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Computational modeling has been indispensable for understanding how
subcellular neuronal features influence circuit processing. However, the role of
dendritic computations in network-level operations remains largely unex-

plored. This is partly because existing tools do not allow the development of
realistic and efficient network models that account for dendrites. Current
spiking neural networks, although efficient, are usually quite simplistic, over-
looking essential dendritic properties. Conversely, circuit models with mor-
phologically detailed neuron models are computationally costly, thus
impractical for large-network simulations. To bridge the gap between these
two extremes and facilitate the adoption of dendritic features in spiking neural
networks, we introduce Dendrify, an open-source Python package based on
Brian 2. Dendrify, through simple commands, automatically generates
reduced compartmental neuron models with simplified yet biologically rele-
vant dendritic and synaptic integrative properties. Such models strike a good
balance between flexibility, performance, and biological accuracy, allowing us
to explore dendritic contributions to network-level functions while paving the
way for developing more powerful neuromorphic systems.

Simulations of spiking neural networks (SNNs) are widely used to
understand how brain functions arise from area-specific
network dynamics'”. Moreover, SNNs have recently gained much
attention for their value in low-power neuromorphic computing and
practical machine learning applications*®. SNNs typically comprise
point, integrate-and-fire (I&F) neurons and replicate basic biological
features such as specific connectivity motifs, excitation-inhibition
dynamics, and learning via synaptic plasticity rules®’. However, SNNs
often ignore dendrites, the thin membranous extensions of neurons
that receive the vast majority of incoming inputs. Numerous studies
have shown that the dendrites of excitatory and inhibitory neurons
possess compelling computational capabilities’®" that can sig-
nificantly influence both neuronal and circuit function>™ and cannot
be captured by point-neuron SNNs (for a recent review, see ref. *°).
First, dendrites can act as semi-independent thresholding units,
producing local regenerative events termed dendritic spikes (dSpikes).

These spikes are generated by local voltage-gated mechanisms (e.g.,
Na'/Ca*" channels and NMDA receptors) and influence synaptic input
integration and plasticity'®". Moreover, dendritic mechanisms operate
in multiple timescales, ranging from a few up to hundreds of milli-
seconds, allowing complex computations, including coincidence
detection, low-pass filtering, input segregation/amplification, parallel
nonlinear processing, and logical operations” %,

Due to these nonlinear phenomena, the arrangement of synapses
along dendrites becomes a key determinant of local and somatic
responses. For example, the impact of inhibitory pathways depends on
their exact location relative to excitatory inputs®?**. Moreover, func-
tionally related synapses can form anatomical clusters, which facilitate
the induction of dSpikes, thus increasing computational efficiency and
storage capacity” . Finally, dendritic morphology and passive prop-
erties shape the general electrotonic properties of neurons. For
example, dendritic filtering affects both the amplitude and the kinetics
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of synaptic currents traveling toward the somain alocation-dependent
manner. Given the complexity of dendritic processing, SNNs that lack
dendrites may fail to account for important dendritic contributions to
neuronal integration and output, limiting their true
computational power.

Conversely, biophysical models of neurons with a detailed
morphology are ideal for studying how dendritic processing
affects neuronal computations at the single-cell level**. Such
models comprise hundreds of compartments, each furnished with
numerous ionic mechanisms to faithfully replicate the electro-
physiological profile of simulated neurons. However, achieving
high model accuracy is typically accompanied by increased
complexity (e.g., higher CPU/GPU demands and larger run times),
as numerous differential equations have to be solved at each
simulation time step. Therefore, this category of models is
unsuitable for large-network simulations, where computational
efficiency is a key priority.

A middle-ground solution utilizes simplified models that capture
only the essential electrophysiological characteristics of real
neurons®*, Notable examples of this approach are found in recent
theoretical studies showing that dendritic mechanisms convey sig-
nificant advantages to simplified network models of varying levels of

input discrimination (pattern separation®), efficient binding/linking of
information'?*, and increased memory storage and recall capacity'**.
Similar advantages were recently seen in the machine learning field:
adding dendritic nodes in artificial neural networks (ANNs) reduced
the number of trainable parameters required to achieve high-
performance accuracy® (also see ***°). Moreover, incorporating den-
dritic nodes in Self Organizing Map classifiers*® and other neuro-
inspired networks* improved their continuous learning ability.

Overall, while dendrites confer advanced computational power to
simulated biological networks and these benefits are likely to extend to
machine learning systems, SNNs remain largely dendrite-ignorant. A
likely reason is that the current theoretical framework for modeling
dendritic properties consists of overly complex equations with
numerous free parameters, making it mathematically intractable and
impractical for use in SNNs.

To address the abovementioned complexity issues and pro-
vide a framework that allows the seamless incorporation of den-
drites in SNN models, we developed Dendrify (Fig. 1). Dendrify is
a free, open-source Python package that facilitates the addition of
dendrites and various dendritic mechanisms in SNNs. Impor-
tantly, Dendrify works with the Brian 2 simulator*?; it builds upon
the latter’s powerful and flexible features while automating some

abstraction. These include improved associative learning'>”, better potentially complex and error-prone steps related to
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Fig. 1| The main characteristics of dendrify. a Dendrify stemmed from our efforts
to bridge the gap between detailed biophysical models and reduced I&F models.
The result is a modeling framework for developing simplified compartmental
models that balance efficiency and biological accuracy by capturing the most

SNN comprising active
dendritic mechanisms

important characteristics of both worlds. b Dendrify facilitates the development of
SNNs comprising reduced compartmental neurons (ball and sticks) and known
dendritic phenomena, such as various types of local spikes (Color code; teal: Na*
spikes, red: Ca*" spikes, orange: NMDA spikes. Scale bar: 20 mV/10 ms).
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Fig. 2 | A basic compartmental neuron model with passive dendrites.

a Schematic illustration of a compartmental model consisting of a soma (spiking
unit) and two dendrites (passive integrators). The apical dendrite can integrate
excitatory synapses comprising AMPA and NMDA currents. b Membrane voltage
responses to current injections of the same amplitude are applied individually to
each compartment. Notice the electrical segregation caused by the resistance
between the three neuronal compartments. ¢ Somatic responses to a varying
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number of simultaneous synaptic inputs (5-35 synapses). Left: control EPSPs, right:
EPSPs in the presence of NMDA blockers. d) Input-output function of the apical
dendrite as recorded at the soma. The dotted line represents a linear function.
Notice the shift from supralinear to the sublinear mode when NMDARs are blocked.
The simulations and analysis code related to the above figure can be executed in
any browser by following this link: https://github.com/Poirazi-Lab/dendrify/blob/
main/paper_figures/Fig2_notebook.ipynb.

compartmental modeling. Specifically, through simple and intui-
tive commands, Dendrify automatically generates and handles all
the equations (and most parameters) needed by Brian 2 to build
simplified compartmental neurons. Its internal library of premade
models supports a broad range of neuronal mechanisms
yet allows users to provide their own model equations. Among
other optimizations, we also introduce a novel phenomenological
approach for modeling dSpikes, significantly more efficient and
mathematically tractable than the Hodgkin-Huxley formalism.
Moreover, we provide a step-by-step guide for designing reduced
compartmental models that capture the key electrophysiological
and anatomical properties of their biological counterparts.
Notably, the proposed guide builds upon established theoretical
work?*?%3! and its implementation is not exclusive to any simu-
lator software. To our knowledge, this is the first systematic
approach that combines a theoretical framework with a tool for
adding dendrites to simple, phenomenological neuronal models
in a standardized and mathematically concise manner.

