritance in hoc (see Polymorphism and inheritance in Chapter 13).

The remaining f uncs and pr ocs are public so they can be called from outside the

template. If we ever need to determine which elements in a network are artificial spiking

cells and which are biophysical neuron models, i s_ar t () is clearly the way to do it.

The next is connect 2t ar get () , which looks useful for setting up network connections,

but it turns out that the hoc code we write ourselves won't call this directly (see Network

specification interface below). The last is posi t i on() which can be used to specify

unique xyz coordinates for each instance of this cell. The coordinates themselves are

public (accessible from outside the template--see Chapter 13 for more about accessing

variables, f uncs and pr ocs declared in a template). Position may seem an arcane

attribute for an artificial spiking neuron, but it is helpful for algorithmically creating

networks in which connectivity or synaptic weight are functions of location or distance

between cells.

Network specification interface

These are the variables and functions that we will actually call from our own hoc

code. These are intended to offer us a uniform, compact and convenient syntax for setting

up our own network. That is, they serve as a "programming interface" between the code

we write and the lower level code that accomplishes our ultimate aims.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 11 November 28, 2004

The purpose of the first two lines in this part of pr ot ot ype. hoc is evident if we

keep in mind that the NetWork Builder implements a network model with objects, some

of which represent cells while others represent the connections between them. The Li st

class is the programmer's workhorse for managing collections of objects, so it is

reasonable that the cells and connections of our network model will be packaged into two

Li st s called cel l s and ncl i s t , respectively.

The functions that add new elements to these Li st s are cel l _append() and

nc_append() , respectively. The first argument to cel l _append() is an obj r ef that

points to a new cell that is to be added to the list, and the remaining arguments are the

xyz coordinates that are to be assigned to that cell. The nc_append() function uses an

i f . . . el se to deal properly with either biophysical neuron models or artificial

spiking cells. In either case, its first two arguments are integers that indicate which

elements in cel l s are the obj r ef s that correspond to the pre- and postsynaptic cells,

and the last two arguments are the synaptic weight and delay. If the postsynaptic cell is a

biophysical neuron model, one or more synaptic mechanisms will be attached to it (see

the tutorial at ht t p: / / www. neur on. yal e. edu/ neur on/ docs/ net bui l d/ mai n. ht ml).

In this case, the third argument to nc_append() is a nonnegative integer that specifies

which synaptic mechanism is to be the target of the new Net Con. If instead the

postsynaptic cell is an artificial spiking cell, the argument is just -1.

Network instantiation

So far everything has been quite generic, in the sense that we can use it to create cells

and assemble them into whatever network architecture we desire. In other words, the

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

code up to this point is exactly the reusable code that we needed. The statements in the

"network instantiation" group are just a concrete demonstation of how to use it to spawn

a particular number of cells and link them with a specific network of connections. Let's

make a copy of pr ot ot ype. hoc , call it net def s. hoc, and then insert / / at the

beginning of each of last four lines of net def s. hoc so they persist as a reminder of

how to call cel l _append() and nc_append() but won't be executed. We are now

ready to use net def s. hoc to help us build our own networks.

Exploiting the reusable code

Where should we begin? A good way to start is by imagining the overall organization

of the entire program at the "big picture" level. We'll need the GUI library, the class

definitions and other code in net def s. hoc, code to specify the network model itself,

and code that sets up controls for adjusting model parameters, running simulations, and

displaying simulation results. Following our recommended practices of modular

programming and separating model specification from user interface (see Elementary

project management in Chapter 6), we turn this informal outline into an i ni t . hoc

file that pulls all these pieces together (Listing 11.3).

l oad_f i l e(" nr ngui . hoc")
l oad_f i l e(" net def s. hoc") / / code f r om Net Wor k Bui l der - gener at ed hoc f i l e
l oad_f i l e(" makenet . hoc") / / speci f i es net wor k
l oad_f i l e(" r i g. hoc") / / f or adj ust i ng model par ams and r unni ng si mul at i ons

Listing 11.3. The i ni t . hoc for our own network program.

For now, we can comment out the last two lines with / / so we can test

net def s. hoc by using NEURON to execute i ni t . hoc. and then typing a few

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 11 November 28, 2004

commands at the oc> prompt (user entries are Courier bold while the interpreter's

output is plain Cour i er).

Addi t i onal mechani sms f r om f i l es
 i nvl f i r e. mod

1
1

oc>objref foo
oc>foo = new IF_IntervalFire()
oc>foo

I F_I nt er val Fi r e[0]
oc>

So far so good. We are ready to apply the strategy of iterative program development (see

Iterative program development in Chapter 6) to fill in the details.

The first detail is how to create a network of a specific size. If we call the number of

cells ncel l , then this loop

 f or i =0, ncel l - 1 {
 cel l _append(new I F_I nt er val Fi r e() , i , 0, 0)
 }

will make them for us, and this nested loop

 f or i =0, ncel l - 1 f or j =0, ncel l - 1 i f (i ! = j) {
 nc_append(i , j , - 1, 0, 1)
 }

will attach them to each other. An initial stab at embedding both of these in a procedure

which takes a single argument that specifies the size of the net is

pr oc cr eat enet () { l ocal i , j
 ncel l = $1
 f or i =0, $1- 1 {
 cel l _append(new I F_I nt er val Fi r e() , i , 0, 0)
 }
 f or i =0, $1- 1 f or j =0, $1- 1 i f (i ! = j) {
 nc_append(i , j , - 1, 0, 1)
 }
}

and that's what we put in the first version of makenet . hoc .

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

We can test this by uncommenting the l oad_f i l e(" makenet . hoc") line in

i ni t . hoc , using NEURON to execute i ni t . hoc, and then typing a few commands at

the oc> prompt.

oc>createnet(2)
oc>ncell

2
oc>print cells, nclist

Li st [8] Li st [9]
oc>print cells.count, nclist.count

2 2
oc>for i=0,1 print cells.object(i), nclist.object(i)
I F_I nt er val Fi r e[0] Net Con[0]
I F_I nt er val Fi r e[1] Net Con[1]
oc>

So it works. But almost immediately a wish list of improvements comes to mind. In

order to try networks of different sizes, we'll be calling cr eat enet () more than once

during a single session. As it stands, repeated calls to cr eat enet () just tack more and

more new cells and connections onto the ends of the cel l s and ncl i s t lists. Also,

cr eat enet () should be protected from nonsense arguments (a network should have at

least two cells).

We can add these fixes by changing ncel l = $1 to

i f ($1<2) { $1 = 2 }
ncel l = $1
ncl i s t . r emove_al l ()
cel l s . r emove_al l ()

The first line ensures our net will have two or more cells. The last two lines use the Li st

class's r emove_al l () to purge cel l s and ncl i s t . Of course we check this

oc>createnet(1)
oc>ncell

2
oc>createnet(2)
oc>ncell

2

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 11 November 28, 2004

oc>createnet(3)
oc>ncell

3
oc>

which is exactly what should happen.

What else should go into makenet . hoc? How about procedures that make it easy to

change the properties of the cells and connections? As a case in point, this

pr oc del ay() { l ocal i
 del = $1
 f or i =0, ncl i s t . count - 1 {
 nc l i s t . obj ect (i) . del ay = $1
 }
}

lets us set all synaptic delays to the same value by calling del ay() with an appropriate

argument. Similar pr ocs can take care of weights and cellular time constants. Setting

ISIs seems more complicated at first, but after a few false starts we come up with

pr oc i nt er val () { l ocal i , x, dx
 l ow = $1
 hi gh = $2
 x = l ow
 dx = (hi gh - l ow) / (cel l s . count - 1)
 f or i =0, cel l s . count - 1 {
 cel l s . obj ect (i) . pp. i nv l = x
 x += dx
 }
}

This assigns the l ow ISI to the first cell in cel l s , the hi gh ISI to the last cell in cel l s ,

and evenly spaced intermediate values to the other cells.

Does that mean the first cell is the fastest spiker, and the last is the slowest? Only if

we are careful about the argument sequence when we call i nt er val () . For that matter,

what prevents us from calling i nt er val () with one or both arguments < 0? Come to

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

think of it, some of our other pr ocs might also benefit by being protected from nonsense

arguments. We might protect against negative delays by changing

del = $1

in pr oc del ay() to

i f ($1<0) $1=0
del = $1

and we could insert similar argument-trapping code into other pr ocs as necessary.

However, it makes more sense to try to identify a common task that can be split out

into a separate function that can be called by any pr oc that needs it. It may help to

tabulate the vulnerable variables and the constraints we want to enforce.

Variable Constraint
ncel l � 2
t au > 0
l ow ISI > 0
hi gh ISI � l ow ISI
del � 0

Most of these constraints are "greater than or equal to," the two holdouts being t au and

l ow ISI. After a moment we realize that there are practical lower limits to these

variables--say 0.1 ms for t au and 1 ms for l ow ISI--so "greater than or equal to"

constraints can be applied to all.

The final version of makenet . hoc (Listing 11.4) contains all of these refinements.

The statements at the very end create a network by calling our revised pr ocs.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 11 November 28, 2004

/ *
r et ur ns val ue >= $2
f or bul l et pr oof i ng pr ocs agai nst nonsense ar gument s
* /

f unc ge() {
 i f ($1<$2) {
 $1=$2
 }
 r et ur n $1
}

/ / / / / / / / / / c r eat e a net wor k / / / / / / / / / /

/ / ar gument i s desi r ed number of cel l s

pr oc cr eat enet () { l ocal i , j
 $1 = ge($1, 2) / / f or ce net t o have at l east t wo cel l s
 ncel l = $1
 / / so we can make a new net wi t hout hav i ng t o exi t and r est ar t
 nc l i s t . r emove_al l ()
 cel l s . r emove_al l ()
 f or i =0, $1- 1 {
 cel l _append(new I F_I nt er val Fi r e() , i , 0, 0)
 }
 f or i =0, $1- 1 f or j =0, $1- 1 i f (i ! = j) {
 / / l et wei ght be 0; we' l l gi ve i t a nonzer o val ue el sewher e
 nc_append(i , j , - 1, 0, 1)
 }
 obj r ef net con / / l eave no l oose ends (see nc_append())
}

/ / / / / / / / / / speci f y par amet er s / / / / / / / / / /

/ / cal l t hi s set t au() t o avoi d conf l i ct wi t h scal ar t au

pr oc set t au() { l ocal i
 $1 = ge($1, 0. 1) / / mi n t au i s 0. 1 ms
 t au = $1
 f or i =0, cel l s . count - 1 {
 cel l s . obj ect (i) . pp. t au = $1
 }
}

/ / ar gs ar e l ow and hi gh

pr oc i nt er val () { l ocal i , x, dx
 $1 = ge($1, 1) / / mi n l ow I SI i s 1 ms
 $2 = ge($2, $1)
 l ow = $1
 hi gh = $2
 x = l ow
 dx = (hi gh - l ow) / (cel l s . count - 1)
 f or i =0, cel l s . count - 1 {
 cel l s . obj ect (i) . pp. i nv l = x
 x += dx
 }
}

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

pr oc wei ght () { l ocal i
 w = $1
 f or i =0, ncl i s t . count - 1 {
 nc l i s t . obj ect (i) . wei ght = $1
 }
}

pr oc del ay() { l ocal i
 $1 = ge($1, 0) / / mi n del i s 0 ms
 del = $1
 f or i =0, ncl i s t . count - 1 {
 nc l i s t . obj ect (i) . del ay = $1
 }
}

/ / / / / / / / / / act ual l y make net and set par amet er s / / / / / / / / / /

cr eat enet (2)
set t au(10)
i nt er val (10, 11)
wei ght (0)
del ay(1)

Listing 11.4. Final implementation of makenet . hoc .

Time for more tests!

oc>del
0
oc>{delay(-1) print del}
0
oc>{delay(3) print del}
3
oc>createnet(4)
oc>ncell

4
oc>del
3
oc>

Of course we can and should test the other pr ocs, especially i nt er val () . As certain

mathematics texts say, "this is left as an exercise to the reader."

Our attention now shifts to creating the user interface for adjusting model parameters,

controlling simulations, and displaying results. To evoke the metaphor of an experimental

rig, this is placed in a file called r i g. hoc .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 37

The NEURON Book: Chapter 11 November 28, 2004

An initial implementation of r i g. hoc might look like this

l oad_f i l e(" r unct l . ses") / / RunCont r ol and Var i abl eTi meSt ep

xpanel (" Model par amet er s")
xval ue(" Wei ght " , " w" , 1, " wei ght (w) " , 0, 0)
xval ue(" Del ay (ms) " , " del " , 1, " del ay(del) " , 0, 0)
xval ue(" Cel l t i me const ant (ms) " , " t au" , 1, " set t au(t au) " , 0, 0)
xval ue(" Shor t est nat ur al I SI " , " l ow" , 1, " i nt er val (l ow, hi gh) " , 0, 0)
xval ue(" Longest nat ur al I SI " , " hi gh" , 1, " i nt er val (l ow, hi gh) " , 0, 0)
xpanel (500, 400)

In the spirit of taking advantage of every shortcut the GUI offers, the first statement loads

a session file that recreates a RunControl and a VariableTimeStep panel configured for

the desired simulation duration (Tstop = 500 ms) and integration method (adaptive

integration with local time steps). The other statements set up a panel with numeric fields

and controls for displaying and adjusting model parameters. This implementation of

r i g. hoc lacks two important features: a graph that displays spike trains, and the ability

to change the number of cells in the network.

What about plots of spike trains? There is a way to create a graph that provides all the

functionality of the NetWork Builder's own SpikePlot, but analyzing the necessary code

would lead us into details that really belong in a chapter on advanced GUI programming.

For didactic purposes it is better if we make our own raster plot, if only because this will

draw our attention to topics that are likely to be more widely useful.

To prepare to record and plot spike trains, we can insert the following code right after

the l oad_f i l e() statement:

Page 38 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

obj r ef net con, vec, spi kes, ni l , gr ast er

pr oc pr epr ast er pl ot () {
 spi kes = new Li st ()
 f or i =0, cel l s. count () - 1 {
 vec = new Vect or ()
 net con = new Net Con(cel l s. obj ect (i) . pp, ni l)
 net con. r ecor d(vec)
 spi kes. append(vec)
 }
 obj r ef net con, vec

 gr ast er = new Gr aph(0)
 gr ast er . vi ew(0, 0, t st op, cel l s. count () , 300, 105, 300. 48, 200. 32)
}

pr epr ast er pl ot ()

For each cell in the net, this creates a new Vect or , uses the Net Con class's r ecor d()

method to record the time of that cell's spikes into the Vect or , and appends the Vect or

to a Li st . After the end of the f or loop that iterates over the cells, the net con and vec

obj r ef s point to the last Net Con and Vect or that were created, exposing them to

possible interference if we ever do anything that reuses these obj r ef names. The

obj r ef net con, vec statement breaks the link between them and the objects, thereby

preventing such undesirable effects.

The last two statements in pr epr ast er pl ot () create a Gr aph and place it at a

desired location on the screen. How can we tell what the numeric values should be for the

arguments in the gr ast er . vi ew() statement? By creating a graph (NEURON Main

Menu / Graph / Voltage axis will do), dragging it to the desired location, saving it to a

session file all by itself, and then stealing the argument list from that session file's

save_wi ndow_. v i ew() statement--being careful to change the third and fourth

arguments so that the x and y axes span the correct range of values. No cut and try

guesswork for us! While we're at it, we might as well use the same strategy to fix the

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 39

The NEURON Book: Chapter 11 November 28, 2004

location for our model parameter panel, but now we only need the fifth and sixth

arguments to vi ew() , which are the screen coordinates where the Gr aph is positioned.

For my monitor, this means the second xpanel statement becomes xpanel (300, 370) .

Running a new test, we find that our user interface looks like Fig. 11.22. Everything

is in the right place, and time advances when we click on Init & Run, but no rasters are

plotted.

Figure 11.22. The user interface after the first revision to r i g. hoc , in which

we added pr epr ast er pl ot () .

For each cell we need to draw a sequence of short vertical lines on gr ast er whose x

coordinates are the times at which that cell fired. To help us tell one cell's spikes from

another's, the vertical placement of their rasters should correspond to their ordinal

position in cel l s . We can do this by inserting the following code into r i g. hoc , right

Page 40 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

after the call to pr epr ast er pl ot () . The first thing that pr oc showr ast er () does is

to clear any previous rasters off the Gr aph. Then, for each cell in turn, it uses three

Vect or class methods in succession: c() to create a Vect or that has as many elements

as the number of spikes that the cell fired, f i l l () to fill those elements with an integer

that is one more than the ordinal position of that cell in cel l s , and mar k() to mark the

firing times.

obj r ef spi key

pr oc showr ast er () {
 gr ast er . er ase_al l ()
 f or i = 0, cel l s . count () - 1 {
 spi key = spi kes. obj ect (i) . c
 spi key. f i l l (i +1)
 spi key. mar k(gr ast er , spi kes. obj ect (i) , " | " , 6)
 }
 obj r ef spi key
}

Testing once again, we run a simulation and then type showr ast er () at the oc>

prompt, and sure enough, there are the spikes. We change the longest natural ISI to

20 ms, run another simulation, and type showr ast er () once more, and it works again.

