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Critical brain hypothesis has been intensively studied both in experimental and theoretical neuro-
science over the past two decades. However, some important questions still remain: (i) What is the
critical point the brain operates at? (ii) What is the regulatory mechanism that brings about and
maintains such a critical state? (iii) The critical state is characterized by scale-invariant behavior
which is seemingly at odds with definitive brain oscillations? In this work we consider a biologically
motivated model of Izhikevich neuronal network with chemical synapses interacting via spike-timing-
dependent plasticity (STDP) as well as axonal time delay. Under generic and physiologically relevant
conditions we show that the system is organized and maintained around a synchronization transition
point as opposed to an activity transition point associated with an absorbing state phase transition.
However, such a state exhibits experimentally relevant signs of critical dynamics including scale-free
avalanches with finite-size scaling as well as branching ratios. While the system displays stochastic
oscillations with highly correlated fluctuations, it also displays dominant frequency modes seen as
sharp peaks in the power spectrum. The role of STDP as well as time delay is crucial in achieving
and maintaining such critical dynamics, while the role of inhibition is not as crucial. In this way we
provide definitive answers to all three questions posed above. We also show that one can achieve
supercritical or subcritical dynamics if one changes the average time delay associated with axonal
conduction.

PACS numbers: 05.45.Xt, 87.18.Sn, 87.18.Hf, 68.35.Rh

INTRODUCTION

Since its inception nearly two decades ago, the criti-
cal brain hypothesis has gained a considerable amount
of attention in the literature [1–3]. Although it has en-
countered some skepticism at times [4], it has now grown
to a relatively mature field with substantial body of the-
oretical and experimental evidence to support it [4–11].
Brain criticality is thought to underlie many of its fun-
damental properties such as optimal response, learning,
information storage, as well as transfer [12]. The origi-
nal ideas of brain criticality came out of studies of self-
organized criticality, where a threshold dynamics leads to
a balance between slow drive and fast dissipation in open
nonequilibrium systems and thus observation of critical
dynamics [13]. It is now generally believed that long-
term evolution has led to a balance between excitatory
as well as inhibitory tendencies which place the brain “on
the edge”, i.e. a critical point. However, this does not
necessarily answer the problem of stability of the critical
state, as some neurophysiological mechanism is needed to
maintain the system near the critical point against many
possible perturbative effects.

It seems like there are some important theoretical is-
sues which have remained open in regards to brain criti-
cality: (i) What exactly is the phase transition which de-
termines the critical point? Traditionally, this has been
assumed to be the absorbing-state phase transition moti-
vated by the studies of self-organized criticality [14, 15].
However, in some recent studies, it has been indicated
that the brain is maintained near a synchronization tran-

sition [10, 16]. We note that some authors have also
argued for the existence of the extended critical region
similar to that of “Griffiths phase” [17–20]. However,
such critical regions also typically occur near the absorb-
ing phase transition where the system transitions from
an inactive phase to an active phase. (ii) What is the
self-organizing mechanism which leads to, and maintains
the system in a critical state? As mentioned above the
balance between excitatory and inhibitory tendencies are
thought to be the long time solution to this question.
However, physiological mechanism such as synaptic plas-
ticity are also considered to be important mechanism
to maintain the nervous system in a balanced state on
shorter time scales. Clearly, extended criticality can also
alleviate such a problem to a certain extend as criticality
is observed for a range of parameter instead of a particu-
lar point. (iii) If the brain is in the critical state with its
associated scale-invariant behavior, how could it also dis-
play definitive rhythmic behavior via brain oscillations?

Brain plasticity is increasingly being recognized as
an important and fundamental property of a healthy
nervous system. In particular, spike-timing-dependent-
plasticity (STDP) is an important mechanism which
can modify synaptic weights on very short time scales.
Therefore, it seems reasonable to invoke STDP as a self-
organizing mechanism. In a STDP protocol, the strength
of a synapse is modified based on the relative spike-
timing of its corresponding pre- and post-synaptic neu-
rons, i.e., STDP incorporates the causality of pre- and
post-synaptic spikes into the synaptic strength modifica-
tions. If the pre-synaptic neuron spikes first and leads to
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the post-synaptic neuron to spike shortly afterward, then
the synapse is potentiated. Reversely, if the pre-synaptic
spike follows the post-synaptic spike the synapse will be
depressed [21–24]. The competition between coupling
and decoupling forces arising from successive potentia-
tion and depression of synapses tunes the neural network
into a balanced dynamical state.
Our work in this paper is motivated by the above con-