Results

To demonstrate the power of Dendrify, we showcase its main features
through four modeling paradigms of increasing complexity. (a) A basic
compartmental model with passive dendrites, (b) a reduced com-
partmental model with active dendrites, (c) a simplified model of a CAl1
pyramidal neuron that reproduces numerous experimental observa-
tions, and d) a pool of CAl neurons used to assess the contribution of
dendritic Na* spikes in coincidence input detection. In addition, to
demonstrate Dendrify’s scalability and low computational cost, we
compare the execution time for both single-cell and network models
of increasing complexity and size.

Example 1: A basic compartmental model with passive dendrites
We start with a simple neuron model consisting of three compart-
ments (Fig. 2a). A soma, modeled as a leaky I&F unit, and two passive

dendrites (apical and basal) that are electrically coupled to the soma
(see Methods). This architecture roughly resembles the general den-
dritic organization of excitatory, pyramidal-like neurons. In this
example, the apical dendrite can integrate excitatory synaptic inputs
consisting of a fast a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) component and a slow N-methyl-D-aspartate (NMDA)
component. In addition, both dendritic compartments are connected
to a source of Gaussian white noise (i.e., noisy input current). The
Python code needed to reproduce this model is described in Supple-
mentary Fig. 1. All model parameters are available in Supplementary
Table 1.

To test our model’s electrical behavior, we applied depolarizing
current injections (400 ms pulses of 100 pA at -70 mV baseline vol-
tage) individually to each compartment and recorded the voltage
responses of all compartments (Fig. 2b). As expected, the largest
depolarization was observed at the current injection site, while
compartments located further apart were less affected, demon-
strating the model’s ability to capture the signal attenuation features
of biological neurons'®*’, Note that the basal dendrite in this model is
more excitable than the apical one due to the difference in length
(150 um vs. 250 um, respectively). The attenuation of currents tra-
veling along the somatodendritic axis is an intrinsic property of
biological neurons and is due to the morphology and cable proper-
ties of dendritic trees'*.

Although dendritic attenuation may seem undesirable, it has
several computational advantages™. For instance, it allows dendrites
to operate semi-independently from the soma** and perform com-
plex functions, especially when paired with local voltage-gated
mechanisms. In our toy model, simultaneous activation of an
increasing number of synapses on the apical dendrite evokes
somatic responses much larger than the expected arithmetic sum of
individual inputs (Fig. 2¢, d). The additional depolarization is due
to the activation of NMDARs (at elevated dendritic voltages),
resulting in supralinear integration. However, when NMDARs are

Nature Communications | (2023)14:131


https://github.com/Poirazi-Lab/dendrify/blob/main/paper_figures/Fig2_notebook.ipynb
https://github.com/Poirazi-Lab/dendrify/blob/main/paper_figures/Fig2_notebook.ipynb

Article https://doi.org/10.1038/s41467-022-35747-8
a b c d
Input distal Input proximal Input trunk
Model n 123 pA n 309 pA n 560 pA
distal AMPA _K
(100 x 0.5 pm) NMDA _/\
>
€
: AMPA & |—
proximal “10 ms N
(100 x 1 um) NMDA S —
trunk S— f\
(100 x 2.5 um) e —
®
soma © ) —/\
(25 x 25 pm) - -
e
dendrites soma AP backpropagation
100 8
g 130 pA
S
£ 4
5 0
3 0
0 10 20 0 10 20
Time (ms) Time (ms)
f
distal proximal
S C
£ 60 PO of 60 >
o ."
N S
& 30 46 30 w18
‘_:‘,’ f“’z s—control y.?f" <—control
= b 4
3 K. OFF 09 OFF
0 30 60 90 0 30 60 90

Expected EPSP (mV)

Fig. 3 | A reduced compartmental model that replicates active dendritic
properties. a Schematic illustration of a compartmental model consisting of a
soma (leaky I&F) and three dendritic segments (trunk, proximal, distal) equipped
with Na*-type VGICs. The distal and proximal segments can also receive AMPA and
NMDA synapses. b-d Rheobase current injections (5 ms square pulses) for dSpike
generation were applied individually to each dendritic segment. Shaded areas:
location of current injection and dSpike initiation. Top: stimulation protocol
showing the current threshold for a single dSpike (rheobase current). e First tem-
poral derivative of dendritic (left) and somatic (right) voltage traces from panels
(b-d). f Input-output function of the distal (left) and proximal (right) segment as
recorded from the corresponding dendritic locations. We also indicate the number

Expected EPSP (mV)

of quasi-simultaneously activated synapses (ISI= 0.1 ms) needed to elicit a single
dSpike in each case. OFF: deactivation of Na" dSpikes. Dashed lines: linear
input-output relationship. g Left: Backpropagating dSpikes are generated in
response to somatic current injections. The short-amplitude spikelets detected in
the distal branch are subthreshold voltage responses for dSpike initiation. Right:
Magnified and superimposed voltage traces (top) from the dashed box (left). Bel-
low: dendritic voltage-activated currents responsible for dSpikes generation in
each dendritic segment. The simulations and analysis code related to the above
figure can be executed in any browser by following this link: https://github.com/
Poirazi-Lab/dendrify/blob/main/paper_figures/Fig3_notebook.ipynb.

Nature Communications | (2023)14:131


https://github.com/Poirazi-Lab/dendrify/blob/main/paper_figures/Fig3_notebook.ipynb
https://github.com/Poirazi-Lab/dendrify/blob/main/paper_figures/Fig3_notebook.ipynb

Article

https://doi.org/10.1038/s41467-022-35747-8

a
CA1b model
sim 400w ECIII
200 pm
sr CA3
100 pm
Sp ...............................................
so CA3
150 pm e
c
25
- —4— model
z 20 o exp (super)
315 —* exp (deep)
5
3 10
o
2 5
0
0 50 100 150 200 250 300 350
Current injection (pA)
e
1.00
—4— model
2 0.75 M18
= —— exp
2 050
> 0.25
0.00
100 200 300 400
Distance from soma (um)
g
< 60  —&— model ’
E P03 .
% 40
o
w
o .
T 20 i
g ot
< vl
O v

0 10 20 30 40 50
Expected dEPSP (mV)

Fig. 4 | CAl1 pyramidal model validation. a Schematic illustration of the reduced
CA1 PC model consisting of a somatic and eight dendritic segments (2x basal, 1x
proximal trunk, 1x distal trunk, 2x radial oblique, 2x distal tuft). Grey numbers:
distance of the indicated points from the soma. Red axons: EC layer Il input, orange
axons: CA3 input. Horizontal dotted lines: borders of the four CAl layers (sIm:
stratum lacunosum-moleculare, sr: stratum radiatum, sp: stratum pyramidale, so:
stratum oriens). b Somatic voltage responses to various (1000 ms long) current
injections used for model validation. ¢ F-/ curves comparing the model with actual
superficial and deep PCs located in the CAlb area**. Shaded area: SEM. d Steady-
state, distance-dependent voltage attenuation of a long current pulse injected at
the soma. G15: data for three detailed biophysical models adapted from”. e The
attenuation of postsynaptic currents propagating along the apical dendrite as a
function of distance from the soma. M18: biophysical modeling data adapted
from®, Exp: experimental data adapted from'””. Shaded area: two standard
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deviations. f Simultaneous somatodendritic recordings in response to a somatic
current injection showing the emergence of BPAPs. T1/T2: start/end of current
injection (duration = 500 ms). g Main panel: Input-output function of the reduced
model’s oblique dendrite (the interval between inputs is 0.1 ms). PO3: biophysical
modeling data adapted from*. Arrows: indicate a different number of co-active
synapses (grey =13, pink =14, blue = 24). Inset: dendritic voltage responses from
the three highlighted cases. h Main panel: peak dV/dt of somatic voltage responses
as a function of synaptic inputs (data aligned to their respective thresholds for
dSpike initiation). M18: biophysical modeling data adapted from®’. Exp: experi-
mental data adapted from'*. Shaded areas: SEM. Inset: First temporal derivative of
the reduced model’s somatic EPSPs. Numbers indicate the number of co-active
synapses on the apical oblique dendrites. The simulations and analysis code related
to the above figure can be executed in any browser by following this link: https://
github.com/Poirazi-Lab/dendrify/blob/main/paper figures/Fig4_notebook.ipynb.