All this typing is tedious. Why not customize the r un() procedure so that it

automatically calls showr ast er () after each simulation? Adding this

pr oc r un() {
 st di ni t ()
 cont i nuer un(t s t op)
 showr ast er ()
}

to the end of r i g. hoc does the job (see An outline of the standard run system in

Chapter 7: How to control simulations).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 41

The NEURON Book: Chapter 11 November 28, 2004

Another test and we are overcome with satisfaction--it works. Then we change Tstop

to 200 ms, run a simulation, and are disappointed that the raster plot's x axis does not

rescale to match the new Tstop. One simple fix for this is to write a custom i ni t ()

procedure that uses the Graph class's si ze() method to adjust the size of the raster plot

during initialization (see Default initialization in the standard run system: stdinit()

and init() in Chapter 8). So we insert this

pr oc i ni t () {
 f i ni t i al i ze(v_i ni t)
 gr ast er . er ase_al l ()
 gr ast er . s i ze(0, t s t op, 0, cel l s. count ())
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

right after our custom r un() . Notice that this also rescales the y axis, which will be

helpful when we finally add the ability to change the number of cells in the network.

Success upon success! It works!

We can finally get around to changing the number of cells. Let's think this out

carefully before doing anything. We'll need a new control in the xpanel , to show how

many cells there are and let us specify a new number. That's easy--just put this line

xval ue(" Number of cel l s" , " ncel l " , 1, " r ecr eat e(ncel l) " , 0, 0)

right after xpanel (" Model par amet er s") so that when we change the value of

ncel l , we automatically call a new procedure called r ecr eat e() that will throw away

the old cells and their connections, and create a new set of each.

Page 42 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

But what goes in r ecr eat e() ? We'll want the new cells and connections to have the

same properties as the old ones. And we'll have to replace the old raster plot with a new

one, complete with all the Net Cons and Vect or s that it uses to record spikes. So

r ecr eat e() should be

pr oc r ecr eat e() {
 cr eat enet ($1)
 set t au(t au)
 i nt er val (l ow, hi gh)
 wei ght (w)
 del ay(del)
 pr epr ast er pl ot ()
}

A good place for this is right before the xpanel 's code.

So now we have completed r i g. hoc (see Listing 11.5). The parameter panel has all

the right buttons (Fig. 11.23) so it is easy to explore the effects of parameter changes

(Fig. 11.24). How to develop an understanding of what accounts for these effects is

beyond the scope of this chapter, but we can offer one hint: run some simulations of a net

containing only 2 or 3 cells, using fixed time steps, and plot their membrane state

variables (well, their M functions).

/ / / / / / / / / / user i nt er f ace / / / / / / / / / /

l oad_f i l e(" r unct l . ses") / / RunCont r ol and Var i abl eTi meSt ep

/ / pr epar e t o r ecor d and di spl ay spi ke t r ai ns
obj r ef net con, vec, spi kes, ni l , gr ast er

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 43

The NEURON Book: Chapter 11 November 28, 2004

pr oc pr epr ast er pl ot () {
 spi kes = new Li st ()
 f or i =0, cel l s. count () - 1 {
 vec = new Vect or ()
 net con = new Net Con(cel l s. obj ect (i) . pp, ni l)
 net con. r ecor d(vec)
 spi kes. append(vec)
 }
 obj r ef net con, vec

 gr ast er = new Gr aph(0)
 gr ast er . vi ew(0, 0, t st op, cel l s. count () , 300, 105, 300. 48, 200. 32)
}

pr epr ast er pl ot ()

obj r ef spi key

pr oc showr ast er () {
 gr ast er . er ase_al l ()
 f or i = 0, cel l s. count () - 1 {
 spi key = spi kes. obj ect (i) . c
 spi key. f i l l (i +1)
 spi key. mar k(gr ast er , spi kes. obj ect (i) , " | " , 6)
 }
 obj r ef spi key
}

/ / dest r oys exi st i ng net and makes a new one
/ / al so spawns a new spi ke t r ai n r ast er pl ot
/ / cal l ed onl y i f we need a di f f er ent number of cel l s

pr oc r ecr eat e() {
 cr eat enet ($1)
 set t au(t au)
 i nt er val (l ow, hi gh)
 wei ght (w)
 del ay(del)
 pr epr ast er pl ot ()
}

xpanel (" Model par amet er s")
xval ue(" Number of cel l s" , " ncel l " , 1, " r ecr eat e(ncel l) " , 0, 0)
xval ue(" Wei ght " , " w" , 1, " wei ght (w) " , 0, 0)
xval ue(" Del ay (ms) " , " del " , 1, " del ay(del) " , 0, 0)
xval ue(" Cel l t i me const ant (ms) " , " t au" , 1, " set t au(t au) " , 0, 0)
xval ue(" Shor t est nat ur al I SI " , " l ow" , 1, " i nt er val (l ow, hi gh) " , 0, 0)
xval ue(" Longest nat ur al I SI " , " hi gh" , 1, " i nt er val (l ow, hi gh) " , 0, 0)
xpanel (300, 370)

/ / / / / / / / / / cust om r un() and i ni t () / / / / / / / / / /

pr oc r un() {
 st di ni t ()
 cont i nuer un(t st op)
 showr ast er () / / show r esul t s at t he end of each si mul at i on
}

Page 44 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

pr oc i ni t () {
 f i ni t i al i ze(v_i ni t)
 gr ast er . er ase_al l ()
 gr ast er . si ze(0, t st op, 0, cel l s. count ()) / / r escal e x and y axes
 i f (cvode. act i ve()) {
 cvode. r e_i ni t ()
 } el se {
 f cur r ent ()
 }
 f r ecor d_i ni t ()
}

Listing 11.5. Complete implementation of r i g. hoc .

Figure 11.23. The parameter panel after addition of a control for changing the

number of cells.

Figure 11.24. Simulations of a fully connected network with 10 cells whose natural ISIs are spaced

uniformly over the range 10-15 ms. The rasters are arranged with ISIs in descending order from top to

bottom.

A: With all synaptic weights 0, cell firing is

asynchronous and uncorrelated.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 45

The NEURON Book: Chapter 11 November 28, 2004

B: Mild inhibitory coupling (weight -0.2) with a delay

of 1 ms silences the slowest cells and reduces the

firing rates of the others. There is a suggestion of

spike clustering, but no obvious synchrony or strong

correlation.

C: Increasing synaptic delay to 8 ms allows the

slowest cells to escape from inhibition and results in

strong correlation.

D: Close examination reveals that spikes are not

synchronous, but lag progressively across the

population with increasing natural ISI.

Page 46 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

References

Destexhe, A., Mainen, Z.F., and Sejnowski, T.J. An efficient method for computing

synaptic conductances based on a kinetic model of receptor binding. Neural Computation

6:14-18, 1994.

Destexhe, A., McCormick, D.A., and Sejnowski, T.J. A model for 8-10 Hz spindling in

interconnected thalamic relay and reticularis neurons. Biophys. J. 65:2474-2478, 1993.

Hines, M. A program for simulation of nerve equations with branching geometries. Int. J.

Bio-Med. Comput. 24:55-68, 1989.

Hines, M. NEURON--a program for simulation of nerve equations. In: Neural Systems:

Analysis and Modeling, edited by F. Eeckman. Norwell, MA: Kluwer, 1993, p. 127-136.

Hines, M. and Carnevale, N.T. Computer modeling methods for neurons. In: The

Handbook of Brain Theory and Neural Networks, edited by M.A. Arbib. Cambridge,

MA: MIT Press, 1995, p. 226-230.

Hines, M.L. and Carnevale, N.T. Expanding NEURON's repertoire of mechanisms with

NMODL. Neural Computation 12:995-1007, 2000.

Lytton, W.W. Optimizing synaptic conductance calculation for network simulations.

Neural Computation 8:501-509, 1996.

Lytton, W.W., Contreras, D., Destexhe, A., and Steriade, M. Dynamic interactions

determine partial thalamic quiescence in a computer network model of spike-and-wave

seizures. J. Neurophysiol. 77:1679-1696, 1997.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 47

The NEURON Book: Chapter 11 November 28, 2004

Maass, W. and Bishop, C.M., eds. Pulsed Neural Networks. Cambridge, MA: MIT Press,

1999.

Riecke, F., Warland, D., de Ruyter van Steveninck, R., and Bialek, W. Spikes: Exploring

the Neural Code. Cambridge, MA: MIT Press, 1997.

Sohal, V.S., Huntsman, M.M., and Huguenard, J.R. Reciprocal inhibitory connections

regulate the spatiotemporal properties of intrathalamic oscillations. J. Neurosci. 20:1735-

1745, 2000.

Web site retrieved 11/8/2004. NEURON Tutorial by Andrew Gillies and David Sterratt.

http://www.anc.ed.ac.uk/school/neuron/

Page 48 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

Chapter 11 Index

A

ArtCellGUI

bringing up an ArtCellGUI 8

specifying cell types 8

G

good programming style

bulletproofing against nonsense arguments 33

exploiting reusable code 2, 26, 31

iterative development 32

modular programming 31

separate model specification from user interface 31

Graph class

erase_all() 41

size() 42

view() 39

graph theory 15

GUI

combining with hoc 26

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 49

The NEURON Book: Chapter 11 November 28, 2004

H

hoc

combining with GUI 26

L

List class

append() 39

count() 26, 33

object() 27, 33

remove_all() 33

List object

managing network cells with 30

managing network connections with 30

N

NetCon class

record() 39

NetGUI class 11

NetReadyCellGUI

bringing up a NetReadyCellGUI 23

NetWork Builder

Page 50 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

adjusting model parameters 17

bringing up a NetWork Builder 11

buttons

Create 16, 24

SpikePlot 17

canvas 12

dragging 13

caveats 23

cells

Cell Map 25

creating 12

names 12, 24

exploiting reusable code 31

exporting reusable code 26

acell_home_ 27

network cell templates 28

network instantiation 30

network specification interface 29

hints 12

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 51

The NEURON Book: Chapter 11 November 28, 2004

palette of cell types 12

setting up network architecture 14

specifying delays and weights 15

network model

creating algorithmically 32

NEURON Main Menu

Build

NetWork Builder 11

Tools

VariableStepControl 19

O

object-oriented programming

inheritance 29

oxymoron 1

P

PointProcessGroupManager

bringing up a PointProcessGroupManager 17

S

spike trains

Page 52 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 11

recording and plotting 38

V

VariableTimeStep GUI

global vs. local time steps 20

toggling adaptive integration ON and OFF 19

Vector class

c() 41

fill() 41

mark() 41

X

xpanel() 38

xvalue() 38

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 53

November 28, 2004 The NEURON Book: Chapter 12

Chapter 12

hoc, NEURON's interpreter

Much of the flexibility of NEURON is due to its use of a built-in interpreter, called

hoc (pronounced "hoak"), for defining the anatomical and biophysical properties of

models of neurons and neuronal networks, controlling simulations, and creating a

graphical user interface. In this chapter we present a survey of hoc and how it is used in

NEURON. Readers who seek the most up-to-date list of hoc keywords and

documentation of syntax are referred to the online Programmer's Reference (see link at

http://www.neuron.yale.edu/neuron/docs/docs.html). This can also be downloaded

as a pkzip archive for convenient offline viewing with any WWW browser. The standard

distribution for MSWindows includes a copy of the Programmer's Reference which is

current as of the date of the NEURON executable that it accompanies (see the

"Documentation" item in the NEURON program group).

NEURON's hoc is based on the floating point calculator by the same name that was

developed by Kernighan and Pike (1984). The original hoc has a C-like syntax and is

very similar to the bc calculator. The latest implementation of hoc in NEURON contains

many enhancements and extensions beyond its original incarnation, both in added

functions and additions to the syntax. Despite these enhancements, for the most part

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 12 November 28, 2004

programs written for versions as far back as 2.x will work correctly with the most recent

release of NEURON.

One important addition to hoc is an object-oriented syntax, which first appeared in

version 3 of NEURON. Although it lacks inheritance, hoc can be used to implement

abstract data types and encapsulation of data (see Chapter 13). Other extensions include

functions that are specific to the domain of neural simulations, and functions that

implement a graphical user interface. Also, the user can build customized hoc

interpreters that incorporate special functions and variables which can be called and

accessed interactively. As a result of these extensions, hoc in NEURON has become a

powerful language for implementing and exercising models.

NEURON simulations are not subject to the performance penalty often associated

with interpreted (as opposed to compiled) languages because computationally intensive

tasks are carried out by highly efficient, precompiled code. Some of these tasks are

related to integration of the cable equation, and others are involved in the emulation of

biological mechanisms that generate and regulate chemical and electrical signals.

In this context, several important facts bear mention. First, a large part of what

constitutes the NEURON simulation environment is actually written in hoc. This

includes the standard run system (an extensive library of functions for initializing and

controlling simulations--see Chapters 7 and 8), and almost the entire suite of GUI tools

(the sole exception being the Print & File Window Manager, which is implemented in C).

Second, the GUI tools for building models of cells and networks (which are, of course, all

written in hoc) actually work by constructing hoc programs.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

Finally, and perhaps most important, all of the hoc code that defines the standard run

system and GUI tools is provided in plain text files ("hoc libraries") that accompany the

standard distribution of NEURON. Under UNIX/Linux these are located in

nrn-x.x/share/nrn/lib/hoc/, and in MSWindows they are in

c:\nrnxx\lib\hoc\. Users can readily review the implementational details of the

functions and procedures that are defined in the standard libraries, and, if necessary,

modify and replace them. Since hoc is an interpreter, it is easy to make such changes

without having to alter the actual files that contain the standard libraries themselves.

Instead, just write hoc code that defines functions or procedures with the same names as

the ones that are to be replaced, and put this in a new file. The only caveat is to be sure to

load the alternatives after the standard library. For example, to replace the init()

procedure (see Examples of custom initializations in Chapter 8), the text of the new

procedure should occur sometime after the statement load_file("nrngui.hoc"). If

the new definition is read prior to loading the library version, the library version will

overwrite the user version instead of the other way around.

The interpreter

The hoc interpreter has served as the general input/output module in many kinds of

applications, and as such is directly executed under many different names, but we will

confine our attention to its use in NEURON. The simplest interface between hoc and

domain-specific problems consists of a set of functions and variables that are callable

from hoc. This was the level of implementation of the the original CABLE program

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 12 November 28, 2004

(NEURON version 1). NEURON version 2 broke from this style by introducing neuron-

specific syntax into the interpreter itself. This allowed users to specify cellular properties

at a level of discourse more appropriate to neurons, and helped relieve the confusion and

reduce the mental energy required to constantly shift between high level neural concepts

and their low level representation in the computer. NEURON version 3 added object

syntax to allow much better structuring of the conceptual pieces that must be assembled

in order to build and use a model.

Installing NEURON under UNIX or Linux results in the construction of several

programs, but the principal one that we are concerned with in this book is nrniv, which

is located in nrn/i686/bin. This is the main executable, which contains the hoc

interpreter with all of its extensions. Since the bulk of the code needed by NEURON is in

shared libraries, nrniv and the various "special" executables created by nrnivmodl (see

Adding new mechanisms to the interpreter below) are very small.

Under Linux, nrniv can add new mechanisms and functions to hoc by dynamically

loading shared objects that have been compiled from model description files (see Adding

new mechanisms to the interpreter; also see Chapter 9). For example, the demonstration

program that comes with NEURON is started by executing neurondemo. This is actually

a shell script that starts nrniv with a command line that makes it load a shared object

that contains additional biophysical mechanisms. Under non-Linux UNIX there is great

variation in how, or even if it is possible, to dynamically load shared objects. Therefore in

those environments neurondemo is a complete duplicate of nrniv plus the extra

mechanisms needed by the demonstration.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

Under MSWindows, the program that corresponds to nrniv is nrniv.exe. There is

also a program called neuron.exe, which is a short stub that starts a Cygwin terminal

window (see http://cygwin.com/) and then runs nrniv.exe in that window. It is

neuron.exe that is the target of icons and shortcuts used to start NEURON. As with the

Linux version, nrniv.exe can load new mechanisms dynamically (see next section).

Adding new mechanisms to the interpreter

To add new mechanisms, you first write a specification of the mechanism properties

in the NMODL language (see Chapter 9), and then you compile it. To compile under

UNIX and Linux, you execute the shell script nrnivmodl, which is located in

nrn/i686/bin. Most often, nrnivmodl is called with no file name arguments, which

results in compilation of all "mod files" in the current working directory (i.e. files that

have the suffix .mod).

It can also be called with one or more file name arguments, e.g.

nrnivmodl file1 file2 . . .

compiles the model descriptions defined in file1.mod, file2.mod, etc.. Regardless of

how nrnivmodl is invoked, the first step in the process is translation of the model

descriptions from NMODL into C by the nocmodl translator.

Under Linux, the end result is a shared object located in a subdirectory

.i686/.libs of the current working directory, as well as a shell script called special

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 12 November 28, 2004

in the .i686 subdirectory that starts nrniv and makes it load the shared object. Under

non-Linux UNIX, the result is a complete executable called special.

The MSWindows version of nrnivmodl is called mknrndll. It compiles and links

the models into a dynamically loadable library called nrnmech.dll. neuron.exe

automatically looks in the current working directory for a nrnmech.dll file, and if one

exists, loads it into memory and makes the mechanisms available to the interpreter. More

than one dll file can be loaded by listing them after the -dll argument to neuron.exe

when it is run.