siderations. In particular, we propose to study a biolog-
ically plausible model of cortical networks, i.e. Izhike-
vich neurons, along with neurophysiological regulatory
mechanism such as STDP with suitable axonal conduc-
tion delays in order to answer some of the above posed
questions. Interestingly, we find that our regulatory sys-
tem self-organizes the neuronal network to the “edge of
synchronization” in physiologically meaningful parame-
ter regime. We first establish some of the characteristics
of such a steady state. More importantly, we look for
characteristics of critical dynamics in such a minimally
synchronized steady state. Motivated by various exper-
iments, we look for neuronal avalanches, branching ra-
tios, as well as power spectrum of activity time-series.
We find that such a system on the edge of synchroniza-
tion exhibits significant indications of critical dynamics
including scale-invariant avalanches with finite-size scal-
ing. Our results provide definitive answers to the above
questions in a biologically plausible model of neuronal
networks.
In the following section, we describe the model we use

for our study. Results of our numerical study is presented
in section III, and we close the paper with some conclud-
ing remarks in section IV.

MODEL AND METHODS

The studied cortical networks consist of N spiking
Izhikevich neurons which interact by transition of chemi-
cal synaptic currents with axonal conduction delays. The
dynamics of each neuron is described by a set of two dif-
ferential equations [25]:

dvi
dt

= 0.04v2i + 5vi + 140− ui + IDC
i + Isyni (1)

dui

dt
= a(bvi − ui) (2)

with the auxiliary after-spike reset:

if vi≥30, then vi → c and ui → ui + d (3)

for i = 1, 2, ..., N . Here vi is the membrane potential and
ui is the membrane recovery variable. When vi reaches
its apex (vmax = 30 mV), voltage and recovery variable

are reset according to Eq.(4). a, b, c and d are four ad-
justable parameters in this model. Tuning these parame-
ters, Izhikevich neuron is capable of reproducing different
intrinsic firing patterns observed in real excitatory and
inhibitory neurons [25]. We set these parameters so that
excitatory neurons spike regularly and inhibitory neurons
produce fast spiking pattern [25–27].
The term IDC

i is an external current which determines
intrinsic firing rate of uncoupled neurons. Regularly spik-
ing Izhikevich neurons exhibits a Hopf bifurcation at
IDC = 3.78 [28]. We choose values of IDC

i randomly
from a Poisson distribution with the mean value 10. The
term Isyni represents the chemical synaptic current deliv-
ered to each post-synaptic neuron i [29]:

Isyni =
V0 − vi
Di

∑

j

gji
exp(−

t−(tj+τji)
τs

)− exp(−
t−(tj+τji)

τf
)

τs − τf

(4)

Here Di is the in-degree of node i, tj is the instance of
last spike of pre-synaptic neuron j, and τji is the axonal
conduction delay from pre-synaptic neuron j to post-
synaptic neuron i. If axonal delays are not taken into
account, then τji = 0 for all j 6= i. Axonal delay values
of τji are chosen randomly from a Poisson distribution
with mean value τ = 〈τji〉. τf and τs are the synaptic
fast and slow time constants and V0 is the reversal po-
tential of the synapse. If inhibition is included, then mo-
tivated by the properties of cortical networks [30], we set
population density of inhibitory neurons to twenty per-
cent, i.e. α = 0.2 while the initial strength of inhibitory
synapses are chosen four times the strength of excita-
tory synapses. Therefore, the excitation-inhibition ratio
is balanced. α = 0 indicates that we are only considering
a network of excitatory neurons. gji is the corresponding
element of the adjacency matrix of the network which
denotes the strength of synapse from pre-synaptic neu-
ron j to post-synaptic neuron i. Each type of synapses
are initially static and have equal strength. gji = gs if
neurons j and i are connected and the synapse is excita-
tory, gji = 4gs if neurons j and i are connected and the
synapse is inhibitory, and gji = 0 otherwise. When we
turn the STDP on, strength of excitatory synapses are
modified according to a soft-bound STDP rule [21–24],
while the strength of inhibitory synapses are fixed. If
pre-synaptic neuron j fires a spike at time t = tpre, then
the strength of synapse is modified to gji → gji + ∆gji,
where:

∆gji =







A+(gmax − gji)e
−

∆t−τji
τ+ if ∆t > τji

−A−(gji − gmin)e
∆t−τji

τ
− if ∆t ≤ τji

(5)

Here, ∆t = tpost − tpre is the time difference of last post-
and pre-synaptic spikes, A+ and A− determine the max-
imum synaptic potentiation and depression, τ+ and τ−
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TABLE I: Values of constant parameters used in this study.

Izhikevich neuron aex = 0.02 bex = 0.2 cex = −65 dex = 8 ain = 0.1 bin = 0.2 cin = −65 din = 2
Synaptic current τf = 0.2 τs = 1.7 V0,ex = 0 V0,in = −75
STDP rule A+ = 0.05 A− = 0.05 τ+ = 20 τ− = 20 gmin = 0 gmax = 0.6

determine the temporal extent of the STDP window for
potentiation and depression, and gmin and gmax are the
lower and upper bounds of synaptic strength. The values
of all parameters for Izhikevich neuron, synaptic current
and STDP rule are listed in Table I.
We consider a temporally shifted STDP window for

which the boundary separating potentiation and depres-
sion does not occur for simultaneous pre- and post-
synaptic spikes, but rather for spikes separated by a small
time interval [31]. We set the value of this shift equal with
the actual axonal delay for each synapse. This rule re-
trieves the conventional STDP rule when no time-delay is
considered, τji = 0. We have plotted the STDP temporal
window function ∆g = f(∆t) and its shift in Fig.1. This
temporal shift causes synchronous or nearly-synchronous
pre- and post-synaptic spikes to induce long-term depres-
sion.

-30 -20 -10 0 10 20 30

t

-0.02

-0.01

0

0.01

0.02

g

conventional

shifted

FIG. 1: Conventional (solid line) and shifted (dashed line)
STDP temporal window function ∆g = f(∆t). Blue parts
denote depression and red parts denote potentiation. Units
of ∆t is ms.

We integrate the dynamical equations using fourth-
order Runge-Kutta method with a time step h = 0.01ms
and obtain vi(t). We typically evolve the entire system
for a long time and make sure that the system has reached
a stationary state. We then perform our measurements
and calculations. We obtain the instants of firings of all
neurons and then assign a phase to each neuron between
each pairs of successive spikes [32]:

φi(t) = 2π
t− tmi

tm+1
i − tmi

(6)

while tmi is the time that neuron i emits its mth spike.

We define a time-dependent order parameter:

S(t) =
2

N(N − 1)

∑

i6=j

cos2
(φi(t)− φj(t)

2

)

(7)

This order parameter measures the collective phase syn-
chronization at time t. S(t) is bounded between 0.5 and
1. If neurons spike out-of-phase, then S(t)≃0.5, when
they spike completely in-phase S(t)≃1 and for states with
partial synchrony 0.5 < S(t) < 1. The global order pa-
rameter S∗ is the long-time-average of S(t) at the station-
ary state after the influence of STDP (S∗ = 〈S(t)〉t). We
note that the intricate details of the model along with
the need to obtain long-time dynamics of the system,
limit our computational abilities. We have therefore per-
formed simulations for 100 < N < 1000. We find that
our general results and conclusions are independent of
the system size used and therefore report most of our re-
sults for N ≈ 500. In the next section we will present a
systematic study of the system above, paying particular
attention to the effect of STDP, time delay, and inhibi-
tion.