blocked, the apical dendrite switches from supralinear to a sublinear
integration mode (Fig. 2c, d), and this alteration can be dendrite-
specific. This happens because synaptic currents are susceptible to
the decrease in driving force as dendritic voltage approaches
the AMPA reversal potential (Eanpa = 0 mV). Both types of dendritic
integration have been observed in real neurons and allow distinct
computations, such as e.g. clustered vs. scattered input sensitivity*.

This example shows that even rudimentary compartmental models
can simulate essential dendritic functions like signal attenuation and
segregation that point-neuron models cannot capture. Importantly,
they allow the presence of multiple input segregation sites, theoretically
enhancing the computational capacity of single neurons®. In addition,
we provide an example of how even basic dendritic-driven mechanisms
can impact neuronal integration and somatic output.
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Example 2: A reduced compartmental model with active
dendrites

In the previous example, dendrites were modeled as passive leaky
compartments with added synaptic mechanisms. However, a unique
feature of Dendrify is the ability to incorporate voltage-gated ion
channels (VGICs, see Methods) that are implemented phenomen-
ologically without utilizing the Hodgkin-Huxley formalism. This
approach further reduces mathematical and computational
complexity, as exemplified by a second reduced model (parameters
shown in Supplementary Table 2) consisting of a somatic compart-
ment (leaky I&F) and an apical dendrite divided into three segments
(Fig. 3a, Supplementary Fig. 2). All dendritic compartments are e-
quipped with models of Na*-type VGICs (allowing the generation of
Na* dSpikes), while the distal and proximal segments can integrate
synaptic inputs consisting of AMPA and NMDA currents.

First, to test the impact of locally generated Na* spikes on den-
dritic and somatic responses in the model neuron, we simulated the
application of short current injections (5ms long pulses of rheobase
intensity) to each dendritic segment and recorded simultaneously
from all compartments (Fig. 3b—d). Although model parameters were
adjusted to elicit nearly identical responses in all dendritic compart-
ments (Fig. 3e left), somatic responses varied significantly, depending
on the dSpike initiation site (Fig. 3e right). As in real neurons, distal
dSpikes became much weaker and broader as they traveled toward the
soma due to the dendritic filtering effect'®*.

Moreover, the threshold for dendritic spiking significantly differs
among the three dendritic locations (Fig. 3b-d top). For example,
dSpike generation in the distal segment (Fig. 3b) requires approxi-
mately 2.5 times less current than the proximal one (Fig. 3¢). Due to its
smaller diameter and sealed end, the distal segment has higher input
resistance (Rinpy); thus, its membrane is more excitable. Biological
neurons also exhibit a large variability of axial resistance along their
dendrites caused mainly by differences in local branch dimensions
(length and diameter) and dendritic geometry (e.g., bifurcations num-
ber and branch order). This location-dependent change in input resis-
tance (typically increases in the thinner, distal branches) serves two
functions. First, it increases the probability of dSpike initiation in the
distal dendritic branches, and second, it helps to counterbalance the
distance-dependent input attenuation caused by cable filtering*>***’,

To examine how dendritic spiking combined with local branch
properties affect synaptic integration in our toy model, we activated
quasi-simultaneously (train of spikes with ISI 0.1 ms) an increasing
number of synapses placed on the distal and the proximal segments.
We then compared the peak amplitude of the dendritic voltage
responses (Actual) to what would be obtained by a linear arithmetic
sum of unitary responses (Expected) (Fig. 3f). Both segments produce
voltage responses that increase in a sigmoid-like fashion, with a
supralinear rise in their amplitude occurring above a certain number of
synapses (Fig. 3f control). This behavior is typical of pyramidal neurons
in the cortex and the hippocampus”****, as well as some
interneurons™*°. Moreover, blocking dSpikes (Fig. 3f OFF) disrupts the
above response leading to sublinear integration. Although the two
segments appear to have similar input-output curves, dendritic non-
linearities emerge earlier in the distal compartment. This is because of
its higher input resistance (Rinpy), requiring less synaptic excitation to
cross the dSpike voltage threshold. This model property, which is
based on experimental data*®, highlights the importance of accounting
for input pathways projecting to different dendritic locations, as they
may be subject to different integration rules. Notably, the same
approach used to build phenomenological models of Na* dSpikes can
be used to build models of other types of local-generated spikes (e.g.,
Ca*-based).

Another key feature of biological neurons is the ability of APs
initiated in the axon to invade the soma and nearby dendrites and
propagate backward toward the dendritic tips. The transmission

efficacy of these backpropagating action potentials (BPAPs) depends
on the dendritic morphology and the abundance of dendritic VGICs
(Na* or Ca®")*. Notably, in several neuronal types, BPAPs can propagate
more efficiently than forward-propagating dSpikes, acting as feedback
signals of somatic activity” and serving as instructive plasticity
signals®®>2, To test if our model can recreate the generation of BPAPs,
we injected a depolarizing step current at the soma (135 pA for 300 ms)
capable of eliciting a small number of somatic APs (Fig. 3f). Upon
somatic activation (the axon is not explicitly modeled here), BPAPs
were successfully generated and propagated to the distal dendritic
segment. There, dSpikes were reduced to sharp, small-amplitude
responses (spikelets), as often observed experimentally®. These spi-
kelets resulted from attenuating ion influxes from nearby dSpikes, that
failed to trigger local suprathreshold responses. It should be noted
that to achieve BPAP generation, we had to utilize a custom version of
the I&F model” that results in a more realistic somatic AP shape (see
Methods).

Altogether, the above simulations show that Dendrify allows the
development of reduced compartmental models that incorporate
phenomenological voltage-gated mechanisms and can replicate var-
ious dendritic features and their impact on somatic output. These
reduced yet more biologically relevant models offer a compelling
alternative for developing SNNs with a high degree of bioinspiration
and small computational overhead. Importantly, Dendrify provides
easy access to this category of models by radically simplifying their
implementation in Brian 2.

Example 3: A simplified yet biologically accurate model of a CAl
pyramidal cell
The previous examples demonstrated how Dendrify promotes the
development of simple compartmental models reproducing several
essential dendritic functions. However, our examples comprised gen-
eric neuron models rather than any area-specific cell type. To explore
our approach’s full potential and limitations, we built a simplified yet
realistic model of a CA1 pyramidal cell (PC). This cell type was selected
due to the availability of a large volume of experimental data®* and
computational models®*® to compare our work with. To keep our
approach simple, we did not use third-party software to design the
model’'s morphology® or fit its parameters®. Instead, based on pre-
vious theoretical work??**, we created a set of instructions that guides
Dendrify users throughout model development and validation pro-
cesses. The specific approach is briefly discussed below (for a more
detailed description, see Methods).