The stand-alone interpreter

The rest of this chapter describes general aspects of the interpreter that are common to

all applications that contain it. Although for concreteness we use nrniv or neuron.exe,

all the examples and fragments can be typed to any program that contains the interpreter,

such as oc.

Starting and exiting the interpreter

Under UNIX and Linux, hoc is started by typing the program name in a terminal

window

nrniv [filenames] [-]

where the brackets indicate optional elements. When there are no file name arguments,

hoc takes its commands from standard input and prints its results to standard output.

With file name arguments, the files are read in turn and the commands executed. After

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

the last file is executed, hoc exits. The - signals that commands are to be taken from

standard input until an EOT character (^D) is encountered. One can also exit by executing

quit().

When starting hoc with arguments it is easy to forget the final - and be surprised

when the program quickly exits. Generally the - is omitted only when running the

interpreter in batch mode under control of a shell script.

With the MSWindows version (neuron.exe), omitting the trailing - does not cause

the program to exit. This makes it more convenient to attach neuron.exe to hoc files so

that one can start the program and read a hoc file by merely clicking on the file's name in

a file manager such as Windows Explorer. Also, neuron.exe starts a Cygwin terminal

window into which one can type hoc commands. Exiting can be done by typing ^D or

quit() at the interpreter's oc> prompt. If the NEURON Main Menu is present, one can

also exit by selecting File / Quit; this works under all operating systems.

On startup, NEURON prints a banner that reports the current version and last change

date.

NEURON -- Version 5.6 2004-5-19 23:5:24 Main (81)
by John W. Moore, Michael Hines, and Ted Carnevale
Duke and Yale University -- Copyright 2001

oc>

The oc> prompt at the beginning of a line means the interpreter is waiting for a

command. This is sometimes called "immediate mode" to signify that commands are

evaluated and executed (if valid) immediately, as shown in the following listing (user

entries are bold while the interpreter's output is plain).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 12 November 28, 2004

oc>2
 2
oc>1+2
 3
oc>x=2
first instance of x
oc>x
 2
oc>x*x
 4
oc>

The interpreter has a "history function" that allows scrolling through previous

commands by pressing the keyboard's up and down arrow keys. This facilitates repeating

prior commands, with or without modification. For example, in

oc>proc foo() { print x^3 }
oc>foo()
8
oc>proc foo() { print x^4 }
oc>foo()
16
oc>

line 1 defines a new procedure that prints the value of the cube of x, line 2 calls this

procedure, and line 3 shows the numeric result. The fourth line was created by pressing

the up arrow key twice, to recall the first line. Then the left arrow key was pressed twice

to move the editing cursor (blinking vertical line on the monitor) just to the right of the 3.

At this point, pressing the backspace key deleted the 3, and pressing the numeral 4 on the

keyboard changed the exponent to a 4. Finally the return ("enter") key was pressed, and

the interpreter responded with an oc> prompt. Now typing the command foo()

produced a new numeric result.

In immediate mode, each statement must be contained in a single line. Very long

statements can be assembled by using the continuation character \ (backslash) to

terminate all but the last line. Thus in

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

oc>proc foo() { print x^4 \
oc>, x }
oc>foo()
16 2
oc>

the interpreter merges the first and second lines into the single line

proc foo() { print x^4 , x }

Quoted strings that are constructed with continuation characters have a limit of 256

characters, and each continuation character becomes an embedded newline (line break).

Error handling

This is one of many areas where hoc falls short. Debugging large programs is

difficult, so it is best to practice modular programming, breaking code into short

procedures and functions.

hoc is implemented as a stack machine. This means that commands are first parsed

into a more efficient stack machine representation, and subsequently the stack machine is

interpreted.

Errors found during parsing are called parse errors. These range from invalid syntax

oc>1++1
nrniv: parse error near line 3
1++1
 ^
oc>

to the use of undefined names

oc>print x[5], "hello"
nrniv: x not an array variable near line 9
print x[5], "hello"
 ^

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 12 November 28, 2004

Such errors are usually easy to fix since they stop the parser immediately, and the error

message, which always refers to a symptom, generally points to the cause. Error

messages specify the current line number of the file being interpreted and print the line

along with a carat pointing to the location where the parser failed. This is usually an

important clue, but failure may not occur until several tokens after the actual mistake.

One common parse error in apparently well-formed statements results from using a name

of the wrong type, e.g. specifying a string where a scalar variable is required.

Errors during interpretation of the stack machine are called run-time errors:

oc>sqrt(-1)
sqrt: DOMAIN error
nrniv: sqrt argument out of domain near line 5
sqrt(-1)
 ^

Generally, run-time error messages are more pertinent to that actual problem than are

syntax error messages, although logic errors can be very difficult to diagnose. These

errors usually occur within a function, and the error message prints the call chain

oc>proc p() {execute("sqrt(-1)")}
oc>p()
sqrt: DOMAIN error
nrniv: sqrt argument out of domain near line 8
{sqrt(-1)}
 ^
 execute("sqrt(-1)")
 p()
nrniv: execute error: sqrt(-1) near line 8
^
oc>

Unfortunately there is no trace facility to help debug run-time errors, and the line number

is of no help at all because it refers to the last line that was parsed, instead of the location

of the offending statement.

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

Interpretation of a hoc program may be interrupted by typing one or two ^C at the

terminal. For example if the interpreter is in an infinite loop, as in

oc>while(1) {}

a single ^C will stop it

^Cnrniv: interrupted near line 2
while(1) {}

oc>

Generally one ^C is preferred, because this allows the interpreter to reach a safe place

before it halts execution. Two ^C will interrupt the interpreter immediately, even if it is in

the middle of updating an internal data structure. There are two situations in which the

second ^C may be necessary:

1. if the program is waiting inside a system call, e.g. waiting for console input.

2. if the program is executing a compiled function that is taking so long that program

control doesn't reach a known safe place in a reasonable time.

Syntax

Names

A name is a string that starts with an alpha character and contains fewer than 100

alphanumeric characters or the underscore _. A user-created name can be associated with

any one of the following:

global scalar (available to all procedures/functions)

local scalar (created/destroyed on procedure entry/exit)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 12 November 28, 2004

array

string

function or procedure

template (class or type)

object reference

User-created names must not conflict with keywords or built-in functions. Names

have global scope except if a local declaration is used to create a local scalar within a

procedure or function, or when the name is declared within a template (i.e. class

definition, although one then speaks of visibility instead of scope, and the distinction is

between public and private).

Keywords

The hoc interpreter in the current version of NEURON has many keywords that have

been added over the years. It is helpful to have a general idea of what these are useful for,

and specific knowledge of where they are declared. This first table presents the most

basic keywords, built-in constants, and functions of the hoc interpreter with object

extensions and elementary functionality for neuronal modeling; the authoritative list is in

nrn-x.x/src/oc/hoc_init.c.

General declaration
proc func local
double strdef iterator
eqn depvar

Flow control
return break stop continue
if else for while
iterator

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

Built-in constants
PI E GAMMA DEG
PHI FARADAY R

Built-in variables
float_epsilon hoc_ac_

Built-in functions
sin cos atan
log log10 exp sqrt
int abs erf erfc
use_mcell_ran4 mcell_ran4 mcell_ran4_init
variable_domain units
prmat solve eqinit
sred xred
chdir getcwd neuronhome
ropen wopen xopen
load_proc load_func load_template
load_file load_java
getstr strcmp
printf fprint fscan
ivoc_style
save_session print_session
xpanel xcheckbox
xbutton xstatebutton xradiobutton
xmenu xlabel xvarlabel xslider
xvalue xpvalue xfixedvalue
doEvents doNotify
numarg symbols
object_id object_push object_pop
allobjectvars allobjexts name_declared
boolean_dialog continue_dialog string_dialog
pwman_place startsw stopsw
execute execute1
machine_name saveaudit retrieveaudit
show_errmess_always coredump_on_error
checkpoint system quit

Miscellaneous
print read delete
em debug

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 12 November 28, 2004

Object-oriented
begintemplate endtemplate
public external
objectvar objref new

Neuron-specific
create connect
access setpointer
insert uninsert
forall ifsec forsec secname

The following functions and variables are specific to modeling neurons; the

authoritative list of these is in nrn-x.x/src/nrnoc/neuron.h.

Variables
t dt secondorder stoprun
celsius diam_changed

Functions
pt3dclear pt3dadd p3dconst
x3d y3d z3d diam3d
n3d arc3d
define_shape
spine3d setSpineArea getSpineArea
initnrn distance area
topology ri
issection ismembrane sectionname psection
disconnect delete_section
pop_section push_section
this_section this_node
parent_section parent_node parent_connection
section_orientation
ion_style nernst ghk
finitialize fadvance
batch_run batch_save
fit_praxis attr_praxis
stop_praxis pval_praxis

Mechanism types and variables are defined in nrn-x.x/src/nrnoc by capac.c,

extcelln.c, hh.mod, and pas.mod. This directory also contains several mod files that

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

define neuron-specific point process classes such as IClamp, SEClamp, and

AlphaSynapse.

There are also several other built-in object classes, including neuron-specific

examples like SectionList, SectionRef, and Shape, and more generic classes such

as List, Graph, HBox, File, Random, and Vector. The Programmer's Reference (see

link at http://www.neuron.yale.edu/neuron/docs/docs.html)

Variables

Double precision variables are defined when a name is assigned a value in an

assignment expression, e.g.

var = 2

Such scalars are available to all interpreted procedures and functions, i.e. they have

global scope.

There are several built-in variables that should be treated as constants:

FARADAY coulombs/mole

R molar gas constant, joules/mole/deg-K

DEG 180/PI, i.e. degrees per radian

E base of natural logarithms

GAMMA Euler constant

PHI golden ratio

PI circular transcendental number

float_epsilon resolution for logical comparisons and int()

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 12 November 28, 2004

Arbitrarily dimensioned arrays are declared with the double keyword, as in

double vector[10], array[5][6], cube[first][second][third]

Array elements are initialized to 0. Array indices are truncated to integers and run from 0

to the declared value minus 1. When an array name is used without an index, the index is

assumed to be 0. Arrays can be dynamically re-dimensioned within procedures.

String variables are declared with the strdef keyword, e.g.

strdef st1, st2

Assignments are made to string variables, as in

st1 = "this is a string"

String variables may be used in any context that requires a string, but no operations, such

as addition of strings, are available (but see sprint() below).

After a name has been defined as a scalar, string, or array, it cannot be changed to

another type. The double and strdef keywords can appear within a compound

statement and are useful for throwing away previous data and reallocating space.

However the names must originally have been declared outside any func or proc before

they can be redeclared (as the same type) in a procedure. These restrictions also apply to

object references (objrefs--see Declaring an object reference in Chapter 13).

Expressions

The arithmetic result of an expression is immediately typed on standard output unless

the expression is embedded in a statement or is an assignment expression. Thus

2*5

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

typed at the keyboard prints

10

and

sqrt(4)

yields

2

The operators used in expressions are, in order of precedence from high to low,

() function call

^ exponentiation (right to left precedence)

- ! unaryminus, logical negation ("not")

* / % multiplication, division, remainder

+ - addition, subtraction

> >= < <= != == logical comparison

&& logical AND

|| logical OR

= assignment (right to left precedence)

Logical expressions are valued 1.0 (TRUE) or 0.0 (FALSE), and a nonzero value is

treated as TRUE. The remainder a%b is in the range 0
�

 a%b < b and can be thought of

as the value that results from repeatedly subtracting or adding b until the result is in the

range [0, b). This differs from the C syntax in which (-1)%5 is -1. For us, (-1)%5 is 4.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 12 November 28, 2004

Logical comparisons of real values are inherently ambiguous due to roundoff error.

Roundoff can also be a problem when computing integers from reals and indices for

vectors. For this reason the built-in global variable float_epsilon is used for logical

comparisons and computing vector indices. The constant � in this table stands for

float_epsilon, which has a default value of 10-11 but can be assigned a different

value by the user.

hoc math or C equivalent

x == y - �
�

 x - y
�

 �

x < y x < y - �

x <= y x
�

 y + �

x != y x < y - � or x > y + �

x > y x > y + �

x >= y x ≥ y - �

int(x) (int)(x + �)

a[x] a[(int)(x + �)]

Statements

A statement terminated with a newline is executed immediately. A group of

statements separated by newlines or whitespace and enclosed in curly brackets {} form a

compound statement, which is not executed until the closing } is typed. Statements typed

interactively do not produce a value. An assignment is parsed by default as a statement

rather than an expression, so assignments typed interactively do not print their values.

Note, though, the expression

(a = 4)

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

would print the value

4

An expression is treated as a statement when it is within a compound statement.

Comments

Text between /* and * / is treated as a comment.

/* a single line comment */
/* this comment
 spans
 several lines */

Comments to the end of the line (single line comments) may be started by the double

slash, as in

print PI // this comment is limited to one line

Flow control

In the syntax below, stmt stands for either a simple or compound statement.

if (expr) stmt
if (expr) stmt1 else stmt2
while (expr) stmt
for (expr1; expr2; expr3) stmt
for var = expr1, expr2, expr3 stmt
for iterator_name(. . .) stmt

In the if statement, stmt is executed only if expr evaluates to a non-zero value. The

else form of the if statement executes stmt1 when expr evaluates to a non-zero

(TRUE) value; otherwise, it executes stmt2.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 12 November 28, 2004

The while statement is a looping construct that repeatedly executes stmt as long as

expr is TRUE. The expr is evaluated prior to each execution of stmt, so if expr is 0

on the first pass, stmt will not be executed even once.

The general form of the for statement is executed as follows: The first expr is

evaluated. As long as the second expr is true the stmt is executed. After each execution

of the stmt, the third expr is evaluated.

The short form of the for statement is similar to the DO loop of FORTRAN but is

often more convenient to type. However, it is very restrictive in that the increment can

only be unity. If expr2 is less than expr1 the stmt will not be executed even once.

Also the expressions are evaluated once at the beginning of the for loop and not

reevaluated.

The iterator form of the for statement is an object-oriented construct that separates

the idea of iteration over a set of items from the idea of what work is to be performed on

each item. As such, it is most useful for dealing with objects that are collections of other

objects. It is also useful whenever iteration over a set of items has a nontrivial mapping to

a sequence of numbers. As a concrete example of this, let us define an iterator called

case. To do this, we use the hoc keywords iterator and iterator_statement,

e.g. like this

iterator case() {local i
 for i = 2, numarg() {
 $&1 = $i
 iterator_statement
 }
}

It is easy to use this iterator to loop over small sets of unrelated integers, as in

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

for case(&x, 1, -1, 3, 25, -3) print x

Of course, this requires that x has already been used as a scalar variable (otherwise the

expression &x will be invalid) An alternative would be the relatively tedious

double num[5]
num[0] = 1
num[1] = -1
num[2] = 3
num[3] = 25
num[4] = -3
for i = 0, 4 {

x = num[i]
print x

}

We should point out that iterator case() is already included in stdlib.hoc (in

nrn-x.x/share/lib/hoc/ (UNIX/Linux) or c:\nrnxx\lib\hoc\ (MSWindows)).

This is automatically available after nrngui.hoc has been loaded.

These statements are used to modify the normal flow of control:

break Exit from the enclosing while or for loop.

continue Jump to end of the enclosing while or for.

return Exit from the enclosing procedure.

return expr Exit from the enclosing function.

stop Exit to the top level of the interpreter.

quit() Exit from the interpreter.

Functions and procedures

The definition syntax is

func name() {stmt}
proc name() {stmt}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 12 November 28, 2004

Functions must return a value via a

return expr

statement. Procedures do not return a value. As a trivial example of a function definition,

consider

func three() {
 return 3
}

This defines the function three() which returns a fixed numeric value. Typing the

name of this function at the oc> prompt will cause its returned value to be printed.

oc>three()
 3
oc>

Notice the recommended placement of {}. The opening { must appear on the same

line as the statement to which it is a part. This also applies to conditional statements. The

closing } is free form, but clarity is best served if it is placed directly under the beginning

of the statement it closes and interior statements are indented.

Arguments

Scalars, strings, and objects can be passed as arguments to functions and procedures.

Arguments are retrieved positionally, e.g.

func quotient() {
 return $1/$2
}

defines the function quotient() which expects two scalar arguments. The $1 and $2

inside the function refer to the first and second arguments, respectively.

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

Formally, an argument starts with the letter $ followed by an optional & (the "pointer

operator") to refer to a scalar pointer, followed by an optional s or o that signifies a string

or object reference, followed by an integer. Thus a string argument in the first position

would be known as $s1, while an object argument in the third position would be $o3.

For example,

proc printerr(){
 print "Error ", $1, "-- ", $s2
}

defines a procedure that expects a scalar for its first argument and a string for its second

argument. If we invoke this procedure with the statement printerr(29, "too many

channels"), it will print the message Error 29 : too many channels.

There is also a "symbolic positional syntax" which uses the variable i in place of the

positional constant to denote which argument is to be retrieved, e.g. if i equals 2, then $i

and $2 refer to the same argument. The value of i must be in the range [1, numarg()],

where numarg() is a built-in function that returns the number of arguments to a user-

written function. This usage literally requires the symbol $i; $ plus any other letter (e.g.

$j or $x) will not work. Furthermore, i must be declared local to the function or

procedure.