RESULTS

Spiking Izhikevich neurons with static chemical
synapses exhibit a continuous transition to phase syn-
chronization upon increasing synaptic strength, i.e. the
amount of global synchrony depends on the average
synaptic strength [28]. Now, consider the simple case of
an all-to-all network of excitatory neurons without axonal
delays. STDP is off initially. S(t) timeseries for different
values of gs are illustrated in Fig.2(a). It is observed that
S(t) depends on gs as is expected. Next, we turn on the
STDP at t = 5s. Interestingly, it is seen that S(t) time-
series evolve to a common state regardless of their initial
values. Thus, as STDP modifies the synaptic strengths,
neural network organizes into a final state with a spe-
cific global phase synchronization S∗ independent of the
initial synaptic strengths. Our investigations reveal that
this is a generic condition emerging in neural networks
with different underlying structures. We also find that
the amount of S∗ is independent of many parameters in-
cluding the amplitudes and time extents of STDP rule,
and intrinsic firing rate of neurons. However S∗ depends
drastically on the average value of axonal conduction de-
lays. Fig.2(b) shows that increasing τ leads to a phase
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transition from strongly synchronized states with S∗ ≃ 1
to asynchronous states with S∗ ≃ 0.5, for neural net-
works with α = 0 and α = 0.2. Fig.2(b) also shows that
inhibition has a secondary role in the amount of steady
state synchronization ,S∗, as compared to axonal delay,
τ . Important to our purposes, it shows that for τ = 10ms
the systems stand at the boundary of phase synchroniza-
tion for both α values.Note the importance of time delay
as it causes STDP to depress (weaken) the synchronous
neurons, thus reducing the amount of S∗ in the system.
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FIG. 2: (a) Effect of STDP on the time evolution of S(t) for
all-to-all networks of excitatory spiking neurons with different
gs. The unit of time axis is in seconds. (b) Dependence of S∗

on τ for α = 0 and α = 0.2.

In order to further investigate the properties of Izhike-
vich neuronal networks, we consider four different net-
works ofN = 500: (1) a network of purely excitatory neu-
rons without time-delay (α = 0, τji = 0), (2) a network
of purely excitatory neurons with axonal conduction de-
lays (α = 0, τ = 10ms), (3) a network of excitatory and
inhibitory neurons without time-delay (α = 0.2, τji = 0),
and (4) a network of excitatory and inhibitory neurons
with axonal conduction delays (α = 0.2, τ = 10ms). We
have studied networks with different τ values, but we
display mostly the results in cases for which all delays
are zero (τji = 0) and S∗ ≫ 0.5 as well as those with
τ = 10ms for which S∗ → 0.5+. We note that while our
results (Fig.2) show that τ = 10ms is an interesting case
of transition point, such an actual value for axonal delay
is experimentally meaningful [33]. We turn on STDP at
t = 5s in a complete network and monitor its influence
on different features of each system.

Synchronization and average synaptic weights
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FIG. 3: Timeseries of S(t) and G(t) and the influence of
STDP on them. The unit of time axis is in seconds. STDP is
turned on at t = 5s. In each panel different line colors demon-
strate different static synaptic strengths, gs = 0.5 (black),
gs = 0.2 (red) and gs = 0.05 (blue).

The influence of STDP on the timeseries S(t) in differ-
ent conditions is illustrated in the left column of Fig.3.
Each panel contains three plots with different values of
gs, i.e. the initial synaptic weights. When STDP is off,
S(t) depends on gs. Turning STDP on, each system
reaches a final state with a specific amount of synchro-
nization S∗, regardless of initial level of order (regardless
of gs). However, S

∗ depends on τ and α. Systems (1) and
(3) reach a strongly synchronized states with S∗ ≃ 0.88
and S∗ ≃ 0.75, respectively. Implementation of conduc-
tion delays drive the dynamics toward lower levels of or-
der. Systems (2) and (4) with τ = 10ms lead to states at
the edge of transition with S∗ ≃ 0.509 and S∗ ≃ 0.503,
respectively. The right column of Fig.3 represents the
timeseries of the average strength of excitatory synapses,
for the corresponding system in the left column repre-
sented by, G(t) = 1

NL

∑

j 6=i gji,ex(t), where NL is the
number of existing excitatory links. It is observed that
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at the final states G(t) ≃ 0.3 for all the systems. It is in-
teresting that the final average value of synaptic weight
is independent of the amount of inhibition and and/or
axonal delay, as well as initial distribution. However, the
main point here is that the amount of synchronization
in the system is not solely determined by average synap-
tic strength but crucially depends on axonal conduction
delay, and to a lesser degree on inhibition.
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FIG. 4: Distribution of the excitatory synaptic strength at the
stationary state of the systems after the influence of STDP
(left) and time evolution of a pair of reciprocal synapses
(right). The unit of time axis is in seconds.