Our reduced CAl PC model (Fig. 4a) consists of 9 segments
(1 somatic + 8 dendritic), the dimensions of which were constrained
using mouse anatomical data®*°, All model parameters are provided
in Supplementary Table 3. Our goal was to preserve: (a) the main
functional and anatomical characteristics of the dendritic morphol-
ogy, (b) compartment-specific synaptic placement, and (c) realistic
dendritic attenuation (axial resistance). In particular, this morphol-
ogy reflects the anatomical layering of the CAl hippocampal area and
the spatial segregation of input pathways coming from the entorh-
inal cortex (EC) and the CA3 area. Moreover, synaptic conductances
were manually calibrated to ensure that the AMPA to NMDA ratio
and the unitary postsynaptic responses along the dendritic tree
agree with empirical data (Supplementary Fig. 4, Supplementary
Table 3)°%. To directly compare our model with the available
in vitro data®, we replicated the experimental procedures used to
estimate essential electrophysiological properties (Fig. 4b, ¢, Sup-
plementary Fig. 3). We observe that the model's membrane time
constant (7p,,), input resistance (Rinpye), Sag ratio, and F-/ curve clo-
sely approximate the respective properties of real PCs located in the
CAlb subregion, the most central part of the CAl area.

Since studies with simultaneous somatodendritic recordings are
scarce in the literature, we utilized data from various sources
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applied to the network. ¢ Summary of the results shown in panel (b). Active neu-
rons: PCs that fired >1 somatic spike. Notice the reduction of the active population
size when dendritic spiking is turned off. d Repeating the coincidence detection
experiment for a broad range of input intensities. Left: Mean neuronal firing rate
(MFR) for each combination of EC/CA3 input amplitudes. Centre: same as in Left
but with dSpikes turned off. The highlighted squares indicate the initial

Input intensity (a.u.)

experimental conditions for the data shown in panels (b, c. Right: quantifying the
decrease in coincidence detection efficacy by measuring the MFR percentage
decrease (dSpikes ON vs. dSpikes OFF). Deactivation of dendritic spiking results in
reduced MFR in all cases tested. The white squares (bottom left) represent cases
with very low initial MFR (<0.1 Hz or <5% network activity) that were excluded from
the analysis. The highlighted squares indicate the experimental conditions of the
data shown in panel (f). e Distribution of the results shown in panel (d) (right).

f Comparing the ISI distributions between the dSpikes ON and OFF conditions,
using the highlighted cases in panel (d) (right). The circles represent the distribu-
tion medians, and the vertical lines are the first and third quantiles containing 50%
of the data. Stars denote significance with unpaired t-test (two-tailed) with Bon-
ferroni’s correction. The simulations and analysis code related to the above figure
can be executed in any browser by following this link: https://github.com/Poirazi-
Lab/dendrify/blob/main/paper_figures/Fig5_notebook.ipynb.

(experimental***" and modelling***>**®") to calibrate our model’s den-

dritic properties. First, to quantify dendritic attenuation as a function
of distance from the soma, we injected current at the soma (1000 ms
square pulse of -10 pA) and calculated the ratio of the dendritic to
somatic steady-state voltage responses (dVgena/dVsoma) at various
locations. The reduced model is similar to three detailed biophysical
models™ (Fig. 4d). Next, to examine synaptic input attenuation, we
activated synapses (single pulse with a time interval of 0.1 ms) at var-
ious apical dendrite locations and calculated the somatic to dendritic
peak voltage (dVsoma/dVdena) (Fig. 4€). Compared to experimental
data® and a recent, highly optimized biophysical model®, the reduced
model captures the distance-dependent attenuation of EPSPs. It

should be noted that the high variability in the morphology® and the
electrophysiological properties® of real CA1 PCs make any attempt to
build a single (detailed or simplified) neuron model that replicates all
characteristics virtually impossible (also see’). As an alternative
approach, Dendrify’s ease of implementation and simulation efficiency
allows for the development of multiple, different single-neuronal
models, each designed to replicate specific features found in
these cells.

The dendrites of biological CAl PCs express several VGICs that
allow them to perform complex operations'>™*®, For simplicity, we
equipped our CAl neuron model only with Na* VGICs, which underlie
the generation of Na" dSpikes (Fig. 3). First, to test our model’s ability
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v No recurrency
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b
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v Active dendrites
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Fig. 6 | Estimating Dendrify’s performance for increasing network complexity
and size. a Schematic illustration of the three model cases used for the scalability
analysis. In all cases, the neuronal model was an adapted version of the four-

compartment model shown in Fig. 2a. Note that the number of Poisson input

generators scaled with N. Left: a group of N neurons with passive dendrites and no
recurrent synapses. Middle: a group of N neurons with active dendrites (i.e., furn-
ished with Na+ dSpikes) and no recurrent synapses. Right: a recurrent network of N

neurons with active dendrites and -50 synapses/neuron. b Scalability plots, show-
ing how the combined build and simulation time scales when increasing N. The
times plotted here represent the average of 10 runs. Simulations were performed
on alaptop (blue, orange, and green) or an iPad (black). For more information, refer
to Supplementary Table 4. All scalability codes and the raw results are available on
GitHub.

to generate BPAPs, we injected current at the soma (500 ms square
pulse of 200 pA) and recorded simultaneously from the most distal
parts of the apical dendritic segments (Fig. 4f). We observed that
BPAPs are successfully generated and propagate robustly to the end of
the main apical trunk (250 pm from the soma). From that point
onwards (>250 um from the soma), BPAPs are reduced to small-
amplitude spikelets that fail to trigger dSpike initiation in the distal
dendritic segments. This phenomenon has also been documented in
recent in vitro studies™. However, we should note that back-
propagation efficacy among actual CA1 PCs is quite variable and highly
dependent on the dendritic morphology and ionic channel
distribution®,

Next, we tested our model’s ability to generate dSpikes in response
to correlated synaptic input onto its oblique dendrites (see Supple-
mentary Fig. 5). This property is a hallmark of real CA1 PCs*® and has
been used as a metric of model accuracy®. Our model reproduces a
sigmoid-like input-output function (Fig. 4g), also observed in a pre-
vious example (Fig. 3f). Above a certain number of quasi-simultaneous
activation (0.1 ms intervals) of synaptic inputs, dendritic responses
increase sharply due to dSpike initiation, resulting in supralinear
integration*’. Dendritic sodium spikes cause a rapid jump in the
amplitude and kinetics of somatic EPSPs, similar to what is observed in
in vitro and biophysical modeling studies***” (Fig. 4h). Capturing this
dendro-somatic nonlinear interaction in our model is essential since this
feature is known to increase the conditional excitability of biological
CAl PCs and the temporal precision of their spiking output™"”.

In sum, the above example demonstrates that Dendrify can be
used to build versatile, reduced models that reproduce a wide range of
biophysical and synaptic characteristics of specific neuronal types.
Although at a fraction of the computational cost, these reduced
models are on par with far more complex ones in terms of accuracy for
several features. Moreover, their small number of parameters makes
them substantially more flexible and tractable since modelers can
easily adjust their properties and incorporate any available data type.