The function numarg() can be called inside a user-written function or procedure to

obtain the number of arguments. Thus if we declare

proc countargs(){
 print "Number of arguments is ", numarg()
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 12 November 28, 2004

and then execute countargs(x, sin(0.1), 9), where x is a scalar that we have defined

previously, NEURON's interpreter will print Number of arguments is 3. Generally

numarg() is used in procedures and functions that employ symbolic positional syntax,

as in

proc printargs() { local i
 for i = 1, numarg() print $i
}

If we execute printargs(PI, -4, sqrt(5)), the interpreter will respond by printing

3.1415927
-4
2.236068

Similarly, we could define a function

proc printstrs() { local i
 for i = 1, numarg() print $si
}

and then execute printstrs("foo", "faugh", "fap") to get the printed output

foo
faugh
fap

Call by reference vs. call by value

Scalar arguments use call by value so the variable in the calling statement cannot be

changed. If the calling statement has a & prepended to the variable, that variable is passed

by reference and must be retrieved with the syntax $&1, $&2, etc..

If the variable passed by reference is a one-dimensional array (i.e. a double), then

$&1 refers to its first (0th) element and the jth element is denoted $&1[j-1]. Be warned

that there is no array bounds checking, and the array is treated as being one-dimensional.

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

A scalar or array reference may be passed to another procedure with &$&1. To save a

scalar reference, use the Pointer class.

Arguments of type strdef and objref use call by reference, so the calling value

may be changed by the called func or proc. Objects are discussed in Chapter 13.

Local variables

Local variables maintained on a stack can be defined with the local statement. The

local statement must be the first statement in the function and on the same line as the

proc statement. For example, in

proc squares() { local i, j, k /* print squares up to arg */
for (i=1; i <= $1; i=i+1) print i*i

}

declaring i, j, and k to be local insures that this procedure does not affect any

previously defined global variables with these names.

Recursive functions

User defined functions can be used in any expression, so functions can be called

recursively. For example, the factorial function can be defined as

func fac() {
 if ($1 == 0) {
 return 1
 } else {
 return fac($1-1)*$1
 }
}

and the call

fac(3)

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 12 November 28, 2004

would produce

6

It would be a user error to call this function with a negative or non-integer argument.

Besides the fact that the algorithm is numerical nonsense for those values, in theory the

function would never return since the recursive argument would never be 0. Actually,

after some time the stack frame list would overflow and an error message would be

printed, as in

oc>fac(-1)
nrnoc: fac call nested too deeply near line 10
fac(-1)
 ^
 fac(-99)
 fac(-98)
 fac(-97)
 fac(-96)
and others
oc>

Input and output

The following describes simple text-based input and output. User interaction is better

performed with the graphical interface, and dealing with multiple files requires use of the

File class.

Standard hoc supplied read() and print, which use standard input and output,

respectively. Their use is illustrated by this example

while (read(x)) {
 print "value is ", x
}

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

The return value of read() is 1 if a value was read, and 0 if there was an error or end of

file (EOF). The print statement takes a comma-separated list of arguments that may be

strings or variables. A newline is printed at the end.

For greater flexibility, the following built-in functions are also available.

printf("format string", arg1, arg2, . . .)

printf() is compatible with the standard C library function of the same name. It

allows f, g, d, o, and x formats for scalar arguments, and the s format for strings.

All the % specifications for field width apply.

fprint("format string", arg1, arg2, . . .)

fprint() is similar to printf(), but its output goes to the file that was opened

by wopen("filename"). Such files are closed by wopen() with no arguments,

or by the alternative wopen(""). When no write file is open, fprint() defaults

to standard output. wopen() returns 0 on failure of the attempted open.

sprint(strdef, "format string", arg1, . . .)

This function is very useful for building file names, and even command strings,

out of other variables. For example, if data files are to be named drat.1,

drat.2, etc., the names can be generated with variables in the following manner.

strdef filename, prefix
prefix = "rat"
num = 1
sprint(filename, "d%s.%d", prefix, num)

After execution of these statements the, string variable filename contains

drat.1.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 12 November 28, 2004

fscan()

fscan() returns the value read sequentially from the file that was opened by

ropen("filename"). The file is closed by calling ropen() with no argument

or with a different file name argument. ropen() returns 0 if the file could not be

opened. If no read file is open, fscan() takes its input from standard input.

Read files must consist of whitespace- or newline-separated numbers in any

meaningful format. An EOF will interrupt the program with an error message.

The user can avoid this with a sentinel value as the last number in the file or by

knowing how many times to call fscan().

getstr(strvar)

getstr() reads the next line from the file that was opened by ropen(), and

assigns it to the string variable argument. The trailing newline is part of the string.

xred("prompt", default, min, max)

xred() places a prompt on the standard error device along with the default

value, and waits for input on standard input. If a newline is typed, xred returns

the default value. If a number is typed, it is checked to see if it is in the range

defined by min and max. If so, the input value is returned. If the typed number is

not in the range, the user is prompted again for a number within the proper range.

xopen("filename")

The file called filename is read in and executed by hoc. This is useful for

loading previously written procedures and functions that were left out of the

command line during hoc invocation.

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

Editing

The em command invokes a public domain editor that is similar, if not identical, to

MicroEMACS. Readers who wish to try this editor will find a description of it in

Appendix A2. However, most users are already familiar with some other editor, and it is

quite easy to transfer text files into hoc with xopen() or load_file().

References

Kernighan, B.W. and Pike, R. Appendix 2: Hoc manual. In: The UNIX Programming

Environment. Englewood Cliffs, NJ: Prentice-Hall, 1984, p. 329-333.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 12 November 28, 2004

Chapter 12 Index

\ 8

C

computational efficiency

why is NEURON fast? 2

E

em 29

F

funcs and procs

arguments

call by reference vs. call by value 24

numarg() 23

objref 23, 25

pointer 23

positional syntax 22

strdef 23, 25

symbolic positional syntax 23

defining 21

local variable 25

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

recursion 25

return 22

G

GUI

tools

are implemented in hoc 2

work by constructing hoc programs 2

H

hoc 1

enhancements and extensions 1

error handling 9

history function 8

immediate mode 7

interrupting execution 11

Kernighan and Pike 1

libraries 3

oc> prompt 7

starting and exiting 6

hoc syntax

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 12 November 28, 2004

basic input and output

fprint() 27

fscan() 28

getstr() 28

print 26

printf() 27

read() 26

ropen() 28

sprint() 27

wopen() 27

xopen() 28

xred() 28

comments 19

expressions 16

logical expressions 17

operators 17

float_epsilon 18

flow control 19

break 21

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

continue 21

else 19

for 20

if 19

iterator 20

iterator_statement 20

quit() 21

return 21

stop 21

while 20

keywords 12

names 11

pointer operator 23

statements 18

compound statement 18

variables 15

built-in constants 15

cannot redefine type 16

double 16

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 33

The NEURON Book: Chapter 12 November 28, 2004

scalars 15

strdef 16

L

load_file() 29

M

MicroEMACS 29

mod file 5

N

NEURON

startup banner 7

NEURON Main Menu GUI

File

Quit 7

neuron.exe 5

neurondemo 4

NMODL

translator

mknrndll 6

nocmodl 5

Page 34 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 12

nrnivmodl 5

nrniv 4

adding new mechanisms 4

nrniv.exe 5

nrnmech.dll 6

O

oc 6

P

PFWM

is implemented in C 2

Pointer class 25

Programmer's Reference 1

S

standard GUI library

hoc source accompanies NEURON 3

redefining functions and procedures 3

standard run library

hoc source accompanies NEURON 3

redefining functions and procedures 3

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 35

The NEURON Book: Chapter 12 November 28, 2004

standard run system

is implemented in hoc 2

stdlib.hoc 21

Page 36 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

Chapter 13

Object-oriented programming

Object orientation is in many ways a natural style of programming whose techniques

are reinvented constantly by every programmer (Coplien 1992). Object notation

consolidates these techniques so that much of the tedious programming necessary to use

them is automatically handled by the interpreter. An object can be thought of as an

abstract data type that is very useful in separating the idea of what a thing does from the

details of the way it goes about doing it. Support for objects in hoc came late to

NEURON, after the notion of cable sections, and as a consequence there are several types

of variables (e.g. sections, mechanisms, range variables) that are clearly treated as objects

from a conceptual point of view but grew up without a uniform syntax.

In hoc , an object is a collection of functions, procedures, and data, where the data

defines the state of the object. There is just enough extra syntax in hoc to support a

subset of the object-oriented programming paradigm: specifically, it supports information

hiding and polymorphism, but not inheritance. Yet this subset is sufficient to greatly

increase the user's ability to maintain conceptual control of complex programs. This

immediately provides all the power of data structures of languages such as C or Pascal,

and most of the power of modules.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 13 November 28, 2004

Object vs. class

First let's clarify the distinction between object and class. You're close to the mark if

you think of a class as a cookie cutter that cuts out objects called cookies. A class is a

general type, whereas an object of the class is a specific instance of the type. The idea of

a class as a template motivated the keyword that signals the definition of classes in hoc:

one surrounds a collection of functions, procedures, and variables with the keywords

begi nt empl at e and endt empl at e.

From the user's point of view it is necessary to discuss how to create and destroy

objects; what is an object reference; how to call an object's methods or access its data;

and how to pass objects to functions. From the programmer's point of view it is necessary

to discuss how to define a class. Before we plunge into these details, a general overview

of objects in hoc will be useful.

The object model in hoc

The object model used by hoc manipulates references to objects, never the objects

themselves. An object reference is equivalent to a pointer, and can be regarded as a label

or alias for the actual object. Thus the assignment

ob1 = ob2

means that ob1 refers to the same object referred to by ob2, NOT that a new object is

cloned from ob2 and pointed to by ob1. Thus if ob2's object contains a variable called

dat a and that value is changed by the statement

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

ob2. dat a = 5

then

ob1. dat a

will print the value

5

It quickly becomes tedious to always talk about "the object referred to by xxx" so we

often shorten the phrase to "xxx", always recalling that xxx is only a label for that

object--in fact, xxx is only one of possibly many labels for the object that it points to. In

the next few paragraphs we'll strictly maintain the distinction between object reference

and object, but be aware that we don't always exert such discipline.

Objects and object references

Declaring an object reference

Just as it is often convenient to deal with

variables that can take on different numeric

values (algebra is more powerful than arithmetic),

it is often convenient to deal with object

references that can refer to different objects at

different times. Object references are declared with

obj r ef name1, name2, name3, . . .

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The deprecated keyword obj ect var is a

synonym for obj r ef that may be found

in older programs. The preferred obj r ef

emphasizes the pointer nature of object

references and is easier to type.

The NEURON Book: Chapter 13 November 28, 2004

After an object reference has been declared, it refers to the NULLobj ect until it is

associated with some other object (see below).

Once a variable has been declared to be an object reference, it cannot be redefined as

a scalar, double, or string. The obj r ef keyword can appear within a compound

statement, but the names must originally have been declared outside any f unc or pr oc

before they can be redeclared (as obj r ef s) in a procedure.

Creating and destroying an object

You create an object with the new keyword. Thus

obj r ef g
g = new Gr aph()

uses the Gr aph template to create one Gr aph object that we can refer to as g. We'll talk

about where the templates come from later. Executing these two statements will create

one graph window on the screen.

Several object references can refer to the same object. Continuing with the present

example,

obj r ef h
h = g

does not create a second graph but merely associates h with the same Gr aph object as g.

The "reference count" of an object is the number of object references that point to it. We

would say that this Gr aph object has a reference count of 2.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

If an object is no longer referenced, i.e. when its reference count is 0, it is destroyed

and the memory that held its data becomes available for any other purpose. In this

example, we can break the association between g and the Gr aph object by redeclaring g

obj r ef g

so that g once again points to the NULLobj ect . However, the graph will persist on our

screen because it is still referenced by h. To get rid of the graph we have to break this

final reference, e.g. with the statement

h = g

Using an object reference

The object reference g should be thought of as pointing to an actual object located in

the computer. This object has "members" which

consist of variables that describe its state, plus

"methods" (functions and procedures) that do things

to itself and to the outside world. Some of these

members are hidden from the outside world (i.e.

"private"), but others are visible ("public") and can be accessed from outside the object.

The syntax for using the public members of an object employs a "dot" notation that is

reminiscent of how one accesses an element of a structure in C. For example, the Gr aph

class has a method called er ase() that erases graph lines, so if g is an obj r ef that

points to a Gr aph object, the statement

g. er ase()

will erase the lines in the Gr aph.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

Of course, in C the object reference

really is a pointer, so one would use

the arrow notation a- >b. In C++, the

object reference has the same syntax

as a reference variable.

The NEURON Book: Chapter 13 November 28, 2004

Passing objrefs (and objects) to functions

As mentioned in Chapter 12 (see Arguments under Functions and procedures),

obj r ef arguments are passed using call by reference. This has two consequences: the

called f unc or pr oc can change which object the obj r ef argument points to, and also

that it can change the object itself. As a rather artificial example of the first consequence,

let us define a pr oc that swaps the objects that two obj r ef s point to.

obj r ef ot mp / / so i t can be used as an obj r ef i n a pr oc
pr oc oswap() {
 ot mp = $o1
 $o1 = $o2
 $o2 = ot mp
 obj r ef ot mp / / dest r oy l i nk bet ween ot mp and $o2
}

Suppose a and b are obj r ef s that point to a Gr aph and a Vect or , respectively, so that

pr i nt " a i s " , a, " , b i s " , b

returns

a i s Gr aph[0] , b i s Vect or [3]

If we call

oswap(a, b)

and then repeat

pr i nt " a i s " , a, " , b i s " , b

we now see

a i s Vect or [3] , b i s Gr aph[0]

In other words, oswap() made these obj r ef s point to different objects.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

For an even more artificial example of the second consequence, consider

pr oc f oo() { / / expect s a Vect or ar gument wi t h s i ze >= 2
 $o1. x[1] = PI
}

Suppose we declare

obj r ef dat a
dat a = new Vect or (3)
dat a. i ndgen()

which makes dat a point to a Vect or with three elements whose values are 0,1, and 2,

so that dat a. pr i nt f () returns

0 1 2

Calling f oo(dat a) and then trying dat a. pr i nt f () once more gives us

0 3. 14159 2

i.e. f oo() changed the object itself. In passing we note that call by reference also applies

to the rare situations in which it might be useful to pass an actual object name (as distinct

from an obj r ef --see Object references vs. object names below) to a pr oc or f unc .

Defining an object class

A new object class can be defined by writing hoc code that specifies the properties of

the class. This code is called a template, and once the hoc interpreter has parsed the code

in a template, the class that it defines is fixed for that session. This means that any

changes to a template require exiting NEURON and restarting.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 13 November 28, 2004

The syntax for writing a template is

begi nt empl at e c l assname
publ i c name1, name2, name3, . . .
ext er nal var i abl e1, st r i ng2, f unct i on3, t empl at e4, . . .

. . . hoc code . . .
endt empl at e c l assname

where cl assname is the name of the class that the template defines. The hoc code can

be almost anything you like, but generally it consists of declarations of variables and

definitions of procedures and functions. As noted above, a function or procedure that is

defined in a class is also called a method.

By default, every variable, pr oc , and f unc that belongs to an object will be hidden

from the outside. To make something visible from the outside, you must declare that it is

publ i c. Inside the template you cannot refer to any user-defined global variables or

functions except those that appear in an ext er nal statement. However, you can execute

built-in functions such as pr i nt f () and exp() , and you can also create objects from

any externally-defined template.

Direct commands

Direct commands within a template, e.g.

begi nt empl at e Foo
publ i c a
a = 5 / / t hi s i s a di r ect command

endt empl at e Foo

are executed once when the template is interpreted. This means that declarations such as

doubl e, st r def , f unc , xopen(f i l e) , etc., that need to be executed only once and

not for each object are useful as direct commands. However, direct commands such as

a = 5 are less useful, since the value of a is lost when an actual object is created,

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

because the assignment statement is not executed at that time. Thus if we create a new

object of class Foo named f oot est

oc>obj r ef f oot est
oc>f oot est = new Foo()
oc>f oot est . a
 0
oc>

we see that the value of f oot est . a is 0, not 5.

Initializing variables in an object

All variables that are declared in a template start off with a value of 0 by default. To

initialize variables to something other than 0, the template must contain an i ni t ()

procedure. This procedure will be executed automatically every time a new object is

created. If i ni t () appears in the publ i c list, you can execute it explicitly as well. For

example, if we define a new class Foo2 as

begi nt empl at e Foo2
publ i c i ni t , a
pr oc i ni t () {

a = 5
}

endt empl at e Foo2

and then create a new object of this class

oc>obj r ef f oo2t est
oc>f oo2t est = new Foo2()

now we find that f oo2t est . a has the nonzero value that we wanted

oc>f oo2t est . a
 5
oc>

Furthermore, if we assign a different value to f oot est . a

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 13 November 28, 2004

oc>f oo2t est . a = 6
oc>f oo2t est . a
 6
oc>

we can restore the original value by invoking f oo2t est . i ni t ()

oc>f oo2t est . i ni t ()
 0
oc>f oo2t est . a
 5
oc>

Keyword names

One restriction on templates is that hoc keywords cannot be redefined. This is an

artifact of the order in which symbol tables are searched. For an example of how this

affects programming, suppose we wanted to add a method to our St ack class that would

print the name of every object in the stack. It might seem reasonable do this by inserting

pr oc pr i nt () { l ocal cnt , i
cnt = l i s t . count ()
i f (cnt == 0) {

pr i nt " st ack i s empt y"
} el se {

f or i =0, cnt - 1 pr i nt l i st . obj ect (i)
}

}

into the body of the template and adding pr i nt to the publ i c statement. This would

allow us to call our new method with the highly mnemonic statement st ack. pr i nt () .