It is somewhat unexpected that similar average synap-
tic weights would lead to decidedly different synchroniza-
tion patterns. The answer is in the form of the actual
distributions of the weights. In one scenario the average
is the most likely value (unimodal distribution) and in
the other case is the least likely value (bimodal distribu-
tion). The probability distribution function of excitatory
synaptic strengths P (gex) (in the steady state) for each
system is shown in the left column of Fig.4. Also, the

FIG. 5: Raster plots of the neural networks with different
values of τ and α at the stationary states after influence of
STDP. The unit of time axis is in seconds.

right column of this figure illustrates time evolution of
strength of a pair of reciprocal synapses. At the absence
of axonal delays, STDP produces a bimodal distribution
of synaptic strengths (Figs.4(a) and 4(e)) which is incom-
patible with the experimentally observed distributions of
synaptic strength. However, addition of time-delays to
the neural network modifies this condition. Simultane-
ous presence of STDP and time-delays produce a uni-
modal distribution of synaptic strengths (Figs.4(c) and
4(g)) resembling those measured in cultured and cortical
networks [34, 35].

Emergence of these different distributions of synaptic
strengths is associated with the amount of phase synchro-
nization in the networks. When neurons interact without
time-delay, the final state of the system is strongly syn-
chronized. Therefore, for each pair of symmetric links,
STDP depresses the link in one direction and potenti-
ates the link in the opposite direction as in Figs.4(b) and
4(f). Thus all symmetric connection would be broken
into unidirectional connections after a while in this case.
This leads to a bimodal distribution of synaptic strengths
whether the network consists of purely excitatory neu-
rons or a mixture of excitatory and inhibitory neurons.
With the inclusion of time-delay in the system the level
of order declines as it also causes to preserve symmetric
connections between each pair of neurons [36]. Although
the strength of synapses fluctuates over time (Figs.4(d)
and 4(h)), both links in opposite directions remain ac-
tive. This leads to a unimodal distribution of synaptic
strengths.

Indicators of criticality

So far we have seen that STDP along with reasonable
time delay (and inhibition) will lead the system on the
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edge of synchronization. However, being on the edge of
synchronization could be caused by vastly different spik-
ing patterns [28]. More importantly for the purpose of
the present study, we would like to know whether such a
state of minimal synchronization has any experimentally
relevant indications of criticality. In this subsection we
will address such issues.

Raster plots of neural networks with different values
of α and τ (in the steady state) are displayed in Fig.5.
When time-delay is ignored, neuronal spikes are highly
ordered (Figs.5(a) and 5(c)). This is not the real state
of a healthy nervous system. However, addition of ax-
onal conduction delay modifies the amount of global or-
der in the networks. Simultaneous effect of STDP and
a suitable axonal conduction delays decrease global co-
herence in neural oscillations (See Figs.5(b) and 5(d)).
In Figs.5(c) and 5(d), inhibitory neurons indexed as
401− 500, spike with a higher rate as compared to exci-
tatory neurons 1− 400.
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FIG. 6: Timeseries of network activity M(t) in the stationary
state after the influence of STDP (left) and their power spec-
trum (right). The unit of time axis is in seconds. The inset
of (h) shows the same on a log-log scale.

The amount of order parameter S∗ and the raster
plots are reasonable evidences indicating the system with

τ = 10ms organizes to the edge of synchronization tran-
sition with minimal value of S∗. We now present ex-
perimentally relevant results which indicate that such a
system is in a critical state. We first consider the network
activity timeseries M(t) which is defined as the number
of neuronal spikes at time t, as well as its power spec-
trum. These plots are illustrated in Fig.6. The network
activity oscillates regularly in systems without time-delay
for which phase synchronization is strong (Figs.6(a) and
6(e)). Therefore the power spectrum of these systems
exhibit a sharp peak at f ≃ 23.5Hz (Figs.6(b) and 6(f)).
While neurons are delay-coupled the oscillations of M(t)
are irregular (Figs.6(c) and 6(g)). Despite this deceptive
irregularity, the power spectrum exhibits a large peak at
frequency f ≃ 21.5Hz (Figs.6(d) and 6(h)) along with a
range of other frequencies. This dominant peak reveals
that rhythmic oscillations are still robust at these neu-
ral networks. The inset of Fig.6(h) shows a log-log plot
which indicates that the spectrum has a decaying tail in
the system for which α = 0.2 and τ = 10ms. Note that
the amplitude of oscillations ofM(t) depends on the level
of phase synchronization. The stronger the neurons are
synchronized, the larger is the amplitude of M(t) oscil-
lations, i.e. note the scale of the power spectrum on the
y-axis.