Example 4: Pathway interaction in CA1 model neurons
Biological CA1 PCs are more likely to generate action potentials when
input from the EC on their distal tuft is paired with coincident CA3
input on more proximal dendritic branches. Due to strong dendritic
attenuation, distal synaptic input generally has a negligible effect on
the soma, even when dSpikes are generated®’. However, combining EC
and (moderate) CA3 input results in more reliable dSpike initiation and
propagation, facilitating axonal action-potential output®’.

To test whether our reduced model (Fig. 4a) captures the coin-
cidence detection capabilities of CAl pyramidal neurons, we con-
structed a pool of 10,000 CAl pyramidal neurons (Fig. 5a). Every
neuron received five streams of input drawn from two different Pois-
son distributions (EC vs. CA3). Each input stream was assigned to a
single dendritic branch; two EC streams impinged onto the distal tuft
segments, whereas three CA3 streams impinged onto the oblique
dendrites and the distal trunk. To replicate the experiments of Jarsky
et al.*” regarding the response of CAl pyramidal neurons to EC, CA3,
and EC + CA3 input, we adjusted the average rates (1) of the Poisson
distributions so that: (a) When only the EC pathway is active, neurons
have a moderate probability (>55%) of generating at least one distal
dSpike, but no somatic APs (Supplementary Figs. 6a and 7a). (b) When
only the CA3 pathway is active, neurons generate neither dendritic nor
somatic spikes (Supplementary Figs. 6b and 7b). (c) The model output
when simultaneously activating the two input pathways in the pre-
sence or absence of dendritic Na* VGICs is shown in (Fig. 5b, c, Sup-
plementary Fig. 7c, d).

In control conditions (dSpikes ON), most neurons (-80%) gener-
ated one or more somatic spikes when both the EC and CA3 pathways
were active. The rest of the population remained silent throughout the
500 ms of the simulation duration. Deactivating dendritic spikes
(dSpikes OFF) impacted neuronal firing significantly: the percentage of
active neurons dropped to ~10%, signifying a ~70% decrease compared
to the control experiment (dSpikes ON). In addition, all active neurons
fired just a single somatic spike. This finding is in line with previous
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studies® and suggests a direct link between dendritic spiking and the
conditional activation of CAl PCs. Importantly, it highlights our mod-
el’s ability to reproduce complex pathway interaction rules discovered
in biological neurons beyond their basic dendritic properties (Fig. 4).

We next performed a parametric exploration of the input space to
gain more insight into the above phenomenon and assess its robust-
ness (Fig. 5d). Specifically, we created ten input distributions for each
pathway, with firing rates that varied by 50-150% (with step 10%) of the
original values. This led to 121 EC/CA3 input combinations, which were
tested in the presence and absence of dSpikes. Coincidence detection
efficacy was estimated using the mean neuronal firing rate (MFR) for
every combination of inputs (Fig. 5d left, center). This metric provides
a quantitive way of gauging the dendritic effect on somatic output
(Fig. 5b) rather than simply recording the percentage of active
neurons.

We found that dSpike deactivation greatly decreased the esti-
mated MFR across all input combinations (Fig. 5d right). This drop in
MFR ranged between 40 and 100% (Fig. 5e); cases with lower initial
activity were prone to complete silencing, whereas high-activity cases
were affected to a lesser extent. Moreover, dendritic spiking sig-
nificantly decreased the inter-spike intervals (ISI) of somatic APs
(Fig. 5f). The increased excitability caused by dSpikes resulted in
somatic responses with lower ISIs, close to those reported during
bursting. However, in agreement with experimental data™®”, the
simulated neurons did not generate actual somatic bursts since this
behavior requires the presence of dendritic Ca®* plateau potentials,
which are not included in this model.

Overall, this example highlighted the ability of our simplified
neuron models to reproduce coincidence detection rules intrinsic to
the dendrites of biological CAl PCs. Moreover, we verified the
robustness of this behavior through a wide variety of EC/CA3 input
parameters. Finally, we showed that dendritic Na* spikes determine the
frequency of somatic output in response to coincident input and their
temporal precision, reducing the threshold for strong somatic
activity’’.

Scalability analysis

We have shown that reduced compartmental I&F models, equipped
with active, event-driven dendritic mechanisms, can reproduce
numerous realistic dendritic functions. However, point-neuron models
are currently the gold standard for SNN research thanks to their sim-
plicity, efficiency, and scalability. To assess the viability of our
approach for large-network simulations, we tested how Dendrify’s
performance scales with increasing network size and complexity
(Fig. 6). It is important to note that since simulation performance
depends on multiple factors such as model complexity, hardware
specifications, and case-specific optimizations (e.g.,, C++ code
generation*? or GPU acceleration’>”®), designing a single most repre-
sentative test is unrealistic. For the sake of simplicity and to replicate a
real-world usage scenario, all simulations presented in this section
were performed on an average laptop using standard and widely used
Python tools (Supplementary Table 4). We also run the most
demanding test case on an iPad to showcase our approach’s universal
compatibility and low computational cost.

For the simplest test case (Fig. 6a left), we simulated a group of
four-compartment neurons with passive dendrites (adapted from
Fig. 2). Each neuron received AMPA-like synaptic inputs (Supplemen-
tary Table 4) to its distal and medial compartments from two inde-
pendent Poisson generators. Apart from the external sources of input
(two synapses/neurons), no other synaptic connections were included.
For the second test (Fig. 6a middle), we created a model identical to
the one described above, but instead of having passive dendrites, it
was equipped with Na*-type VGICs. For the last test (Fig. 6a right), we
created a recurrent network of N neurons with active dendrites. The
connection probability was adjusted for each N to ensure that neurons

received a fixed number of synapses (-50 synapses/neuron), regardless
of network size.

As expected, simulation times increase as a function of N
regardless of model complexity (Fig. 6b). Moreover, introducing more
mechanisms, such as active dendritic channels or recurrent synapses,
impacted performance significantly. However, simulation times
remained within reasonable margins for all model cases and increased
in a similar manner as N increased. When N < 10%, building a model and
running a 1-s-long simulation required no more than 4 s to complete,
even in the case of the recurrent network. For the same test, increasing
N to 10* or 10° resulted in a total runtime of ~11 and -101 s, respectively.
Surprisingly, when running the same test on an iPad, the code not only
ran without any modifications but also faster than the Linux laptop
for N<10*

Overall, these comparisons suggest that Dendrify is a good
alternative for developing SNNs that account for various biological
features. It combines flexibility with ease of implementation while
offering increased exploratory power at a reasonable computational
cost. Moreover, its universal compatibility, efficiency, and flexibility
make it a great tool for both research and educational purposes.

Discussion

Establishing a rapport between biological and artificial neural net-
works is necessary for understanding and hopefully replicating our
brain’s superior computing capabilities**’*. However, despite decades
of research revealing the central role of dendrites in neuronal infor-
mation processing'®*'***, the dendritic contributions to network-level
functions remain largely unexplored. Dendrify aims to promote the
development of realistic spiking network models by providing a the-
oretical framework and a modeling toolkit for efficiently adding
bioinspired dendritic mechanisms to SNNs. This is materialized by
developing simplified yet biologically accurate neuron models optimal
for network simulations in the Brian 2 simulator*.