But when the interpreter tried to translate this to intermediate code, it would issue the

error message

nr ni v : par se er r or i n st ack3. hoc near l i ne 2
 publ i c push, pop, pr i nt
 ^

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

and we would have to change the name of the method to something else, e.g.

pr i nt names .

Object references vs. object names

Up to this point we have been using object references to refer to objects, emphasizing

the difference between an object itself and what we call it. Actually, each object does

have a unique name that can be used anywhere a reference to the object is used.

However, these unique names are primarily intended for use by the library routines that

construct NEURON's graphical interface. While it may occasionally be useful to employ

these unique names in user-written code (e.g. for diagnostic or didactic purposes), this

should never be done in ordinary programming. Object names are not guaranteed to be

the same between different sessions of NEURON unless the sequence of creation and

destruction of objects of the same type is identical. This is because the object name is

defined as cl assname[i ndex] , where the "index" is automatically incremented every

time a new instance of that class is created. Index numbers are not reused after objects are

deleted except when there are no existing objects of that type; then the index starts over

again at 0.

The reason why unique object names are allowed at all is because some objects, such

as the Poi nt Pr ocessManager , should be destroyed when their window is dismissed.

This could not happen if the interpreter had an obj r ef to that object, since an object is

destroyed only when its reference count goes to 0. Thus the idiom is to cause the VBox

window itself to increment the reference count for the object (and decrement it when the

window is dismissed, using the VBox 's r ef () or di smi ss_act i on() method). Now

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

The NEURON Book: Chapter 13 November 28, 2004

the hoc obj r ef that holds the reference can safely discard it, and the object will not be

immediately destroyed. But the consequence is that there is now no way to get to the

object (or the objects it created) from the interpreter except to use the object name, e.g.

there is no other way to graph one of the point process variables in the

Poi nt Pr ocessManager .

An example of the didactic use of object names

The name of an object can be used in any context in which a string is expected, e.g. a

pr i nt obj r ef statement. For example, if we execute the statements

obj r ef g, h
g = new Gr aph()
h = g

then we see a graph on the computer screen, and

pr i nt g, h

returns

Gr aph[0] Gr aph[0]

because both g and h refer to the same Gr aph object. At this point if we type the

command pr i nt Gr aph[0] we also get Gr aph[0] .

After redeclaring g

obj r ef g

we find that pr i nt g, h gives us

NULLobj ect Gr aph[0]

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

Since one object reference (h) still points to Gr aph[0] , the graph is still visible, and

pr i nt Gr aph[0] still produces Gr aph[0] .

Now asserting

h = g

discards the last reference to Gr aph[0] , destroying this object. Consequently the graph

disappears from the screen, and pr i nt g, h produces

NULLobj ect NULLobj ect

Any lingering doubts concerning the fate of Gr aph[0] are dispelled when we find that

pr i nt Gr aph[0] generates the message

nr ni v : Obj ect I D doesn' t ex i s t : Gr aph[0]
 near l i ne 11
pr i nt Gr aph[0]
 ^

Using objects to solve programming problems

Dealing with collections or sets

Most, if not all, nontrivial programming problems seem to involve the notion of a set

or collection of objects. hoc can represent the concept of "more than one" in several

ways, but the workhorses are the array of objects and the list of objects. The array is the

most efficient but requires a prior knowledge of the number of objects to be stored. The

list can store any number of objects at any time; this fact makes Li st the most often used

class.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 13 November 28, 2004

Array of objects

Storage for an array of objects is declared with

obj r ef ar r ay[s i ze]

Only rarely is the size known when the program is written, so it is common practice to

separate the declaration from the size definition, specifying the latter just after the point

in execution when the size is finally known, as in

obj r ef ar r ay[1] / / s i ze must be decl ar ed even i f wr ong
pr oc set _s i ze() {

obj r ef ar r ay[$1]
}

After the size is set, it can no longer be changed without redeclaring the entire array,

which discards the references to any objects referenced by its previous incarnation. When

an array is declared or redeclared, all of its elements reference the NULLobj ect .

An array is a random access object because its individual elements can easily be

retrieved in any sequence, just specifying the corresponding index. For example an array

of five graphs can be created with

obj r ef gr aphs[5]
f or i =0, 4 { gr aphs[i] = new Gr aph() }

The internal name of each item in the array can be printed in reverse order with

f or (i =4; i >= 0; i - = 1) { pr i nt gr aphs[i] }

Suppose we wanted to destroy the third (index = 2) graph. We can't simply say

obj r ef gr aphs[2]

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

because this would discard the entire array, throwing away all of our graphs and creating

a new array whose elements all point to the NULLobj ect . Instead, the way to make the

reference count for the third graph become 0 is

obj r ef ni l / / ni l poi nt s t o NULLobj ect
gr aphs[2] = ni l / / and now so does gr aphs[2]

Example: emulating an "array of strings"

Even very simple templates have their uses. There is no such thing in hoc as an array

of strings, but consider

begi nt empl at e St r i ng
publ i c s
st r def s

endt empl at e St r i ng

Now an array of objects can be used to get the functionality of an array of strings.

obj r ef s[3]
f or i =0, 2 s[i] = new St r i ng() / / t hey al l s t ar t out empt y
s[0] . s = " hel l o"
s[2] . s = " goodbye"

It is important to realize that there is no conflict between the use of s as the name of a

st r def inside the template and the use of s as the name of an object reference outside

the template.

We must mention that NEURON comes with a very similar implementation of the

St r i ng class (see st dl i b. hoc in nr n- x. x / shar e/ l i b/ hoc/ (UNIX/Linux) or

c: \ nr nxx\ l i b\ hoc\ (MSWindows)). This is automatically available after

nr ngui . hoc has been loaded.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 13 November 28, 2004

List of objects

A list of objects uses the Li st class

obj r ef l i s t
l i st = new Li s t ()

Objects are added to the list with the append() method, as in

f or i =0, 4 { l i st . append(new Gr aph()) }

Notice that we do not have to know how many items will be added to the list before we

start adding them. One can print the names of the objects in a list with the statement,

f or i =0, l i s t . count - 1 { pr i nt l i s t . obj ect (i) }

The Li st class's count () method always returns the number of objects in the list, and

the obj ect () method returns the item.

Iteration over a list is one of the most commonly used programming idioms. This

allows processing of each item in the list, as in

obj r ef t obj
f or i =0, l i st . count - 1 {

t obj = l i s t . obj ect (i)
/ / do somet hi ng t o t he obj ect r ef er enced by t obj

}
obj r ef t obj / / onl y t he l i st hol ds a r ef er ence t o t he l ast obj ect

Notice how a temporary obj r ef is employed to refer to each object in turn.

Example: a stack of objects

This template defines a class that can be used to create stacks of objects.

begi nt empl at e St ack
publ i c push, pop
obj r ef l i s t

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

pr oc i ni t () {
l i st = new Li s t ()

}

pr oc push() {
l i st . append($o1)

}

pr oc pop() { l ocal cnt
cnt = l i s t . count ()
i f (cnt == 0) {

pr i nt " st ack under f l ow"
st op

}
$o1 = l i s t . obj ect (cnt - 1)
l i st . r emove(cnt - 1)

}
endt empl at e St ack

After hoc parses this template, the statements

obj r ef st ack
st ack = new St ack()

create an object that functions as a stack. At the time this new object is created, its

i ni t () procedure is executed, which creates an empty list for use by the push() and

pop() procedures. Notice that push() and pop() are public, but the internal list is

private.

Suppose we already have three Gr aph objects g[0] , g[1] , and g[2] (see Creating

an object under Objects and object references above). Then st ack. push(g[1])

adds a reference to the second Gr aph at the end of the St ack object's internal list.

st ack. pop(g[2]) would cause g[2] to reference the same object as g[1] and remove

it from the stack.

In this example, we have exploited an existing object class (Li st) to create a new

object class (St ack) that can be used to hold a stack of objects of any class we like--not

just objects of any of NEURON's built-in classes, but also objects of any other classes

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 13 November 28, 2004

that we might dream up in the future! Note the use of the Li st class's count () and

r emove() methods to find the object at the end of the list and to remove this reference

from the list.

Encapsulating code

Suppose you have a hoc file that works perfectly all by itself (when nothing else is

loaded) and does something meaningful when you type r un() at the oc> prompt. Also

suppose the file has no direct commands except declarations (if it does have direct

commands, just collect them into an i ni t () procedure). Then, if you put the these lines

at the beginning of the file

begi nt empl at e F1
publ i c r un

and this line at the end of the file

endt empl at e F1

you have an object template. You can use this template to create an object and run it, like

this

obj r ef f 1
f 1 = new(F1)
f 1. r un()

and you will get identical behavior as before. What's been gained? Well, you can do this

to a bunch of files and load them all together and never worry about variable or function

name clashes between files because nothing (except the object templates and specific

object names) is global.

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

Don't forget that the default initialization of variables declared in a template is 0. It is

a good idea to include an i ni t () procedure that uses explicit assignment statements to

make sure that variables will start off with the proper values. It is possible to declare a

variable with an assignment statement in procedure P1, and then use it in a publ i c

procedure P2, but be mindful of the possibility that someone may execute P2 before

executing P1. If this happens, the variable will have a value of 0.

Polymorphism and inheritance

A language supports polymorphism when it automatically does the right thing

whether a function is called on the base class or on an object of a subclass. Since an

object reference can refer to any type of object, hoc 's object model is polymorphic. Thus,

if A and B are different classes but happen to have a method with the same name, e.g.

f oo() , then if or ef refers to an instance of either A or B, we can say or ef . f oo() and

the method of the particular object type will be called.

For a concrete example, suppose we have defined several different classes of objects

that generate specialized graphs called BodePl ot , Power Spect , and Cr ossCor r , and

that each of these classes has its own pl ot () and er ase() method. We can easily

automate plotting and erasing if we declare

pr oc pl ot al l () { l ocal i
 f or i = 0, gl i s t . count () - 1 gl i st . obj ect (i) . pl ot ()
}

pr oc er aseal l () { l ocal i
 f or i = 0, gl i s t . count () - 1 gl i st . obj ect (i) . er ase()
}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 13 November 28, 2004

and, every time we spawn a new instance of one of these classes, we append it to a Li st

object, e.g.

obj r ef mygr af l i st
gl i s t = new Li s t ()
 . . .
obj r ef bp, ps, cc
bp = new BodePl ot ()
gl i s t . append(bp)
ps = new Power Spect ()
gl i s t . append(ps)
cc = new Cr ossCor r ()
gl i s t . append(cc)

Now we can take care of all of these graphs at once by invoking pl ot al l () or

er aseal l () .

Inheritance allows us to define many kinds of subclasses starting from a more abstract

base class. It is useful in capturing the "IS A" relationship, and is most effective when the

subtype "IS A" kind of base type, i.e. whenever a program uses an object of the base type

then it would also make sense if it used an object of the subtype. People often (ab)use

inheritance when the IS A relationship does not hold, in order to conveniently reuse a

portion of the base class. When one class is "ALMOST LIKE" another, and that other is

ready and waiting to be used, it is tempting to inherit the whole behavior and replace only

the parts that are different. It's best to avoid this practice and instead factor out the

behavior common to both classes, placing that in a base class which can be inherited by

both classes.

In hoc , inheritance can only be emulated by having the "subclass" instance create its

"superclass" instance during initialization and supply stub methods for calling the public

methods of the superclass. For example, consider the trivial Base class

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

begi nt empl at e Base
publ i c a, b
obj r ef t hi s

pr oc a() {
pr i nt f (" i ns i de %s. a() \ n" , t hi s)

}

pr oc b() {
pr i nt f (" i nsi de %s. b() \ n" , t hi s)

}
endt empl at e Base

Then the following will look like a subclass of Base, where we provide our own

implementation of a and "inherit" the method b:

begi nt empl at e Sub
publ i c a, b
obj r ef t hi s, base

pr oc i ni t () {
base = new Base()

}

pr oc a() {
pr i nt f (" i nsi de %s. a\ n" , t hi s)

}

pr oc b() {
base. b()

}

endt empl at e Sub

References

Coplien, J.O. Advanced C++ Programming Styles and Idioms. Reading, MA: Addison-

Wesley, 1992.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 13 November 28, 2004

Chapter 13 Index

C

class 2

base class 19, 20

subclass 19, 20

vs. object 2

F

funcs and procs

arguments

call by reference 6

object 6

objref 6

L

List class 16

append() 16

count() 16

iteration 16

object stack 16

object() 16

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

remove() 18

O

object 1

object

array 14

creating 4

destroying 4

methods 5, 8

name

how generated 11

vs. object reference 11

new 4

NULLobject 4, 5, 12, 14

using the NULLobject 15

public members

accessing from hoc 5

dot notation 5

vs. private members 5

reference count 4, 11

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 13 November 28, 2004

state 1, 5

vs. class 2

vs. object reference 2

object reference 2

cannot be redefined as scalar, double, or string 4

declaring 3

objectvar 3

objref 3

points to an object 2, 5

vs. object 2

vs. object name 11

object-oriented programming

encapsulating code 18

information hiding 1

inheritance 1, 20

polymorphism 1, 19

S

stdlib.hoc 15

String class 15

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 13

T

template 2

cannot be redefined 7

direct commands 8

names cannot redefine hoc keywords 10

variable initialization

default initialization 9

init() procedure 9

writing a template 8

begintemplate 8

endtemplate 8

external 8

public 8

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

November 28, 2004 The NEURON Book: Chapter 14

Chapter 14

How to modify NEURON itself

NEURON's extensive library of functions and graphical tools has been developed

with an eye to providing those features that are most widely applicable in empirically-

based neural modeling. Since they are necessarily rather generic, it is sometimes

desirable to change these features or add new ones in order to meet the special needs of

individual projects. This is particularly important where the graphical user interface is

concerned, given the well-established role of the GUI in enhancing software utility. Here

we show how to create new GUI tools and add new functions to NEURON.

A word about graphics terminology

Computer graphics literature is full of technical jargon, of which we will use only the

most minute part. Think of a scene as being like a sheet of paper that has its own

coordinate system (scene coordinates), and a view as a rectangular area on that sheet.

Model (in the graphical sense) is just a synonym for "scene," and "model coordinates" are

the same as "scene coordinates." The screen is simply the computer's display (CRT, flat

panel, etc.), and screen coordinates represent actual physical locations on the display.

Finally, when something is "mapped to the screen," the visible consequence is that a view

of it appears on the display.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter 14 November 28, 2004

Graphical interface programming

In Chapter 6 we noted that an iterative process of incremental revision and testing

can be an effective strategy for software development. This is especially true when the

task is to create a tool that interacts with the user through a graphical interface. It is rarely

clear at the outset what manipulations of objects on the screen are feasible with

reasonable programming effort, have obvious or easily learned meanings on first

approach, and allow users to straightforwardly and rapidly reach their goals. The

approach outlined in this section has proven useful in creating every one of the tools in

the NEURONMainMenu suite.

As a concrete example, suppose we want to make a tool for graphically specifying the

parameters of the Boltzmann function

y
�
x ��� 1

e4k � d � x � Eq. 14.1

The half maximum of this curve is located at (d, 0.5), and the slope at this point is k.

The graphical metaphor for setting the value of d seems straightforward: just use the

cursor to drag the (d, 0.5) point on the curve horizontally. By putting a small open square

mark centered at (d, 0.5) on the curve, we can suggest that this is a user-selectable

"control point."

How to set the value of k is less obvious. It seems quite natural to use the cursor's x

coordinate for midpoint control, but simultaneously using its y coordinate to control the

slope turns out to be neither intuitive nor convenient. One alternative could be to use a

second control point at the 80% y value that can be dragged back and forth horizontally;

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

this limits the minimum slope, but it might be adequate. Another possibility is to place

the slope control point at some fixed distance from the midpoint. In this case the function

is always drawn so that the slope control point is on the line between the current cursor

location and the midpoint. Finally, perhaps it would be better to allow the user to click on

any point of the curve and drag, and have the GUI tool redraw the curve so that it follows

the cursor.

But we're getting ahead of ourselves. We can always experiment with the various

styles of setting the slope parameter later--the burning question now is how to even get

started.

Clearly we need a canvas on which to plot the curve, and a way to get mouse button

events and cursor coordinates when one clicks in the canvas and drags the cursor to a new

location. We can put a Graph on the screen with

objref g
g = new Graph()

Now we can do some exploratory tests of how to deal with mouse events. Let's

specify a procedure to handle a mouse event

g.menu_tool("A new mouse handler", "handle_mouse")

This creates a new radio style menu item labeled "A new mouse handler" that appears at

the end of the primary graph menu. If this menu item is selected, then future mouse

button presses in the Graph's canvas will call the procedure named handle_mouse()

with four arguments. These arguments specify the state of the left mouse button, cursor

coordinates, and whether the Shift, Control, and/or Alt key is being pressed. The

handle_mouse() procedure does not have to be defined when menu_tool() is

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter 14 November 28, 2004

executed, but it certainly must be defined by the time it is supposed to be called. As a

quick test, we can use this procedure

proc handle_mouse() {
print $1, $3, $3, $4

}

for a concrete demonstration of mouse event handling. This is an example of how simple

tests can provide a far better understanding of the meaning of a method, than we could

ever gain from just reading the reference manual.