Scale-invariant statistics of neural avalanches is
thought to be the most important indicator of criti-
cal brain dynamics. Hence, the network displays spon-
taneous activity of various sizes s, known as neural
avalanches, which exhibit scale-free distribution, i.e.
P (s) ∼ s−β [1]. By monitoring the spiking activity of our
systems, we can identify outbursts of spikes the number
of which is associated with the size of avalanches. An
avalanche begins when the network activity exceeds a
threshold Mth and ends when it turns back below that
threshold. Here, we set the threshold to be equal with the
mean value of activity in the system. s is defined as the
total number of spikes during this avalanche. Critical-
ity is supposed to be indicated by a power-law behavior
P (s) ∼ s−β and a finite-size cut-off which diverges as
system size diverges (N → ∞).

We consider neural networks with α = 0.2 and three
different τ values, i.e. τ = 14ms, τ = 10ms and τ = 8ms.
From the synchronization point of view, Fig. 2(b), these
systems would be subcritical, critical, and supercritical.
Each network is also simulated with different network
sizes N . For any given set of parameters the network is
simulated for a considerably long time, producing a large
number of avalanches. Probability distribution functions
of avalanche sizes for such networks is illustrated in the
left column of Fig.7. For neural networks with τ = 14ms,
P (s) decays with a characteristic scale which is an indica-
tor of subcritical behavior (Fig.7(a)). Note how this scale
saturates as system size increases. For networks with
τ = 8ms, P (s) exhibits a bump for large s which is an
evidence of supercritical behavior (Fig.7(e)). Here, large
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avalanches are more likely to occur than intermediate size
avalanches. Interestingly, in networks with τ = 10ms
P (s) exhibits a power-law behavior P (s) ∼ s−β and a
finite-size cut-off which increases relative to the system
size (Fig.7(c)).
Emergence of power-law behavior in a finite system

does not necessarily prove criticality of the system. To
verify criticality, we perform a finite-size scaling of our
data for different network sizes N (inset of Fig.7(c)). We
observe that indeed we obtain a good collapse for the
system sizes considered in this study. Incidentally, our
finite-size scaling collapse allows us to calculate the β
value more reliably where we obtain the critical exponent
β = 1.4 which is close to the accepted experimental value
β ≈ 1.5 obtained by various studies including the original
neuronal avalanche study of [5].
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FIG. 7: Distribution function of size of avalanches, and
activity-dependent branching-ratio b(M) vs M −Ma, for var-
ious network sizes N : (a) and (b) subcritical, (c) and (d)
critical, (e) and (f) supercritical. Inset of (c) shows the finite-
size-scaling collapse of size of avalanches in the critical sys-
tem for θ = 1.20 and δ = 1.68. Thus the critical exponent is
β = δ

θ
= 1.4. On the right column, the average branching-

ratio B for each network with size N is reported in the legend.

Another important quantity to characterize critical dy-
namics is activity-dependent branching ratio [37]. Essen-
tially, this function gives the (relative) expectation value
of the timeseries in the next time step for a given amount
of activity at the present time step. More precisely, it
is defined as, b(M) = E{ξM/M}. The variable ξM is
the value of the next signal given that the present one
is equal to M , so ξM = {M(t + dt)|M(t) = M} [37].
Since a critical system is on the edge and is inherently

unpredictable, b(M) ≈ 1, ∀M . For a finite system one
expects a similar result with the additional consideration
that, with increasing system size, the range of activity
M should increase and that b(M) should asymptotically
approach 1. Therefore, one expects b(M) < 1 to gen-
erally indicate subcritical behavior, while b(M) > 1 to
indicate supercritical behavior. In fact, b(M) has been
used to ascertain criticality in a wide range of systems
including sandpile models of SOC or solar flares [37] as
well as neural networks [20, 38].
We obtain the activity-dependent branching-ratio