Here, we demonstrated the ability of simple phenomenological
models developed with Dendrify to reproduce numerous experimen-
tally observed dendritic functions. First, we showed that even a generic
toy model with passive dendrites can display some electrical seg-
mentation due to the resistance between its compartments (Fig. 2).
This property allows dendrites to operate semi-autonomously from
the soma and multiple input integration sites to coexist within a single
neuron**, Next, we showed that adding dendritic Na* VGICs to a basic
four-compartment model (Fig. 3) unlocks important dendritic features
that include: (a) the presence of branch-specific integration rules
affected by local dendritic morphology*’, (b) the supralinear summa-
tion of correlated synaptic inputs and its impact on neuronal output**,
(c) the generation of BPAPs as feedback signals of neuronal
activity*>**%, Finally, we built a simplified yet biologically constrained
model of a CA1 PC (Fig. 4) and showed its ability to capture numerous
passive (T, Rinput, Sag ratio, somatodendritic attenuation) and active
(F-I curve, nonlinear dendritic integration, BPAPs generation) prop-
erties of real CAl PCs. Notably, the reduced model reproduced com-
plex coincidence detection rules found in CAl PC dendrites and the
impact of Na* dSpikes on the frequency and the temporal precision of
neuronal output”” (Fig. 5). Importantly, our scalability tests showed
that Dendrify allows the simulation of both single neurons and net-
works of increasing complexity with a relatively low computational
cost, thus making it an ideal tool for the development of bioinspired
SNNs. Overall, we illustrated that Dendrify allows for building simple,
mathematically tractable models replicating essential dendritic func-
tions and their influence on neuronal activity.

Multiple recent SNNs studies seemingly converge to the same
conclusion; neural heterogeneity within a network can positively
impact its learning and information processing capabilities’. For
example, heterogeneous SNNs with dynamic neuronal properties,
such as learnable adaptation’® and membrane time constants’”” or a
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slowly moving firing threshold”, performed better in complex tasks
like image classification or playing Atari games. Since dendrites con-
stitute a significant source of heterogeneity in biological networks, we
expect that transferring their properties into SNNs can confer impor-
tant computational advantages. These include (a) the coexistence of
numerous semi-independent integration sites within a single neuron*?,
(b) flexible and adaptive information processing that adjusts to com-
putational demand’®, (c) the presence of multi-timescale dynamics*®,
and (d) synergy between different synaptic plasticity rules”. Indeed,
few recent studies suggest that combining nonlinear dendritic
mechanisms with local learning rules gives SNNs compelling advan-
tages over previous modeling standards. In particular, dendritic SNNs
prolong memory retention in an associative task”, allow the storage of
memories using fewer resources”, and enable sophisticated credit
assignment in hierarchical circuits®’. However, despite noteworthy
progress, we have a long way to go until we fully understand the
implications of dendritic processing in neural network functions.

Several tools for simulating multicompartmental neurons and
networks of such neurons have been developed throughout the
years®, Among them, the most popular and widely used are NEURON®,
GENESIS®?, NEST®, and Brian 2*>, and, more recently, Arbor®’. However,
most of these tools use the HH formalism to simulate the active
properties of dendrites, either directly or via its implementation in a
secondary, low-level programming language, such as NMODL®*® (NEU-
RON and Arbor) of NESTML® (NEST). While users can incorporate new
features and mechanisms in models developed with these tools, flex-
ibility and ease of implementation can better be achieved by using a
single, general-purpose programming language like Python. More-
over, Brian 2 offers a multicompartment neuronal model in its library,
with all the advantages of the simulator. However, there is currently no
straightforward way to implement a network of such multi-
compartmental models in Brian 2.

Dendrify is not another simulator like the ones mentioned above.
Instead, Dendrify capitalizes on the intuitiveness and powerful fea-
tures of the Brian 2 simulator, which requires only basic knowledge of
the Python programming language. Its aspiration is to facilitate the
development of reduced phenomenological neuron models that pre-
serve many essential properties of their biological counterparts in an
efficient and flexible manner. It is designed for non-experts to increase
its attractiveness to both experimental and theoretical groups inter-
ested in developing bioinspired SNNs. Instead of relying on the HH
formalism to simulate VGICs®’, dSpike mechanisms are modeled in
an event-driven fashion, thus significantly reducing model complexity
while maintaining high biological accuracy. Moreover, contrary to
similar known approaches?, in Dendrify, the dSpikes and BPAPs are
not simulated by clamping segment voltages. Thus, our implementa-
tion allows multiple synaptic or dendritic currents to be summed as in
real neurons. Notably, the proposed approach requires a relatively
small number of free parameters, resulting in straightforward model
development and calibration. Another advantage of our implementa-
tion is its compatibility with all popular operating systems running on
CPUs and GPUs’>”. Finally, our approach allows testing new algo-
rithms compatible with neuromorphic hardware®°°, which has seen
impressive resource-saving benefits by including dendrites”™. We
expect Dendrify to be a valuable tool for anyone interested in devel-
oping SNNs with a high degree of bioinspiration to study how single-
cell properties can influence network-level functions.

It is important to note that the presented modeling frame-
work does not come without limitations. First, reduced com-
partmental models cannot compete with morphologically
detailed models in terms of spatial resolution. More specifically,
in neuronal models with detailed morphologies, each dendritic
section consists of several segments used to ensure numerical
simulation stability and allow more sophisticated and realistic
synaptic placement. By contrast, with Dendrify, we aim to simply

extend the point-neuron model by adding a few compartments
that account for specific regions in the dendritic morphology.
Another limitation is that Dendrify currently depends on Brian’s
explicit integration methods to solve the equations of the
reduced compartmental models. While this approach improves
performance, it limits the number of compartments that can be
simulated without loss of numerical accuracy®’. Since Dendrify is
commonly used for neuron models with a small number of big
compartments, we expect that explicit approaches and a rea-
sonable simulation time step would not cause any substantial
numerical issues. To test this, we directly compared Dendrify
against SpatialNeuron (which utilizes an implicit method) using
an adapted version of the four-compartment model shown in
Fig. 3. We show a model with few dendritic compartments and a
relatively small integration time step (d¢<0.1ms), results in
almost identical responses to Brian’s SpatialNeuron (Supple-
mentary Figs. 8-17).

Another limitation pertains to our event-based implementation of
spikes. Since we do not utilize the HH formalism, certain experimen-
tally observed phenomena cannot be replicated by the standard
models provided with Dendrify. These include the depolarization
block emerging in response to strong current injections” or the
reduction of backpropagation efficiency observed in some neuronal
types during prolonged somatic activity®®. Moreover, the current ver-
sion of Dendrify supports only Na* and partially Ca®* VGICs and ignores
another known ion channel types®. Finally, synaptic plasticity rules
must be manually implemented using standard Brian 2 objects. How-
ever, Dendrify is a project in continuous development, and based on
the community feedback, many new features or improvements will be
included in future updates.

In summary, we introduced a theoretical framework and a set of
tools to allow the seamless development of reduced yet realistic
spiking models of any neuronal type. We hope the tool will be readily
adopted by neuroscientists and neuromorphic engineers, facilitating
knowledge discovery while advancing the development of powerful
brain-inspired artificial computing systems.