General issues

We can go quite far by trying things out one at a time and verifying that the hoc code

is working the way we want. However, experience has shown that sooner or later it is

becomes necessary to grapple with the following issues.

� How to encapsulate a tool so that its variables do not conflict with other tools. This

tool defines the variables k and d, and it will probably also demand that we invent a lot

of other names for functions and variables. Keeping all of these names localized to a

particular context so that it doesn't matter if they are used in other contexts is one of

the benefits of object-oriented programming.

� How to allow many instances of the same type of tool. If this tool is ever used as a part

of some larger tool, e.g. a channel builder that describes steady state as a function of

voltage, there will be a need for separate pairs of Boltzmann parameters for every

channel state transition. This is another benefit that one gets almost for free with

object-oriented programming.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

� How to save a tool so the user doesn't lose data that was specified with it. The values

of k and d for one of our objects may represent a great deal of thought and effort. Even

the small matter of repeatedly dragging a window to a desired location and resizing it

quickly becomes tedious. The user should be able to save the tool, with its present

state, in a session file so that it can be re-instantiated by retrieving the session file.

� How to destroy the tool when its window is closed. We want our tool to exist only by

sufferance of the user. It should be destroyed if and only if the user presses the Close

button. Objects in hoc are reference counted, which normally means that an object

stays in existence only as long as there is some object reference (objref) that points

to it (see Creating and destroying an object in Chapter 13). Think of a reference as

a label on the object: when the last label is removed the object is destroyed. If the

reference issue is not properly handled, two opposite problems result. First, closing the

window would not reclaim the memory used by the tool. This isn't so bad in our

situation, but it could be very confusing for tools that manage, for example, a point

process or even an entire cell! The second problem is that a tool instance and its

window could be inadvertently destroyed even if the user hadn't pressed the window's

Close button. This can happen if creating a new instance of the tool reuses the only

reference to an already existing instance of the tool.

Although it may seem tedious at first, the effort of starting a tool development project

with a pattern that addresses all these issues is quickly repaid. We create such a pattern in

the following pages, starting by defining a new class that will be used to encapsulate the

tool data and code. For the sake of concreteness, we will assume that the hoc code for

our tool will be saved to a file named bp.hoc.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter 14 November 28, 2004

A pattern for defining a GUI tool template

The name we have chosen for this class is BoltzmannParameters (Listing 14.1).

The overall style of the pattern is to first declare the names of things used in the template,

and then to declare procedures and functions. The public g statement declares that g is

accessible to the outside world, and objref g declares that its type is "reference to an

object" (see Chapter 13). When a new instance of the BoltzmannParameters class is

created, the init() procedure in this template will bring up a new Graph; this is merely

so that creating a new BoltzmannParameters object will produce a visible result

(Fig. 14.1).

The two statements that follow the template definition create an instance of the class.

This facilitates the edit-run-diagnose cycle by ensuring that, when NEURON executes

this code, we don't need to type anything into the interpreter in order to see the result of

our file modifications.

As an aside, we must note that mistyping and other trivial errors are common. This is

yet another reason for developing a program in stages, making only a few additions at a

time. Building a tool requires many iterations of incrementally editing and adding to the

hoc code that defines it, and then launching NEURON to test it. In a windowed desktop

environment, this can be facilitated by using two windows: one for keeping the file open

in an editor, and the other for running NEURON after an editor save (e.g. by double

clicking on the name of the hoc file).

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

begintemplate BoltzmannParameters
public g
objref g

proc init() {
g = new Graph()

}
endtemplate BoltzmannParameters

// the following lines facilitate debugging
objref b
b = new BoltzmannParameters()

Listing 14.1. Initial version of bp.hoc creates an object and produces a visible

result (Fig. 14.1).

Close

50 100 150 200 250
20

60

100

140

180

50 100 150 200 250
20

60

100

140

180

Graph x 0 : 300 y 0 : 200

Hide

Fig. 14.1. The graph window generated by the code in Listing 14.1.

After executing the code in Listing 14.1, we can perform additional tests by entering a

few simple commands into the interpreter at the oc> prompt:

oc>b
BoltzmannParameters[0]

oc>b.g
Graph[0]

oc>b.init()
init not a public member of BoltzmannParameters

The init() procedure is automatically called whenever a new instance of the template

is created (see Initializing variables in an object in Chapter 13). In most cases it

doesn't make sense to call init() again, so it is usually not declared public.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Chapter 14 November 28, 2004

Enclosing the GUI tool in a single window

We quickly discover that the relationship between the window on the screen and the

object BoltzmannParameters[0] is inappropriate. Pressing the Close button destroys

the window but doesn't get rid of the BoltzmannParameters[0] object, because the

latter is still referenced by b. Furthermore, the BoltzmannParameters[0] object is not

protected from outside interference--redeclaring b or making it reference another object

will drop BoltzmannParameters[0]'s reference count to 0 and destroy it. For a tool,

this should only happen when one closes the window.

The current situation is that b references our tool instance, b.g references the Graph

in our tool, but the window doesn't reference anything. We need a way for the window to

reference the tool. To make this happen, we augment our pattern by enclosing the Graph

in a VBox which itself references the tool, and making sure that this VBox is the only

reference to the tool. The pattern now looks like Listing 14.2.

begintemplate BoltzmannParameters
public g, box
objref g, box, this

proc init() {
box = new VBox()
box.ref(this)
box.intercept(1)
g = new Graph()
box.intercept(0)
box.map()

}
endtemplate BoltzmannParameters

// the following lines facilitate debugging
objref tmpobj
proc makeBoltzmannParameters() {

tmpobj = new BoltzmannParameters()
objref tmpobj

}
makeBoltzmannParameters()

Listing 14.2. bp.hoc revised for proper management of reference count.

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

Between the box.intercept(1) and box.intercept(0) statements, anything that

would create a window becomes arranged vertically in a VBox (horizontally if it was an

HBox). When this is declared as an object reference, it always refers to the object that

declared it. The box.ref(this) statement has the effect that, when the last window

created by the box is closed, the reference count of the tool is decremented. If this makes

the reference count equal to 0, the tool is destroyed. When boxes are nested, only the

outermost (the one with an actual window) requires this idiom. The code at the end of

this revised bp.hoc creates an instance of our tool, and then immediately redeclares

tmpobj in order to guarantee that the only remaining reference to the tool is the one

associated with the Vbox.

The pattern is now in a form that can be integrated into the standard

NEURONMainMenu / Tools / Miscellaneous menu. We can do this with

NEURONMainMenu[0].miscellaneous_add("BoltzmannParameters", \
"makeBoltzmannParameters()")

Those who recall our injunction against writing code that invokes unique object names

(see Object references vs. object names in Chapter 13) may be somewhat

uncomfortable at the appearance of the object name NEURONMainMenu[0] in this

statement. Such excellent retention of the lore of hoc is to be commended. Rest assured,

however, that there is never more than one instance of the NEURONMainMenu class, and

when such an object exists, it is always called NEURONMainMenu[0]. Hence this object

name is truly unique, making this a situation in which it is safe to inscribe the proscribed.

Our init() procedure is collecting a lot of odds and ends; readability would be

better served by separating the different idioms into procedures, as shown in Listing 14.3.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Chapter 14 November 28, 2004

Also note the changes to map(), which add the useful feature of giving the window a title

that reflects the name of the tool instance. These changes produce the window shown in

Fig. 14.2.

strdef tstr

proc init() {
build()
map()

}

proc build() {
box = new VBox()
box.ref(this)
box.intercept(1)
g = new Graph()
box.intercept(0)

}

proc map() {
sprint(tstr, "%s", this)
box.map(tstr)

}

Listing 14.3. Revision of init() to enhance clarity.

Close

50 100 150 200 250
20

60

100

140

180

50 100 150 200 250
20

60

100

140

180

BoltzmannParameters[0]

Hide

Fig. 14.2. Changes in the map() procedure (Listing 14.3) turn the window title

into the name of the tool instance (compare with Fig. 14.1).

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

Saving the window to a session

The last enhancement to our basic tool pattern provides a way to save the tool in a

session file so it can be recreated properly when the session file is loaded. This

enhancement involves several changes to bp.hoc (see Listing 14.4). Before examining

these, we must point out that everything in this code is independent of the future

implementation of the particulars of what we want our tool to do. It just gives us a

starting framework to which we can add specific functionality.

The principal change to bp.hoc is the addition of a save() procedure that can print

executable hoc code to the session file. Most of the statements in save() are of the form

box.save("string"). Since our tool has a Graph, it is a good idea to save its size.

This can be done explicitly by building an

appropriate statement, but a simple idiom is to

call its save_name() method (see

g.save_name("ocbox_.g", 1)) since this

will also save any new views of the graph that

were generated by the user. This must be done at

the top level, so the Graph reference has to be

public.

A related change to bp.hoc is the addition

of box.save("save()") to the build() procedure. This designates save() as the

procedure that will be called when the tool is saved to a session file.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

Here "top level" refers to the interpreter

dealing with global variables rather than

variables that are only visible inside

templates. Put another way, one can say

the interpreter is executing at the top level

unless it is executing code that is declared

in a template or class. When the

interpreter is not at the top level, it is often

useful to temporarily get back to the top

level with execute("statement").

The NEURON Book: Chapter 14 November 28, 2004

Changes to init() and map() are necessitated by the fact that we want the tool to

be properly mapped to the screen regardless of whether we have created it for the first

time, or instead are reconstituting it from a session file. If we are creating a tool de novo,

it should appear in a default location with default values for its various user-specifiable

parameters. However, if we are recreating it from a session file, it should appear in the

same location and with the same parameter values as when we saved it.

begintemplate BoltzmannParameters
public g, box, map
objref g, box, this
strdef tstr

proc init() {
 build()
 if (numarg() == 0) {
 map()
 }
}

proc build() {
 box = new VBox()
 box.save("save()")
 box.ref(this)
 box.intercept(1)
 g = new Graph()
 box.intercept(0)
}

proc map() {
 sprint(tstr, "%s", this)
 if (numarg() == 0) {
 box.map(tstr)
 } else {
 box.map(tstr, $2, $3, $4, $5)
 }
}

proc save() {
 box.save(\"load_file(\"bp.hoc\", \"BoltzmannParameters\")\n}\n{")
 box.save("ocbox_ = new BoltzmannParameters(1)")
 box.save("}\n{object_push(ocbox_)}")
 // insert tool-dependent statements here
 box.save("{object_pop()}\n{")
 g.save_name("ocbox_.g", 1)
}

endtemplate BoltzmannParameters

Page 12 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

// the following lines facilitate debugging
objref tmpobj
proc makeBoltzmannParameters() {

tmpobj = new BoltzmannParameters()
objref tmpobj

}
makeBoltzmannParameters()

Listing 14.4. This refinement of bp.hoc contains a tool that can be saved and retrieved

from a session file. Despite its specific name, this "BoltzmannParameters" template

is a completely generic starting point that can be customized to implement specific GUI

tools.

Making this happen involves three related changes to bp.hoc. First, the init()

procedure has been modified so that calling it without an argument will cause the window

to be mapped immediately with its defaults. Otherwise, the mapping is deferred, so that

code in the session file can specify its location etc.. The second change is to the map()

procedure: when called with no arguments, it makes the tool appear in its default

position. Alternatively map() can be called from the session file with arguments that

specify where the tool will be drawn on the screen. This brings us to the third change,

which is to add map to the public statement at the top of the template (otherwise map()

couldn't be called from the session file).

load_file("nrngui.hoc")
objectvar save_window_, rvp_
objectvar scene_vector_[3]
objectvar ocbox_, ocbox_list_, scene_, scene_list_
{ocbox_list_ = new List() scene_list_ = new List()}
{pwman_place(0,0,0)}

//Begin BoltzmannParameters[0]
{
load_file("bp.hoc", "BoltzmannParameters")
}
{
ocbox_ = new BoltzmannParameters(1)
}
{object_push(ocbox_)}
{object_pop()}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 13

The NEURON Book: Chapter 14 November 28, 2004

{
{
save_window_=ocbox_.g
save_window_.size(0,300,0,200)
scene_vector_[2] = save_window_
ocbox_.g = save_window_
save_window_.save_name("ocbox_.g")
}
ocbox_.map("BoltzmannParameters[0]", 211, 211, 315, 251.1)
}
objref ocbox_
//End BoltzmannParameters[0]

objectvar scene_vector_[1]
{doNotify()}

Listing 14.5. The contents of the session file created by executing Listing 14.4

and then saving the tool to a session.

Saving this tool to a session file by itself

produces the text shown in Listing 14.5.

NEURON's internal code for saving session files

first prints several statements that, among other

things, declare object reference variables used by

various kinds of windows. The only statement that concerns us here is the declaration of

ocbox_, which is used by boxes to map themselves to the screen as windows.

Next it prints a comment that contains the title of the window, and then it calls our

save() procedure, which prints the lines in the ses file up to save_window_. The first

of these strings is

load_file("bp.hoc", "BoltzmannParameters")

which makes sure that the code for our template is loaded, and the next is

ocbox_ = new BoltzmannParameters(1)

Page 14 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

Although ses files use the deprecated

objectvar, the preferred keyword

for declaring an object reference is

objref (see Declaring an object

reference in Chapter 13)

November 28, 2004 The NEURON Book: Chapter 14

which uses the ocbox_ object reference to create an instance of our tool. Note the use of

an argument to prevent the init() procedure from mapping the tool to the screen. The

object_push() causes succeeding statements to be executed in the context of the

object. This allows access to any of the variables or functions in the object, even if they

are not public--which is necessary in order to save the state of our object. The graph

reference must be public because object_pop() returns to the previous context, which

is normally the top level of the interpreter.

After the save() procedure returns, the map() method is called for ocbox_ with the

first argument being the title of the window, followed by four more size arguments which

specify the screen location of the window. Since we commandeered ocbox_ as the

reference for our tool, our own map() is called instead, and we replace whatever title was

used by the current authoritative instance name. Our map() also uses the four placement

arguments if they exist (they don't if map() is called from init()).

Tool-specific development

Plotting

This tool is supposed to display a Boltzmann function, so we clearly need to define

the function, declare the parameters we will be managing, and plot the function. Any

names we invent will be nicely segregated so they can't conflict with names at the top

level of the interpreter or names in any other tool. Thus we can safely use the natural

names that first come to mind.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 15

The NEURON Book: Chapter 14 November 28, 2004

The Boltzmann function can go anywhere in the template.

func b() {
return 1/(1 + exp(-4*k*(d - $1))

}

The first argument is referred to as $1 in a function body. The parameters are used here,

and this is sufficient to declare them, but their default values would be 0. To give them

better defaults we add

k = 1
d = 0

to the body of init().

Plotting the function raises the issue of the proper domain and the number of points.

We could get sophisticated here, plotting points at x values that nicely follow the curve,

but instead we will just plot 100 line segments over a domain defined by the current

graph scene size.

proc pl() {local i, x, x1, x2
g.erase_all
x1 = g.size(1)
x2 = g.size(2)
g.begin_line
for i=0, 100 {

x = x1 + i*(x2 - x1)
g.line(x, b(x))

}
g.flush

}

This procedure starts with erase_all because it will eventually be called whenever k or

d is changed. For now we get a drawing on the graph by calling pl() at the end of the

map() procedure.

Page 16 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

Making these changes and running bp.hoc produces the error message

nrniv: syntax error in bp.hoc near line 51
 return 1/(1 + exp(-4*k*(d - $1))
 ^

This is a parse error, which means that something is wrong with the syntax of the

statement (see Error handling in Chapter 12: hoc, NEURON's interpreter). The parser

often fails a few tokens after the actual error, but in this case the carat is right on target:

this statement is missing a closing parenthesis.

Adding the parenthesis and trying again, we find that beginline was misspelled.

This error occurred at run time, so the call stack was printed, which gives very helpful

information about the location of the error.

begin_line not a public member of Graph
nrniv: Graph begin_line in bp.hoc near line 77
 makeBoltzmannParameters()
 ^
BoltzmannParameters[0].pl()
BoltzmannParameters[0].map()
BoltzmannParameters[0].init()
makeBoltzmannParameters()

Another try gives

nrniv: exp result out of range in bp.hoc near line 77
makeBoltzmannParameters()
 ^

Testing exp(-10000) shows there is no underflow problem with this function, and

exp(700) is below the overflow limit. Taking this into account requires a slight

elaboration of b()

func b() { local x
x = -4*k*(d - $1)
if (x > 700) { return 0 }
return 1/(1 + exp(x))

}

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 17

The NEURON Book: Chapter 14 November 28, 2004

Now we no longer get an "out of range" message, but the Graph still appears to

empty, looking identical to Fig. 14.2. Invoking the item View = plot from the Graph's

secondary menu turns this into a featureless grey rectangle (Fig. 14.3).

Close

BoltzmannParameters[0]

Hide

Fig. 14.3. After the numeric overflow problem is eliminated, the Graph seems

to be empty. However, View = plot turns the window contents grey, indicating

that something else is wrong.