b(M) using timeseries M(t). The right column of Fig.7
displays b(M) plots for each one of subcritical, critical
and supercritical systems for different system sizes N
(Figs.7(b), 7(d) and 7(f)). Note that the plots are cen-
tered around their respective average activity Ma. Only
in the critical case (Fig.7(d)) do we observe B(Ma) = 1.
However, more importantly, we see b(M) increases its
range and decreases its slope (towards zero) with in-
creasing system size, consistent with critical dynam-
ics of the network. In the two other cases, no such
behavior is observed. For a more common branching
ratio, one calculates the average value of B(M), i.e.

B = 1/(Mmax −Mmin)
∫Mmax

Mmin
b(M)dM . We find B ≃ 1

(τ = 10ms), B ≃ 0.93 (τ = 14ms), and B ≃ 1.1
(τ = 8ms) again indicating critical, subcritical, and su-
percritical dynamics accordingly. The average branching
ratios are reported in the legend of the corresponding
plots in Fig.7.
We have therefore shown how the system with STDP

and physiologically relevant inhibition and axonal delays
will evolve to a unimodal distribution of synaptic weights
starting from a complete uniform network. The resulting
state is a state on the edge of synchronization transition
(not an activity transition) which nevertheless shows ex-
perimentally relevant indicators of critical dynamics in-
cluding power-law avalanches with finite-size scaling as
well as branching ratios. We also show how such indica-
tors of criticality disappear as one moves away from the
edge of synchronization transition via change in average
delay times.

CONCLUDING REMARKS

In this paper we showed that invoking neurophysio-
logical regulatory mechanisms such as temporally shifted
STDP and specific amounts of axonal conduction delays
(τ = 10ms) in a biologically plausible model of corti-
cal networks put the system in a critical state at the
neighborhood of synchronization transition point. In this
state the system exhibits robust rhythmic behavior along
with power-law distributions of avalanche sizes. Further-
more, the behavior of activity-dependent branching-ratio
confirms the criticality of system in this state as well.
However for smaller or larger values of axonal conduc-
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tion delays neural networks self-organize into supercriti-
cal or subcritical states, respectively. While the state of
the network is off-critical, neither the statistics of sizes of
avalanches nor branching-ratio exhibit the signs of criti-
cality.

Coexistence of rhythmic oscillations and scale-
invariant avalanches is important for development of cor-
tical layers [39]. Evidence for this coexistence has been
found in experimental investigations [39, 40]. Also in
theoretical studies, this phenomenon has been reported
to occur as a result of balance between inhibition and
excitation [41], as well as in a periodically driven SOC
model [42]. The neurophysiological mechanisms leading
to this intricate dynamics in the cortex is of fundamen-
tal importance in neuroscience. Here, we revealed that
such intricate dynamics emerges as a result of intrinsic
regulatory mechanisms like STDP and axonal conduction
delays. More strictly, we obtained self-regulated critical-
ity along with coexistence of rhythmic oscillations and
scale invariant activity in a biologically relevant model.

We began this paper by posing three open questions
regarding the critical brain hypothesis. Our results have
provided interesting answers to all three questions. (i)
The critical point and corresponding phase transition
that the brain organizes itself into is not the usual ac-
tivity and/or absorbing phase transition, but the syn-
chronization phase transition. (ii) The self-organizing
mechanism which tunes and maintains the system around
such critical point is a standard neurophysiological regu-
latory mechanism of a temporally shifted STDP. (iii) The
existence of individual neuronal oscillations which self-
organize to a highly correlated but weakly synchronized
collective state is responsible for a dominate oscillatory
mode in addition to scale-free fluctuations.

We have studied neural networks with different topolo-
gies, various initial conditions, as well as various choices
of STDP parameters and observed that our results are
generally the same upon all such changes. We have also
examined that hard-bound STDP leads to similar results,
except for the distribution function of synaptic strengths
that would be bimodal regardless of all conditions imple-
mented in the neural network.
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