Methods

Somatic compartment

The CAl PC neuronal model is simulated as a leaky I&F model (Eq. 1)
with conductance-based adaptation (Eq. 2).

s dv?
G WV - g (v3,— £) —ga(Vi— )+ 14 S Bt
ieC* jes*
W A =gV — Val — 84 ()

where V;, denotes the somatic membrane voltage, C,, the membrane
capacitance, g the constant leak conductance, £ the leak reversal
potential, g4 the adaptation conductance, £4 the adaptation reversal
potential, Iff the axial current from the ith compartment connected to
the soma, C° the set with all compartments that are connected with the
somatic compartment, i’sjn a current describing the effect of synaptic
input from the jth presynaptic neuron to the soma, S°* a set with the
presynaptic neurons connected to the soma, and £,, denotes an
external current injected into the somatic compartment (similar to an
intracellular electrode). The adaptive conductance is changing over
time, with 7, denoting the time constant of the adaptation and g4 is the
maximum conductance of the adaptation current. || denotes the
absolute value.

When the somatic voltage crosses a threshold, V., a spike is
generated. Here, we modified the traditional approach of the I&F
models, where after a spike generation, the voltage resets back to a
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predetermined value, V,eser, and we include two resets, one that drives
the voltage instantly to a high value, Vypike, to account for the biological
spike amplitude, and we incrementally increase the g, by a constant
amount b, to account for the spike-triggered adaptation, and then after
a short decay, we instantly reset the voltage to V,eser. Mathematically,
we describe this process as

an ~ l/spike
if V5,>Vy thend g, < g4+b

tspike ~t

if t=topike +0.5msthen V5 « Vg

Dendritic compartments
The dendritic compartments are governed by a similar equation to the
somatic one (Eq. 3) for their dynamics, without the adaptation current
and by adding two additional currents that control the dynamics of the
dendritic spikes (Eqgs. 4-7).

davd . .
Ch S gt (v — )+ S L St 1 )

iec? jest
Fa= — 8% (Vi — Ena e “
l%d, = - g/‘édr <V:in - EK)de, )
- dﬁ _— ©)
o )

where the I, and /f denote the sodium (Na’) and the delayed-
rectified potassium (K*) currents, respectively. g¢, and g,‘ﬁdr are the
corresponding conductances. These currents are simulated as expo-
nential decay, with time constants T, and 7, respectively. fy, and
fk, are Boolean parameters indicating the generation of a
dendritic spike.

Dendritic spike mechanism

To activate the sodium current, the V:’n must cross a threshold, fy, to
be equal to 1, and to be outside of the refractory period of the sodium
current:

d d 4 gd
gNa (_gNa +gNa

d d
VYo fra <0
if fna=1 then
d Na der <1
t>t; ..+t
spike ref d
tspike «t

where tN2 is the refractory period during which another dendritic spike
cannot be generated, g, is the increase in conductance, and tgpike
denotes the time that voltage crosses the threshold.

To activate the potassium current, a time delay should have pas-

sed and f should be equal to L.

d d od
>t K 8Ky 8Ky T8Ky
if spike offset then fNa <1
Kyr der <« O

where tX¢ denotes the time delay in potassium current generation

and g,‘fdr is the increase in conductance.

In particular, when the dendritic membrane voltage crosses a
threshold, a sodium current is applied, and after a delayed time, a
potassium current is generated.

Axial currents between compartments

Each compartment receives an axial current as a sum of all axial cur-
rents flowing toward it and coming from the connected compartments
(Eq. 8).

Ii=>"1IF ®)

ieck

where ¢ denotes all compartments that are connected with the kth
compartment. Each compartment-specific axial current (Eq. 9) is given
by

Ik =g (Vi — Vi) ©)

where the g&* denotes the coupling conductance between the ith and
kth compartments.

We use two approaches to calculate the gt based on the mor-
phological properties of the compartments.

When the total number of compartments is low and the adjacent-
to-soma compartments are highly coupled with the soma, we calculate
the absolute longitudinal resistance, Riong, in Q (Eq. 10).

ralk
o4y

Thus, the coupling conductance is, by definition, the reverse of
Rlong (EQ- 1]-)-

Riong = (10)

i 1
gtc,k -

= 11
R long ( )

where d* denotes the diameter of the kth compartment, ¥ its length,
and r, its specific axial resistance in Q cm. The coupling conductance is
given in S (siemens). Thus, the axial current is calculated in absolute
units, i.e., A (ampere).

The second method uses the half-cylinder approach, where the
coupling term of two adjacent compartments (e.g., kth and ith com-
partment, respectively) is calculated between their centers (Eq. 12). In
this case, Riong is given by:

rali
2t 3
m(4) n(3)
Again, the coupling conductance is calculated as the inverse of
Riong (EQ. 13).

12)

1
gk =

= 13
R long ( )

Notice that we did not divide by the surface area of interest as we
wrote the differential equations in absolute terms. Thus, two adjacent
compartments have the same coupling conductance gi¥ =gk,

Global and specific properties
We assume that all compartments are cylinders with known diameter d
and length L. The surface area of the ith compartment is calculated
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using the open cylinder geometry (Eq. 14).

Ai_ (d)ll

and its total membrane capacitance (Eq. 15) and leak conductance
(Eq. 16) are given by:

14)

c=c A 15)

1

8= *A' 16)

where i, is the specific capacitance in pF . cm™ and ri, is the specific
membrane resistivity in Q. cm?

Synaptic currents
The synaptic currents that can flow to each compartment can be
AMPA, NMDA, or GABA (Eq. 17). The mathematical description is:

Fiyn(©)=8lynf syn (T, T ) shyn(©) (Vi = Egn )0 (Vi)

where f (TS5 ,r;’;ncaY) is a normalization factor dependent on the rise
and decay time constants (r;‘;ﬁ and Tfye,fay) to ensure that for every
presynaptic splke the maximum conductance is gsyn, i.e., the
fsyn(rg’;,ﬁ,rgfﬁay )Skyn(t) term is bounded in [0,1]. Subscript syn denotes
the type of synapse, i.e., syn € {AMPA,NMDA,GABA}.

The siyn(t) term denotes the time dependence of the synaptic
conductance. Here, we use two methods; one with a dual exponential
form (Eq. 18), as we want to set the rise and decay times independently,
and the other as a simple exponential decay (Eq. 19).

t—t t—t
Styn(®)= H( pre> <exp ( Tdec;’;ﬂ) —exp < T?ys;re» 18)
syn

a7

) t—t
Shn(t)=H (t - tpre) exp ( decfy“) 19)
Tsyn
where H(-) denotes the Heaviside function (Eq. 20).
1,ifz=0
H(z)= 20
@ {O,ifz<0 20)

The normalization factor is the peak value of si, , at time tax, and
we calculate it via zeroed out the derivative of si,, with respect to time
t (Egs. 21-22).

deca deca
dS T )’Trlse T y

syn set syn ‘“syn syn

=t In +t (21)
peak = “deca rise pre
dt e y -[nse Tsm
f rlse decay — 1

syn syn 4 syn (22)

S[syn (tpeak>

For AMPA and GABA currents, the voltage dependence is
neglected, i.e., oV}, ) =1. For the NMDA currents, which are voltage-
dependent due to magnesium (Mg?') blockade (Eq. 23).

(23)

N 1
o(Vn) 1+ %'e"p(_a(vg’ )

where 8 (mM), &« (mV™), and y (mV) control the magnesium and voltage
dependencies, respectively, and [Mg?*], denotes the external mag-
nesium concentration, usually set at a predetermined and constant
level (in mM).