This is puzzling at first, but after a moment's reflection we try adding

print $1, 1/(1 + exp(x))

just before the return statement in func b(), and run the code again. This diagnostic

test results in NEURON printing just one pair of values

25 3.720076e-44

which is a clue to what should have been obvious: instead of one mistake, there are two.

The first error was in the way the desired x value was calculated in proc pl(). This

should have read

x = x1 + i*(x2 - x1)/100

Page 18 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

The second error was to accept the default dimensions of the Graph, which have x

running from 25 to 275 so that b() is too small to be of interest. This can be fixed by

adding

g.size(-5, 5, 0, 1)

after creating the Graph in the build() procedure.

Now the Graph produced by this template looks pretty good (Fig. 14.4), but the

plotted curve has a slope of -1 at x = 0. This is just carelessness; maybe we fell into

thinking that exponentials always have negative arguments, as if everything is a time

constant. Let us strike a mutual pact never to make another mistake.

Close Hide

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

BoltzmannParameters[0]

Fig. 14.4. The Graph after fixing the range of x values and specifying

appropriate dimensions.

Handling events

The following lines, placed in the build() procedure after the Graph has been

created, specifies how mouse events are handled.

g.menu_tool("Adjust", "adjust")
g.exec_menu("Adjust")

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 19

The NEURON Book: Chapter 14 November 28, 2004

The exec_menu() selects the menu item Adjust as the current tool for mouse event

handling. That is, press, drag, or release of the left mouse button while the mouse cursor

is over the Graph will cause a procedure named adjust() to be called with arguments

that specify the type of event (press, drag, or release), the scene coordinates of the cursor,

and the state of the Shift, Control, and Alt keys.

proc adjust() {
if ($1 == 2) { // left mouse button pressed

adjust_ = 0
// $2 and $3 are scene coords of mouse cursor
if (ptdist($2, $3, d, 0.5) < 100) {

adjust_ = 1
} else if (ptdist($2, $3, $2, b($2)) < 100) {

adjust_ = 2
}

}
if (adjust_ == 1) {

d = $2
pl()

}
if (adjust_ == 2) {

// keep y value within function domain
if ($3 > 0.99) $3 = 0.99
if ($3 < 0.01) $3 = 0.01
// avoid singularity at x == d
if ($2 > d || $2 < d) {

// change k so that curve passes through
// cursor location
k = log(1/$3 - 1)/(4 * (d - $2))
pl()

}
}

}

func ptdist() {
return 1

}

Listing 14.6. The handler for mouse events is proc adjust().

The adjust() procedure needs to decide whether d or k is the parameter of interest.

If the mouse cursor is within 10 pixels of the current (d, 0.5), then on every event we'll

set the value of d to the cursor's x coordinate. Otherwise, if the cursor is within 10 pixels

of any other point on the curve, we'll set the value of k so that the curve passes through

Page 20 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

the cursor's location. Just to get things working, for now we defer the calculation of pixel

distance between two points, using instead a ptdist() function that always returns 1 so

that we always end up setting d. We compare to 100, instead of 10, because we won't

bother taking the square root when we calculate the distance.

Running bp.hoc, placing the mouse cursor over the Graph canvas, and dragging it

back and forth with the mouse button pressed shows satisfying tracking of the curve with

the cursor (Fig. 14.5 A), so there is no need to worry yet about performance.

Close

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

BoltzmannParameters[0]

Hide Close Hide

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

BoltzmannParameters[0]

A B

Fig. 14.5. A. The code in Listing 14.6 enables click and drag to shift the curve from

side to side. B. Forcing adjust_ to 2 allows us to test the use of this tool to set k.

Testing the ability of adjust() to change k is easily done by temporarily forcing

adjust_ to have the value 2 on the press event. In considering the inverse of the

Boltzmann function, there are limits on the range 0 < y < 1 and a singularity at x == d.

This first attempt at doing something reasonable is likely to be sufficient but we won't

know until we try it. In fact, it works much better than adding another control point for k

(Fig. 14.5 B).

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 21

The NEURON Book: Chapter 14 November 28, 2004

Some kind of mark, e.g. a little open square, is needed to indicate the control point at

(d, 0.5). To do this we put

g.mark(d, 0.5, "s", 8)

just before g.flush in the pl() procedure. A size of 8 points is perhaps a bit large for a

control point (Fig. 14.6). Later we will add a visual readout of the values of d and k.

So far, it has been most natural to specify plotting and event handling in terms of

scene coordinates. However, calculating proximity between something plotted on a

Graph and the location of the mouse cursor is best done in pixel or screen coordinates,

since that avoids the problems caused by disparities between scene x and y scales. This

requires revisions to ptdist(), where the information needed to transform between

scene and screen coordinates will be obtained by a sequence of calls to view_info().

To recall the details of view_info()'s various arguments, we'll have to refer to the

documentation of the Graph class and its methods in the Programmer's Reference.

Since each Graph can be displayed in more than one view simultaneously, the

transformation between scene coordinates and screen coordinates depends on which view

we are interested in. Of course, the view we want is the one that contains the mouse

cursor, and this is the purpose of the first call to view_info().

func ptdist() {local i, x1, y1, x2, y2
i = g.view_info() // i is the view in which

// the mouse cursor is located
// $1..$4 are scene (x,y) of mouse cursor
// and corresponding point on curve, respectively
x1 = g.view_info(i, 13, $1)
y1 = g.view_info(i, 14, $2)
x2 = g.view_info(i, 13, $3)
y2 = g.view_info(i, 14, $4)
return (x1 - x2)^2 + (y1 - y2)^2

}

Page 22 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

A little testing shows us that it is difficult to get the cursor near enough to the curve

when the slope is large, because even a slight offset in the x coordinate causes a large

jump of b(x) away from the cursor's y coordinate. We can fix this by adding a clause to

adjust() that detects whether the horizontal distance between the cursor and the curve

is small. Thus

} else if (ptdist($2, $3, $2, b($2)) < 100) {

becomes

} else if (ptdist($2, $3, $2, b($2)) < 100 \
 || abs($2 - b_inv($3)) < 10 {

(the backslash at the end of a line is a statement continuation character). Implementation

of b_inv(), the inverse to the Boltzmann function, is more than 90% argument and

parameter testing.

func b_inv() {local x
if ($1 >= 1) {

x = 700
} else if ($1 <= 0){

x = -700
} else {

x = log(1/$1 - 1)
}
if (k == 0) {

return 1e9
}
return d - x/(4*k)

}

Finishing up

As mentioned earlier, it would be nice to have a direct indication of the values of the

parameters. To do this, we add a horizontal panel to the bottom of the VBox and make the

field editor buttons call the plot function pl() whenever the user changes the value.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 23

The NEURON Book: Chapter 14 November 28, 2004

Also, when a Graph menu tool is created within the scope of an open xpanel, the tool

selector appears as a radio button in the panel. The code fragment to do this, in context in

the build() procedure, is

g = new Graph()
g.size(-5,5,0,1)
xpanel("", 1)

xpvalue("k", &k, 1, "pl()")
xpvalue("d", &d, 1, "pl()")
g.menu_tool("Adjust", "adjust")

xpanel()
g.exec_menu("Adjust")

We use xpvalue() and pointers, instead of xvalue() and variable names, because

field editors assume variable names are at the top level of the interpreter. This is in

contrast to action statements, such as pl() in this instance, which are executed in the

context of the object. Figure 14.6 shows what the tool now looks like.

Close Hide

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

−5 −3 −1 1 3 5
0

0.2

0.4

0.6

0.8

1

k 1 d Adjust−3

BoltzmannParameters[0]

Fig. 14.6. Final appearance of the "Boltzmann Parameters" tool. The parameter

values displayed are for the leftmost curve. Other curves with arrows suggest

the process of selection and dragging the mouse.

The last touch is to change the save() procedure so that it saves the tool-specific

state. By default, scene coordinates are saved instead of view coordinates, so it is a good

Page 24 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

idea in this case to make them equivalent. This is done by adding these tool-dependent

statements to save()

// insert tool-dependent statements here
sprint(tstr, "{k=%g d=%g}", k, d)
box.save(tstr)
g.exec_menu("Scene=View")

The first two statements, which incidentally take advantage of the tstr string variable

that already exists, write the assignments of k and d to the session file, while the third one

takes care of making scene and view coordinates equivalent.

The entire code for the final implementation of our tool is shown in Listing 14.7.

begintemplate BoltzmannParameters
 public g, box, map
 objref g, box, this
 strdef tstr

 proc init() {
 k = 1
 d = 0
 build()
 if (numarg() == 0) {
 map()
 }
 }

 proc build() {
 box = new VBox()
 box.save("save()")
 box.ref(this)
 box.intercept(1)
 g = new Graph()
 g.size(-5,5,0,1)
 xpanel("", 1)
 xpvalue("k", &k, 1, "pl()")
 xpvalue("d", &d, 1, "pl()")
 g.menu_tool("Adjust", "adjust")
 xpanel()
 g.exec_menu("Adjust")
 box.intercept(0)
 }

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 25

The NEURON Book: Chapter 14 November 28, 2004

 proc map() {
 sprint(tstr, "%s", this)
 if (numarg() == 0) {
 box.map(tstr)
 } else {
 box.map(tstr, $2, $3, $4, $5)
 }
 pl()
 }

 proc save() {
 box.save("load_file(\"bp.hoc\", \"BoltzmannParameters\")\n}\n{")
 box.save("ocbox_ = new BoltzmannParameters(1)")
 box.save("}\n{object_push(ocbox_)}")
 // insert tool-dependent statements here
 sprint(tstr, "{k=%g d=%g}", k, d)
 box.save(tstr)
 g.exec_menu("Scene=View")
 // end of tool-dependent statements
 box.save("{object_pop()}\n{")
 g.save_name("ocbox_.g", 1)
 }

 func b() { local x
 x = 4*k*(d - $1)
 if (x > 700) { return 0 }
 return 1/(1 + exp(x))
 }

 proc pl() { local i, x, x1, x2
 g.erase_all
 x1 = g.size(1)
 x2 = g.size(2)
 g.beginline
 for i=0, 100 {
 x = x1 + i*(x2 - x1)/100
 g.line(x, b(x))
 }
 g.mark(d, 0.5, "s", 8)
 g.flush
 }

Page 26 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

 proc adjust() {
 if ($1 == 2) { // left mouse button pressed
 adjust_ = 0
 // $2 and $3 are scene coords of mouse cursor
 if (ptdist($2, $3, d, 0.5) < 100) {
 adjust_ = 1
 } else if (ptdist($2, $3, $2, b($2)) < 100 \
 || abs($2 - b_inv($3)) < 10) {
 adjust_ = 2
 }
 }
 if (adjust_ == 1) {
 d = $2
 pl()
 }
 if (adjust_ == 2) {
 if ($3 > 0.99) $3 = 0.99
 if ($3 < 0.01) $3 = 0.01
 if ($2 > d || $2 < d) {
 k = log(1/$3 - 1)/(4 * (d - $2))
 pl()
 }
 }
 }

 func ptdist() {local i, x1, y1, x2, y2
 i = g.view_info() // i is the view in which
 // the mouse cursor is located
 // $1..$4 are scene (x,y) of mouse cursor
 // and corresponding point on the curve, respectively
 x1 = g.view_info(i, 13, $1)
 y1 = g.view_info(i, 14, $2)
 x2 = g.view_info(i, 13, $3)
 y2 = g.view_info(i, 14, $4)
 return (x1 - x2)^2 + (y1 - y2)^2
 }

 func b_inv() {local x
 if ($1 >= 1) {
 x = 700
 } else if ($1 <= 0){
 x = -700
 } else {
 x = log(1/$1 - 1)
 }
 if (k == 0) {
 return 1e9
 }
 return d - x/(4*k)
 }
endtemplate BoltzmannParameters

Listing 14.7. Complete source code for the BoltzmannParameters tool.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 27

The NEURON Book: Chapter 14 November 28, 2004

Chapter 14 Index

E

execute() 11

G

good programming style

iterative development 2, 6

Graph class

beginline() 17

erase_all() 16

exec_menu() 20

flush() 22

mark() 22

menu_tool() 3

save_name() 11

size() 19

view_info() 22

GUI

graphics terminology 1

model 1

Page 28 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

model coordinates 1

scene 1

scene coordinates 1

making scene and view coordinates equivalent 25

vs. screen coordinates 22

screen 1

mapping to the screen 1

screen coordinates 1

tools

Close button 5, 8

view 1

GUI tool development

general issues

allowing multiple instances 4, 8, 9

destroying 5, 8, 9

encapsulating 4

saving and retrieving 5, 11, 24

generic starting point 13

mapping to the screen 12, 13

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 29

The NEURON Book: Chapter 14 November 28, 2004

mapping to the screen

window title 10

H

HBox 9

hoc

top level of the interpreter 11

M

mouse

events 3

cursor coordinates 3, 20

handling 4, 19

N

NEURON Main Menu GUI

Tools

Miscellaneous9

NEURONMainMenu class

miscellaneous_add() 9

NEURONMainMenu object

is always NEURONMainMenu[0] 9

Page 30 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter 14

O

object

reference count 9

object reference

this 9

S

session file

object_pop() 15

object_push() 15

ocbox_ 14

V

VBox 8

VBox class

intercept() 9

map() 8, 10, 12

mapping to the screen

window title 10

ref() 9

save() 11

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 31

The NEURON Book: Chapter 14 November 28, 2004

X

xpanel() 24

xpvalue() 24

xvalue() 24

Page 32 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Appendix A1

Appendix A1

Mathematical analysis of IntFire4

The IntFire4 mechanism is an artificial spiking cell with a fast, monoexponentially

decaying excitatory current e and a slower biexponential (similar to alpha function)

inhibitory current i2 that are summed by an even slower leaky integrator. It fires when the

membrane state m reaches 1; after firing, only the membrane state returns to 0. The

dynamics of IntFire4 are specified by four time constants--τe for the excitatory current,

τi
1
 and τi

2
 for the inhibitory current, and τm for the leaky integrator--and it is assumed

that τe < τi
1
 < τi

2
 < τm. However, the differential equations that govern IntFire4 are

more conveniently written in terms of rate constants, i.e.

de
dt
��� kee Eq. A1.1

di1
dt
��� k i1

i1
Eq. A1.2

di2
dt
��� k i 2

i 2
�

ai1
i1

Eq. A1.3

dm
dt
��� kmm

�
aee
�

ai 2
i2 Eq. A1.4

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Appendix A1 November 28, 2004

where each rate constant k is the reciprocal of the corresponding time constant, and ke >

ki
1
 > ki

2
 > km. An input event adds its weight w instantaneously to e or i1, depending on

whether w is > 0 (excitatory) or < 0 (inhibitory), respectively. The states e, i1, i2, and m

are normalized by the constants ae, ai1
, and ai2

, so that an excitatory weight we drives e

and m to a maximum of we, and an inhibitory weight wi drives i1, i2, and m to a minimum

of wi (see Fig. 10.15).

This system of equations can be solved by repeatedly making use of the fact that the

solution to

dy
dt
��� k1 y

�
ae

� k2t
Eq. A1.5

is

y � y0e
� k1t �

b
�
e

� k1t
� e

� k2t �
Eq. A1.6

where y0 is the value of y at t = 0, and b = a / (k2 - k1). Note that when a > 0 and k2 > k1,

we may conclude that b > 0.

The solution to Eqns. A1.1-A1.4 is

e
�
t

�
� e0e

� ke � t � t0 � Eq. A1.7

i1
�
t

�
� i10

e
� ki1 � t � t0 �

Eq. A1.8

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Appendix A1

i 2

�
t

�
� i20

e
� ki2

�
t � t0 � �

bi1
i1

�
e

� ki2

�
t � t0 � � e

� ki1

�
t � t0 � �

Eq. A1.9

m
�
t

�
� m0e

� km � t � t0 �

�

be

�
e

� km � t � t0 � � e
� ke � t � t0 � �

e0

�

bi 2

�
e

� km � t � t0 � � e
� ki2 � t � t0 � �

i 20

�

bi 2
bi 1

�
e

� km � t � t0 � � e
� ki2 � t � t0 � �

i10

 � bi 2
bi1

ki 2

� km

ki 1

� km

�
e

� km � t � t0 � � e
� ki1 � t � t0 � �

i10

Eq. A1.10

where

t0 is the time of the most recent input event

e0, i10
, i20

, and m0 are the values of e , i1, i2, and m immediately after that event

was handled

IntFire4 uses self-events to successively approximate the firing time. At initialization,

a self-event is issued that will return at t = 109 ms (i.e. never). Arrival of a new event at

time tevent causes the following sequence of actions:

� The current values of the states e , i1, i2, and m are calculated analytically from Eqns.

A1.7-A1.10.

� The values of e0, i10
, i20

, and m0 are updated to the current values of e , i1, i2, and m,

and the value of t0 is updated to tevent.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Appendix A1 November 28, 2004

� If m > 1 - � , the cell fires and m is reset to 0.

� If the event was a self-event, the next firing time is estimated and a new self-event is

issued that will return at that time.

� If the event was an input event, then depending on whether it was excitatory or

inhibitory (i.e. weight w < 0 or > 0), w is instantaneously added to e or i1, respectively.

That done, the next firing time is estimated, and the yet-outstanding self-event is

moved to that time.