The dynamics of the synaptic conductance using the dual expo-
nential form (Eq. 18) are given by a set of two differential equations
(Egs. 24-25) that simulate the double exponential relationship found
in synapses®.

i i _
dS'Syn - S'Syn + xsyn (1 Ssyn) (24)
de e R
L i
dxsyn - _ xsyn (25)
dt Trise
syn
if £ =ty then xSyn «~ xsyn 1

The dynamics of the synaptic conductance using the single
exponential decay form (Eq. 19) are governed by a single differential
equation (Eq. 26).

i i
dssyn _ Ssyn

dt Tg;;ay

(26)

ift=t,thensl, s +1

The normalization function when the simple decay method is
applied is fy, =1

As a compartment can receive more than one presynaptic con-
nection of the same type and/or synapses of different types simulta-
neously, the total synaptic current of the ith compartment is given by
the corresponding summation of all incoming currents (Eq. 27).

syn(t) gAMPA( EAMPA)fAMPA Z Shwea(6)

jESAMPA
+gNMDA<V ENMDA)fNMDA Z Shivpa(®) 7)
IGSNMDA
+gGABA(V EGABA) (V:n)fGABA A SZ Stapa(0)-
JESGABA

Numerical integration

Dendrify is compatible with all explicit integration methods
available in Brian 2, e.g., Euler, exponential Euler, Runge-Kutta
midpoint, and classical, among others. For more details, see
the supplementary material (Supplementary Methods) and the
official Brian 2 documentation (brian2.readthedocs.io/en/stable/user/
numerical_integration.html).

A practical guide for developing reduced models with bioin-
spired properties

Here, we provide a step-by-step guide for developing simplified com-
partmental models that capture key electrophysiological and anato-
mical features of their biological counterparts. The proposed protocol
relies on the previous work of Bush and Sejnowski*® and focuses on
achieving realistic axial resistance (r,), input resistance (R;,), and
membrane time constant (z,,,), along with accurate positioning of
synaptic inputs and ionic conductances. We illustrate this approach by
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Fig. 7| From biological neurons to reduced compartmental neuron models. a A
morphologically detailed reconstruction of a human CA1 PC (adopted from
NeuroMorpho.Org'®). Red arrow: EC layer Il input, orange arrows: CA3 input.
Horizontal dotted lines: borders of the four CAl layers (slm: stratum lacunosum-
moleculare, sr: stratum radiatum, sp: stratum pyramidale, so: stratum oriens).

b Schematic illustration of a basic five-compartment CA1 model consisting of a
somatic and four dendritic segments (1x basal, 1x proximal trunk, 1x distal trunk, 1x
tuft). Grey numbers: distance of the indicated points from the soma. Red axon: EC
layer 1Il input, orange axons: CA3 inputs. Horizontal dotted lines: borders of the
four CAl layers as in panel (a).

breaking down the development and validation of a reduced CAl
PC (CA1 PC).

Step 1: Identify the most important anatomical and functional
regions found in the neuronal morphology (Fig. 7a).

Based on the CAl region layering and the spatial segregation of
external input pathways, CAl pyramidal neurons can be partitioned
into five functionally distinct neuronal regions’®:

i. The perisomatic area - primary spiking unit (stratum Pyramidale)
ii. The basal dendritic area > CA3 input receiver (stratum Oriens)
iii. The proximal apical dendritic area > dendritic region devoid of
spines (stratum Radiatum, <100 pm from the soma)
iv. The medial apical dendritic area > CA3 input receiver (stratum

Radiatum, >100 pm from soma)

v. The distal apical dendritic area > EC layer Il input receiver (stra-
tum Lacunosum Moleculare)

Step 2: Design a toy model capturing the main neuronal features
identified in the previous step (Fig. 7b).

* Using cylindrical compartments, design a toy model that cap-

tures the main morphological features of the neuron of interest.

The number of model compartments should not exceed the

number of the identified, functionally unique neuronal regions.
This would prevent the model from processing the various input

pathways semi-independently, as in real CA1 PCs®’.
+ If biological accuracy is more important than simulation per-

formance, the number of compartments can be further
increased to account for more neuronal features. For example,
adding four compartments to the previous model (see Fig. 4a)
allows for accounting for the increased dendritic branching that
is observed in the distal, medial and basal areas of CA1 PC den-
drites. Other examples of morphologically reduced CA1 models

can be seen in ref. >
* Set the dimensions of the compartments according to the rules

described in ref. %%, In short, their approach aims to preserve
realistic attenuation of the currents traveling along the soma-
todendritic axis. This is achieved by creating compartments with
the correct electrotonic length and a diameter representative of

the dendritic diameter observed in real neurons.
* If there is no detailed morphological data, you can set the

cylinder lengths that approximate the distance from the soma
and capture the decrease in dendritic diameter as we move away
from the soma. Due to immense biological variability, the solu-
tions to this problem are infinite, and a single most representa-
tive model is impossible to exist.

Step 3: Validation of passive parameters

1) Membrane time constant
* Start with the values of somatic capacitance (C,,) and leakage
conductance (g;). Set C,, equal to 1pF cm™ and choose the
appropriate g; value so that the desired membrane time con-

stant (7,,,) is achieved according to the formula 7,,=C,,/g;.
* Next, use the same values for the dendrites, but we multiply

both by a factor of 1.2-2.0 (depending on experimental data,
use 1.5 if this value is unknown) to account for the added area
due to synaptic spines that are not explicitly modeled.

2) Input resistance and somatodendritic attenuation
* Set the axial resistance (R,;) according to experimental evi-
dence, if available. Typical values range between 100 and

250 MQ cm.
» Test the attenuation of currents along the somatodendritic axis

by applying long somatic current injections (Fig. 3). By default,
Dendrify calculates the coupling conductances according to
the half-cylinders formula®”:

rol rgl’

n(8) (o)

where superscripts i and k denote two adjacent compartments and /, d
denote the length and the diameter of the compartments, respectively.

Importantly, small manual corrections might be necessary to
achieve more realistic attenuation.

* Calculate the model’s input resistance (Ri,) by using a typical,
hyperpolarizing current step protocol**. Most likely, the initial
values will deviate from the experimental values due to the
reduced membrane area of the simplified model. This is why we
multiply both C,,, and g; (somatic and dendritic) with the same
scale factor until the model reaches the desired R;, as explained
here®,

ik —

+ =
c
Rlong

1
5 (28)

Rlong

Step 4: Validation of active properties

This step assumes that an I&F model with adaptation is used for
the soma, such as the AdEx*, CAdEX"’, or Izhikevich'® model. Use
somatic current injections to validate the Rheobase and FI curve by
adjusting the model variables based on the model-specific guidelines.

Step 5: Validation of dendritic integration
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The last step includes the validation of the Na* dendritic spike.
First, we set a realistic gy, to gk ratio, based on experimental evidence.
Then, we set a voltage threshold, which denotes the membrane voltage
values above which a dSpike is initiated. To account for the geome-
trical characteristics of the dendritic compartments, we multiply both
conductances with the compartmental surface area, i.e., A'. Using the
validation protocol depicted in Supplementary Fig. 5, we scale the
conductances to capture a realistic dSpike amplitude.

Data availability
The source code that generates all Figures, as well as the data that
support this study, are accessible on GitHub.

Code availability

The code version underlying this study is available on GitHub and can
be accessed on Zenodo'®. Dendrify can be installed via the Python
Package Index (https://pypi.org/project/dendrify/) and is continuously
developed and accessible on GitHub. Extensive documentation,
including installation instructions, is hosted on https://dendrify.
readthedocs.io. Dendrify can be used in Windows, macOS, and Linux
operating systems.
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