The next firing time is approximated from the values of m and its derivative

immediately after the event is handled. If m(t0)' � 0, then the estimated firing time is set

to 109, i.e. never. If m(t0)' > 0, the estimated firing time is (1-m(t0))/m(t0)'. In the

following sections we prove that this strategy produces an estimate that is never later than

the true firing time; otherwise, the simulation would be in error.

From a practical perspective, it is also important that successive approximations

converge rapidly to the true firing time, to avoid the overhead of a large number of self

events. Since the slope approximation is equivalent to Newton's method for finding the t

at which m = 1, we only expect slow convergence when the maximum value of m is close

to 1. Using a sequence of self-events is superior to carrying out a complete Newton

method solution for the firing time, because it is most likely that external (input) events

will arrive in the interval between firing times, invalidating the computation of the next

firing time. The number of iterations that should be carried out per self-event remains an

experimental question, because self-event overhead depends partly on the number of

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Appendix A1

outstanding events in the event queue. A single Newton iteration generally takes longer

than the overhead associated with self-events.

Proof that the estimate is never later

than the true firing time

For notational clarity, we will use m0 and m0' to refer to the values of m and m'

immediately after the event is handled. The proof consists of two major parts. First we

show that if m0' � 0, then m(t) remains < 1. Then we show that if m0' > 0, then (1-m0)/m0'

underestimates the firing time. This latter part is divided into the cases m0 � 0, and m0>0.

First, however, we present a useful lemma.

Lemma:

If

k1
� k2

� k Eq. A1.11

f 1

�
t

�
� e

� k t � e
� k1 t

Eq. A1.12

f 2

�
t

�
� e

� k t � e
� k2 t

Eq. A1.13

then

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Appendix A1 November 28, 2004

f 1

�
t

�

k1
� k

�
f 2

�
t

�

k2
� k

Eq. A1.14

for all t � 0.

Proof:

First note that f 1

�
0 ��� f 2

�
0 ��� 0 so the lemma holds at t = 0. Also note that

f 1'
�
0

�
� k1

� k and f 2'
�
0

�
� k2

� k so both sides of the inequality we are trying to

prove have slope 1 at t = 0.

Next consider t > 0. e
� k t � e

� k1 t
� e

� k2 t
 so it is safe to divide by e

� k t � e
� k2 t

,

and we can write

f 1

�
t

�

k1
� k

�
f 2

�
t

�

k2
� k

�
k2
� k

f 2

�
t

�
�

f 1

�
t

�

f 2

�
t

� k2
� k

k1
� k

� 1 � Eq. A1.15

Analyzing the right hand side of this equation, we see that the ratio
�
k2
� k

���
f 2

�
t

�
 is

positive. Also,
�
k2 	 k ��
 � k1 	 k � < 1. Furthermore, f 1 and f 2 are positive, and since

e
� k t � e

� k2 t
 then f 1

�
f 2 < 1. Thus the expression inside the parentheses is negative,

and the entire right hand side of Eq. A1.16 is < 0. This completes the proof of the lemma.

Note that Eq. A1.15 can be expressed as

f 1

�
t

� k2
� k

k1
� k

� f 2

�
t

�
Eq. A1.16

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Appendix A1

Also, in the limit as k2 approaches k, we have

f 1

�
t

�

k1
� k

� t e
� k t Eq. A1.17

Part 1: if m0' � 0, then m(t) remains < 1

We now prove that if m0' � 0, then m(t) remains < 1 (i.e. the firing time is infinity)

regardless of e, i1, or i2. Since we are trying to predict the trajectory of m based on the

values of m and m' immediately following the most recent event, it will be advantageous

to think in terms of the time that has elapsed since that event, i.e. relative time, rather

than absolute time. Therefore we substitute t for t - t0, and rewrite Eq. A1.10 as

m
�
t

�
� m0e

� kmt

�

be

�
e

� kmt
� e

� ket �
e0

�

bi 2

�
e

� kmt
� e

� ki2
t �

i 20

�

bi 2
bi1

�
e

� kmt
� e

� ki2
t �

i10

 � bi 2
bi1

ki 2

� km

ki 1

� km

�
e

� kmt
� e

� ki1
t �

i10

Eq. A1.18

From the lemma we see that the sum of the last two major terms on the right hand

side is � 0. Factoring out the common multiplier bi 2
bi 1

i10
 from these terms leaves the

expression

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

The NEURON Book: Appendix A1 November 28, 2004

�
e

� kmt
� e

� ki2
t �
�

ki 2

� km

k i1

� km

�
e

� kmt
� e

� ki1
t �

which is positive because ki
1
 > ki

2
 > km. However, the multiplier bi 2

bi 1
i10

 itself is � 0

because i10
 is � 0 while bi1

 and bi2
 are both > 0.

Thus

m
�
t

�
� m0e

� kmt

�

be

�
e

� kmt
� e

� ket �
e0

�

bi 2

�
e

� kmt
� e

� ki 2
t �

i20

Eq. A1.19

The last term here is negative (except at t = t0, where it is 0), and we can use our lemma

again to replace it with something that is not so negative, i.e.

m
�
t

�
� m0e

� kmt

�

be

�
e

� kmt
� e

� ket �
e0

�

bi 2

ki 2

� km

ke
� km

�
e

� kmt
� e

� ket �
i 20

Eq. A1.20

Rewriting this as

m
�
t

�
� m0e

� kmt

� 1

ke
� km

�
e

� kmt
� e

� ket � �
aee0

�
ai 2

i20

� Eq. A1.21

we note that ae e0 + ai
2
 i2

0
 is m0' + km m0, so

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Appendix A1

m
�
t

�
� m0e

� kmt

�

km

ke
� km

�
e

� kmt
� e

� ket �
m0

� 1

ke
� km

�
e

� kmt
� e

� ket �
m0'

Eq. A1.22

We have stipulated that m0' � 0, so the last term is � 0 and we can remove it and write

m
�
t

�
� m0

�
e

� kmt � km

ke
� km

�
e

� kmt
� e

� ket ���
Eq. A1.23

Since m0 < 1, we only have to prove that the bracketed expression is � 1. Clearly it is

1 when t = 0. Factoring this expression gives

ke

ke
� km

e
� kmt

�
km

ke
� km

e
� ket

whose derivative is

�
ke km

ke
� km

e
� kmt � ke km

ke
� km

e
� ket

or

�
ke km

ke
� km

�
e

� kmt
� e

� ket �

which is 0 at t = 0 and negative for t > 0. A function that is 1 at t = 0 and has a negative

derivative for t > 0 must be � 1 for t > 0.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

The NEURON Book: Appendix A1 November 28, 2004

This completes Part 1 of the proof. Next we prove that, if m0' > 0, the first Newton

iteration estimate (1 - m0) / m0' is never later than the true firing time.

Part 2: if m' > 0, 1 - m / m' underestimates the firing time

The last thing to do is to prove that, if m0' > 0, the Newton iteration (1 - m0) / m0' is

never later than the firing time. We start from Eq. A1.22, but since we now stipulate that

m0' > 0, the last term is positive. According to our lemma, we can replace it with the

larger term t e
� kmt

m0 ' to get

m
�
t

�
� m0e

� kmt

�

km

ke
� km

�
e

� kmt
� e

� ket �
m0

�

t e
� kmt

m0 '

Eq. A1.24

Consider the case where m0 > 0. The sum of the first two terms is � m0 and the third

term is � t m0', so

m
�
t

�
� m0

�
m0 ' t Eq. A1.25

and the Newton iteration underestimates the firing time.

Now consider case where m0 < 0. The second term of Eq. A1.24 is � 0 so we can

throw it out and write

m
�
t

�
�

�
m0
�

m0 ' t
�
e

� kmt
Eq. A1.26

Page 10 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Appendix A1

We complete our proof by applying a geometric interpretation to this inequality. The

value of t at which the line y(t) = m0 + m0' t intersects y = 1 is the estimated firing time

found by a Newton iteration. Equation A1.24 shows that the trajectory of the membrane

state variable runs at or below that line. Consequently, the Newton iteration

underestimates the true firing time.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 11

November 28, 2004 The NEURON Book: Chapter A2

Appendix A2

NEURON's built-in editor

Many people are already comfortable with their own text editor and will find it most

convenient to load text files into hoc with the xopen() or load_file() command.

However, NEURON has a built-in editor that is closely related, if not identical, to

MicroEMACS (http://uemacs.tripod.com/), and which we will simply call

"emacs." In this era of richly menued, GUI-based editing software, NEURON's tiny

emacs editor is definitely showing its age, and noone would ever confuse it with the

much more powerful EMACS that has Lisp-like syntax (Cameron and Rosenblatt 1991).

Nonetheless, it is quite capable and has the advantage of having same "look and feel" on

all platforms.

Like EMACS, emacs is a command-driven editor with modes and multiple buffers.

What does this mean? Being "command-driven" means that there are no menus or

buttons to click on with a mouse. Instead, special keystrokes, like the "keyboard

shortcuts" in other editors, are used as commands to the editor. Having "modes" implies

that some of these commands change how emacs responds to what you type, like the way

many editors can be switched between "insert" and "replace" mode. The notion of

"buffers" may seem strange, but if you have ever used any kind of editor or word

processing software, then you have almost certainly worked with buffers even if you

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

The NEURON Book: Chapter A2 November 28, 2004

didn't realize it. When you open a file to edit it, a copy of the file's contents are placed in

a buffer in the computer's memory, and you edit the contents of the buffer. When you

save your work, the buffer is written back to the file.

In the following pages we describe the commands that are available in emacs. The

keystrokes for these commands are represented with this shorthand notation:

notation means
^A press and hold the "control" (Ctrl) key while typing a or A

^A B first type ^A, then type b or B

Esc press and release the "escape" (Esc) key

Esc-A press and release the "escape" (Esc) key, then type a or A

Esc n A press and release the "escape" (Esc) key, type a number,
then type a or A

space press and release the space bar

Tab press and release the tab key

Starting and stopping

Switching from hoc to emacs

Type the command em at the oc> prompt.

Returning from emacs to hoc

Type ^C. The current edit buffer will be read into hoc and executed. If the hoc

interpreter encounters a syntax error, NEURON will return to emacs with the cursor at

the line where the parser failed. Note that ^C only executes a buffer. It does not save any

unsaved buffer. On exit from hoc you will be prompted for whether or not to save each

unsaved buffer.

Page 2 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter A2

Killing the current command

^G stops the current command. Sorry, emacs has no "undo."

Moving the cursor
^F Forward 1 character.*

^B Backward 1 character.*

Esc-F Forward 1 word.

Esc-B Backward 1 word.

^E To end of line.

^A To start of line.

^N Next line.

^P Previous line.

Esc-N To end of next paragraph.

Esc-P To start of previous paragraph.

^V Scroll down one screen.*

Esc-V Scroll up one screen.*

Esc-> To end of buffer.*

Esc-< To start of buffer.*

* --Under MSWindows the arrow keys, Page Down, Page Up, End, and Home keys may

work.

Modes

There are five modes that can be used individually, in any combination, or not at all.

^X M Add mode. At the prompt type the name of the mode to be added.

^X ^M Delete mode. At the prompt type the name of the mode to be removed.

Mode name Description
over New typing replaces (overwrites) instead of inserting characters.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 3

The NEURON Book: Chapter A2 November 28, 2004

cmode Automatic indenting of C programs.

wrap Automatic word wrap (inserts return at right margin).

exact Search using exact case matching.

view View buffer without changing it (ignores commands to change
buffer).

Deleting and inserting
^H Delete previous character.

^D Delete next character.

Esc-^H Delete previous word.

Esc-D Delete next word.

^K Delete to end of line.

^O Insert line.

Under MSWindows, the Insert key inserts a space, and the Delete key acts like ^H.

Blocks of text: marking, cutting, and pasting
Esc-space Set mark at cursor position. After a mark has been set, the "region" is

the text between the mark and the current position of the cursor. The
"region" changes dynamically as the cursor is moved around.

^X ^X Exchange mark and cursor.

^W Delete (cut) region between mark and cursor. The deleted text is kept
in the "kill buffer," replacing whatever the kill buffer may have
already contained.

Esc-W Copy region between mark and cursor to the kill buffer.

^Y Copy (paste) text from kill buffer to cursor location.

Searching and replacing
^S Search forward. At the prompt enter the search string followed by Esc.

Case sensitive if buffer is in "exact" mode.

^R Search backward.

Esc-R Start from present location and replace every instance of the first
string (the "search string") with the second string.

Page 4 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter A2

Esc-Q Like Esc-R but asks for user's approval. User may reply with
y or press the space bar to replace and continue
! to replace the rest
n to reject this replacement and continue to the next occurrence of the
 search string
^G to stop
. to stop and return to the starting point
? for a list of options.

Text formatting and other tricks
Esc-C Capitalize word.

Esc-U Change word to upper case.

^X ^U Change region to upper case.

Esc-L Change word to lower case.

^X ^L Change region to lower case.

^T Transpose character at cursor with prior character.

^Q "Quote" next character (allows entry of control codes into text).

^X ^U Change region to upper case.

Esc n ^X F Set right margin to column n.

Esc-J Justify the paragraph so it fits between the margins.

Esc n Tab Set right margin to column n.

^X = Show line number, character count, and size of buffer.

^X ! Send a command to the OS.

Buffers and file I/O

When emacs first starts, it comes up with only one buffer, and that buffer is empty

until you enter some text or type a command that loads a file. You can also have more

than one buffer, each containing its own text, and you can copy text between them. To

help keep things from getting mixed up, each buffer has a name. The first buffer is

automatically called main.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 5

The NEURON Book: Chapter A2 November 28, 2004

It is a good idea to break large programs into many files and edit them in separate

buffers. Buffers larger than 100 lines may take a noticeable time to interpret.

^X B Switch to another buffer. You will be prompted for the name of a
buffer. If the name you type doesn't exist, a new buffer will be created
and given that name.

^X K Delete a non-displayed buffer.

^X ^B Show a directory of the buffers in a window.

^X X Switch to the next buffer in the directory.

Esc-^X 1 Clear the buffer directory window.

^X ^F Create a new buffer and load a file into it. You will be prompted for
the name of the file. If the file doesn't already exist, the buffer will
still be created with that name but it will be empty.

^X ^R Read a file into the current buffer. Pre-existing contents of the current
buffer are overwritten.

^X ^I Insert a file into the current buffer at the location of the cursor.

^X ^V Read a file into the current buffer and set the buffer to view mode.

^X ^S Write current buffer to disk, using the name of the buffer as the name
of the file. Overwrites pre-existing file with same name.

^X ^W Write current buffer to disk. You will be prompted for a file name.
This name will also become the name of the current buffer.

^C Exit from emacs to hoc. The current buffer is passed to the hoc
interpreter. For more details see Returning from emacs to hoc under
Starting and stopping above.

^X ^C Exit from both emacs and NEURON. You will be asked if you want to
save buffers.

Windows

The emacs editor appears inside the terminal window from which NEURON was

started. At first this window contains only one area for editing text, but you can split this

into several different areas. These areas are called "windows" in standard EMACS and

MicroEMACS terminology (Cameron and Rosenblatt 1991). Each window may show a

different part of the same buffer, or part of a different one.

Page 6 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter A2

^X 2 Split the current window in two.

^X 1 Remove all but the current window.

^X N Put the cursor in the next window.

^X P Put the cursor in the previous window.

^X ^ Enlarge the current window.

Esc-^V Scroll the other window down.

Esc-^Z Scroll the other window up.

Macros and repeating commands
Esc n - Repeats the next command n times.

^U n Repeats the next command n times.

^U Repeats the next command 4 times. Typing ^U several times in a row
repeats the next command by a power of 4, e.g. ^U ^U ^U ^N moves
the cursor down 64 lines.

^X (Begin macro.

^X) End macro.

^X E Execute macro. All keystrokes entered from the beginning to the end
of the macro are interpreted as emacs commands.

References

Cameron, D. and Rosenblatt, B. Learning GNU Emacs. O'Reilly & Associates, Inc.,

Sebastopol, CA. 1991.

Web site retrieved Oct. 27, 2004. MicroEMACS: Binaries, executables, documentation,

source code. http://uemacs.tripod.com/.

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 7

This use of the word "windows"

was well-established years before

the advent of microcomputer

operating systems with windowed

GUIs, in an era when the thought

of copyrighting this word would

have seemed ludicrous.

The NEURON Book: Chapter A2 November 28, 2004

Appendix A2 Index

E

emacs

blocks of text

copying to the kill buffer 4

cutting to the kill buffer 4

marking 4

pasting from the kill buffer 4

buffers 1, 5

cursor movement 3

entering 2

exiting 2

files 5

modes 1, 3

repeating commands

kill current command 3

macros 7

repeating commands 7

search and replace 4

Page 8 Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved

November 28, 2004 The NEURON Book: Chapter A2

send command to OS 5

text

deleting 4

formatting 5

inserting 4

windows 6

Copyright © 2001-2004 N.T. Carnevale and M.L. Hines, all rights reserved Page 9

	preface.pdf
	contents.pdf
	chap1.pdf
	chap2.pdf
	chap3.pdf
	chap4.pdf
	chap5.pdf
	chap6.pdf
	chap7.pdf
	chap8.pdf
	chap9.pdf
	chap10.pdf
	chap11.pdf
	chap12.pdf
	chap13.pdf
	chap14.pdf
	apx1.pdf
	apx2.pdf

